mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-29 15:14:18 +08:00
2bf847db0c
11 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Bharat Bhushan
|
fb1ff4c194 |
vfio/fsl-mc: Add VFIO framework skeleton for fsl-mc devices
DPAA2 (Data Path Acceleration Architecture) consists in mechanisms for processing Ethernet packets, queue management, accelerators, etc. The Management Complex (mc) is a hardware entity that manages the DPAA2 hardware resources. It provides an object-based abstraction for software drivers to use the DPAA2 hardware. The MC mediates operations such as create, discover, destroy of DPAA2 objects. The MC provides memory-mapped I/O command interfaces (MC portals) which DPAA2 software drivers use to operate on DPAA2 objects. A DPRC is a container object that holds other types of DPAA2 objects. Each object in the DPRC is a Linux device and bound to a driver. The MC-bus driver is a platform driver (different from PCI or platform bus). The DPRC driver does runtime management of a bus instance. It performs the initial scan of the DPRC and handles changes in the DPRC configuration (adding/removing objects). All objects inside a container share the same hardware isolation context, meaning that only an entire DPRC can be assigned to a virtual machine. When a container is assigned to a virtual machine, all the objects within that container are assigned to that virtual machine. The DPRC container assigned to the virtual machine is not allowed to change contents (add/remove objects) by the guest. The restriction is set by the host and enforced by the mc hardware. The DPAA2 objects can be directly assigned to the guest. However the MC portals (the memory mapped command interface to the MC) need to be emulated because there are commands that configure the interrupts and the isolation IDs which are virtual in the guest. Example: echo vfio-fsl-mc > /sys/bus/fsl-mc/devices/dprc.2/driver_override echo dprc.2 > /sys/bus/fsl-mc/drivers/vfio-fsl-mc/bind The dprc.2 is bound to the VFIO driver and all the objects within dprc.2 are going to be bound to the VFIO driver. This patch adds the infrastructure for VFIO support for fsl-mc devices. Subsequent patches will add support for binding and secure assigning these devices using VFIO. More details about the DPAA2 objects can be found here: Documentation/networking/device_drivers/freescale/dpaa2/overview.rst Signed-off-by: Bharat Bhushan <Bharat.Bhushan@nxp.com> Signed-off-by: Diana Craciun <diana.craciun@oss.nxp.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com> |
||
Greg Kroah-Hartman
|
b24413180f |
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Kirti Wankhede
|
7b96953bc6 |
vfio: Mediated device Core driver
Design for Mediated Device Driver: Main purpose of this driver is to provide a common interface for mediated device management that can be used by different drivers of different devices. This module provides a generic interface to create the device, add it to mediated bus, add device to IOMMU group and then add it to vfio group. Below is the high Level block diagram, with Nvidia, Intel and IBM devices as example, since these are the devices which are going to actively use this module as of now. +---------------+ | | | +-----------+ | mdev_register_driver() +--------------+ | | | +<------------------------+ __init() | | | mdev | | | | | | bus | +------------------------>+ |<-> VFIO user | | driver | | probe()/remove() | vfio_mdev.ko | APIs | | | | | | | +-----------+ | +--------------+ | | | MDEV CORE | | MODULE | | mdev.ko | | +-----------+ | mdev_register_device() +--------------+ | | | +<------------------------+ | | | | | | nvidia.ko |<-> physical | | | +------------------------>+ | device | | | | callback +--------------+ | | Physical | | | | device | | mdev_register_device() +--------------+ | | interface | |<------------------------+ | | | | | | i915.ko |<-> physical | | | +------------------------>+ | device | | | | callback +--------------+ | | | | | | | | mdev_register_device() +--------------+ | | | +<------------------------+ | | | | | | ccw_device.ko|<-> physical | | | +------------------------>+ | device | | | | callback +--------------+ | +-----------+ | +---------------+ Core driver provides two types of registration interfaces: 1. Registration interface for mediated bus driver: /** * struct mdev_driver - Mediated device's driver * @name: driver name * @probe: called when new device created * @remove:called when device removed * @driver:device driver structure * **/ struct mdev_driver { const char *name; int (*probe) (struct device *dev); void (*remove) (struct device *dev); struct device_driver driver; }; Mediated bus driver for mdev device should use this interface to register and unregister with core driver respectively: int mdev_register_driver(struct mdev_driver *drv, struct module *owner); void mdev_unregister_driver(struct mdev_driver *drv); Mediated bus driver is responsible to add/delete mediated devices to/from VFIO group when devices are bound and unbound to the driver. 2. Physical device driver interface This interface provides vendor driver the set APIs to manage physical device related work in its driver. APIs are : * dev_attr_groups: attributes of the parent device. * mdev_attr_groups: attributes of the mediated device. * supported_type_groups: attributes to define supported type. This is mandatory field. * create: to allocate basic resources in vendor driver for a mediated device. This is mandatory to be provided by vendor driver. * remove: to free resources in vendor driver when mediated device is destroyed. This is mandatory to be provided by vendor driver. * open: open callback of mediated device * release: release callback of mediated device * read : read emulation callback. * write: write emulation callback. * ioctl: ioctl callback. * mmap: mmap emulation callback. Drivers should use these interfaces to register and unregister device to mdev core driver respectively: extern int mdev_register_device(struct device *dev, const struct parent_ops *ops); extern void mdev_unregister_device(struct device *dev); There are no locks to serialize above callbacks in mdev driver and vfio_mdev driver. If required, vendor driver can have locks to serialize above APIs in their driver. Signed-off-by: Kirti Wankhede <kwankhede@nvidia.com> Signed-off-by: Neo Jia <cjia@nvidia.com> Reviewed-by: Jike Song <jike.song@intel.com> Reviewed-by: Dong Jia Shi <bjsdjshi@linux.vnet.ibm.com> Signed-off-by: Alex Williamson <alex.williamson@redhat.com> |
||
Alex Williamson
|
71be3423a6 |
vfio: Split virqfd into a separate module for vfio bus drivers
An unintended consequence of commit
|
||
Antonios Motakis
|
42ac9bd18d |
vfio: initialize the virqfd workqueue in VFIO generic code
Now we have finally completely decoupled virqfd from VFIO_PCI. We can initialize it from the VFIO generic code, in order to safely use it from multiple independent VFIO bus drivers. Signed-off-by: Antonios Motakis <a.motakis@virtualopensystems.com> Signed-off-by: Baptiste Reynal <b.reynal@virtualopensystems.com> Reviewed-by: Eric Auger <eric.auger@linaro.org> Tested-by: Eric Auger <eric.auger@linaro.org> Signed-off-by: Alex Williamson <alex.williamson@redhat.com> |
||
Antonios Motakis
|
5316153239 |
vfio: platform: add the VFIO PLATFORM module to Kconfig
Enable building the VFIO PLATFORM driver that allows to use Linux platform devices with VFIO. Signed-off-by: Antonios Motakis <a.motakis@virtualopensystems.com> Signed-off-by: Baptiste Reynal <b.reynal@virtualopensystems.com> Reviewed-by: Eric Auger <eric.auger@linaro.org> Tested-by: Eric Auger <eric.auger@linaro.org> Signed-off-by: Alex Williamson <alex.williamson@redhat.com> |
||
Gavin Shan
|
92d18a6851 |
drivers/vfio: Fix EEH build error
The VFIO related components could be built as dynamic modules. Unfortunately, CONFIG_EEH can't be configured to "m". The patch fixes the build errors when configuring VFIO related components as dynamic modules as follows: CC [M] drivers/vfio/vfio_iommu_spapr_tce.o In file included from drivers/vfio/vfio.c:33:0: include/linux/vfio.h:101:43: warning: ‘struct pci_dev’ declared \ inside parameter list [enabled by default] : WRAP arch/powerpc/boot/zImage.pseries WRAP arch/powerpc/boot/zImage.maple WRAP arch/powerpc/boot/zImage.pmac WRAP arch/powerpc/boot/zImage.epapr MODPOST 1818 modules ERROR: ".vfio_spapr_iommu_eeh_ioctl" [drivers/vfio/vfio_iommu_spapr_tce.ko]\ undefined! ERROR: ".vfio_spapr_pci_eeh_open" [drivers/vfio/pci/vfio-pci.ko] undefined! ERROR: ".vfio_spapr_pci_eeh_release" [drivers/vfio/pci/vfio-pci.ko] undefined! Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Alex Williamson <alex.williamson@redhat.com> |
||
Gavin Shan
|
1b69be5e8a |
drivers/vfio: EEH support for VFIO PCI device
The patch adds new IOCTL commands for sPAPR VFIO container device to support EEH functionality for PCI devices, which have been passed through from host to somebody else via VFIO. Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Acked-by: Alexander Graf <agraf@suse.de> Acked-by: Alex Williamson <alex.williamson@redhat.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> |
||
Alexey Kardashevskiy
|
5ffd229c02 |
powerpc/vfio: Implement IOMMU driver for VFIO
VFIO implements platform independent stuff such as a PCI driver, BAR access (via read/write on a file descriptor or direct mapping when possible) and IRQ signaling. The platform dependent part includes IOMMU initialization and handling. This implements an IOMMU driver for VFIO which does mapping/unmapping pages for the guest IO and provides information about DMA window (required by a POWER guest). Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Paul Mackerras <paulus@samba.org> Acked-by: Alex Williamson <alex.williamson@redhat.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> |
||
Alex Williamson
|
73fa0d10d0 |
vfio: Type1 IOMMU implementation
This VFIO IOMMU backend is designed primarily for AMD-Vi and Intel VT-d hardware, but is potentially usable by anything supporting similar mapping functionality. We arbitrarily call this a Type1 backend for lack of a better name. This backend has no IOVA or host memory mapping restrictions for the user and is optimized for relatively static mappings. Mapped areas are pinned into system memory. Signed-off-by: Alex Williamson <alex.williamson@redhat.com> |
||
Alex Williamson
|
cba3345cc4 |
vfio: VFIO core
VFIO is a secure user level driver for use with both virtual machines and user level drivers. VFIO makes use of IOMMU groups to ensure the isolation of devices in use, allowing unprivileged user access. It's intended that VFIO will replace KVM device assignment and UIO drivers (in cases where the target platform includes a sufficiently capable IOMMU). New in this version of VFIO is support for IOMMU groups managed through the IOMMU core as well as a rework of the API, removing the group merge interface. We now go back to a model more similar to original VFIO with UIOMMU support where the file descriptor obtained from /dev/vfio/vfio allows access to the IOMMU, but only after a group is added, avoiding the previous privilege issues with this type of model. IOMMU support is also now fully modular as IOMMUs have vastly different interface requirements on different platforms. VFIO users are able to query and initialize the IOMMU model of their choice. Please see the follow-on Documentation commit for further description and usage example. Signed-off-by: Alex Williamson <alex.williamson@redhat.com> |