Commit Graph

204 Commits

Author SHA1 Message Date
Peter Zijlstra
4cfafd3082 sched,perf: Fix periodic timers
In the below two commits (see Fixes) we have periodic timers that can
stop themselves when they're no longer required, but need to be
(re)-started when their idle condition changes.

Further complications is that we want the timer handler to always do
the forward such that it will always correctly deal with the overruns,
and we do not want to race such that the handler has already decided
to stop, but the (external) restart sees the timer still active and we
end up with a 'lost' timer.

The problem with the current code is that the re-start can come before
the callback does the forward, at which point the forward from the
callback will WARN about forwarding an enqueued timer.

Now, conceptually its easy to detect if you're before or after the fwd
by comparing the expiration time against the current time. Of course,
that's expensive (and racy) because we don't have the current time.

Alternatively one could cache this state inside the timer, but then
everybody pays the overhead of maintaining this extra state, and that
is undesired.

The only other option that I could see is the external timer_active
variable, which I tried to kill before. I would love a nicer interface
for this seemingly simple 'problem' but alas.

Fixes: 272325c482 ("perf: Fix mux_interval hrtimer wreckage")
Fixes: 77a4d1a1b9 ("sched: Cleanup bandwidth timers")
Cc: pjt@google.com
Cc: tglx@linutronix.de
Cc: klamm@yandex-team.ru
Cc: mingo@kernel.org
Cc: bsegall@google.com
Cc: hpa@zytor.com
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20150514102311.GX21418@twins.programming.kicks-ass.net
2015-05-18 17:17:42 +02:00
Jason Low
316c1608d1 sched, timer: Convert usages of ACCESS_ONCE() in the scheduler to READ_ONCE()/WRITE_ONCE()
ACCESS_ONCE doesn't work reliably on non-scalar types. This patch removes
the rest of the existing usages of ACCESS_ONCE() in the scheduler, and use
the new READ_ONCE() and WRITE_ONCE() APIs as appropriate.

Signed-off-by: Jason Low <jason.low2@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Waiman Long <Waiman.Long@hp.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Aswin Chandramouleeswaran <aswin@hp.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/1430251224-5764-2-git-send-email-jason.low2@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-08 12:11:32 +02:00
Peter Zijlstra
3289bdb429 sched: Move the loadavg code to a more obvious location
I could not find the loadavg code.. turns out it was hidden in a file
called proc.c. It further got mingled up with the cruft per rq load
indexes (which we really want to get rid of).

Move the per rq load indexes into the fair.c load-balance code (that's
the only thing that uses them) and rename proc.c to loadavg.c so we
can find it again.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
[ Did minor cleanups to the code. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-08 12:04:12 +02:00
Peter Zijlstra
77a4d1a1b9 sched: Cleanup bandwidth timers
Roman reported a 3 cpu lockup scenario involving __start_cfs_bandwidth().

The more I look at that code the more I'm convinced its crack, that
entire __start_cfs_bandwidth() thing is brain melting, we don't need to
cancel a timer before starting it, *hrtimer_start*() will happily remove
the timer for you if its still enqueued.

Removing that, removes a big part of the problem, no more ugly cancel
loop to get stuck in.

So now, if I understand things right, the entire reason you have this
cfs_b->lock guarded ->timer_active nonsense is to make sure we don't
accidentally lose the timer.

It appears to me that it should be possible to guarantee that same by
unconditionally (re)starting the timer when !queued. Because regardless
what hrtimer::function will return, if we beat it to (re)enqueue the
timer, it doesn't matter.

Now, because hrtimers don't come with any serialization guarantees we
must ensure both handler and (re)start loop serialize their access to
the hrtimer to avoid both trying to forward the timer at the same
time.

Update the rt bandwidth timer to match.

This effectively reverts: 09dc4ab039 ("sched/fair: Fix
tg_set_cfs_bandwidth() deadlock on rq->lock").

Reported-by: Roman Gushchin <klamm@yandex-team.ru>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/20150415095011.804589208@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-04-22 17:06:53 +02:00
Abel Vesa
07c54f7a7f sched/core: Remove unused argument from init_[rt|dl]_rq()
Obviously, 'rq' is not used in these two functions, therefore,
there is no reason for it to be passed as an argument.

Signed-off-by: Abel Vesa <abelvesa@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1425383427-26244-1-git-send-email-abelvesa@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-02 17:42:55 +02:00
Peter Zijlstra
dfbca41f34 sched: Optimize freq invariant accounting
Currently the freq invariant accounting (in
__update_entity_runnable_avg() and sched_rt_avg_update()) get the
scale factor from a weak function call, this means that even for archs
that default on their implementation the compiler cannot see into this
function and optimize the extra scaling math away.

This is sad, esp. since its a 64-bit multiplication which can be quite
costly on some platforms.

So replace the weak function with #ifdef and __always_inline goo. This
is not quite as nice from an arch support PoV but should at least
result in compile time errors if done wrong.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Morten.Rasmussen@arm.com
Cc: Paul Turner <pjt@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: dietmar.eggemann@arm.com
Cc: efault@gmx.de
Cc: kamalesh@linux.vnet.ibm.com
Cc: nicolas.pitre@linaro.org
Cc: preeti@linux.vnet.ibm.com
Cc: riel@redhat.com
Link: http://lkml.kernel.org/r/20150323131905.GF23123@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-27 09:36:08 +01:00
Vincent Guittot
dc7ff76ead sched: Remove unused struct sched_group_capacity::capacity_orig
The 'struct sched_group_capacity::capacity_orig' field is no longer used
in the scheduler so we can remove it.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Morten.Rasmussen@arm.com
Cc: dietmar.eggemann@arm.com
Cc: efault@gmx.de
Cc: kamalesh@linux.vnet.ibm.com
Cc: linaro-kernel@lists.linaro.org
Cc: nicolas.pitre@linaro.org
Cc: preeti@linux.vnet.ibm.com
Cc: riel@redhat.com
Link: http://lkml.kernel.org/r/1425378903-5349-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-27 09:36:05 +01:00
Vincent Guittot
ca6d75e690 sched: Add struct rq::cpu_capacity_orig
This new field 'cpu_capacity_orig' reflects the original capacity of a CPU
before being altered by rt tasks and/or IRQ

The cpu_capacity_orig will be used:

  - to detect when the capacity of a CPU has been noticeably reduced so we can
    trig load balance to look for a CPU with better capacity. As an example, we
    can detect when a CPU handles a significant amount of irq
    (with CONFIG_IRQ_TIME_ACCOUNTING) but this CPU is seen as an idle CPU by
    scheduler whereas CPUs, which are really idle, are available.

  - evaluate the available capacity for CFS tasks

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Acked-by: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Morten.Rasmussen@arm.com
Cc: dietmar.eggemann@arm.com
Cc: efault@gmx.de
Cc: linaro-kernel@lists.linaro.org
Cc: nicolas.pitre@linaro.org
Cc: preeti@linux.vnet.ibm.com
Cc: riel@redhat.com
Link: http://lkml.kernel.org/r/1425052454-25797-7-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-27 09:36:02 +01:00
Vincent Guittot
b5b4860d1d sched: Make scale_rt invariant with frequency
The average running time of RT tasks is used to estimate the remaining compute
capacity for CFS tasks. This remaining capacity is the original capacity scaled
down by a factor (aka scale_rt_capacity). This estimation of available capacity
must also be invariant with frequency scaling.

A frequency scaling factor is applied on the running time of the RT tasks for
computing scale_rt_capacity.

In sched_rt_avg_update(), we now scale the RT execution time like below:

  rq->rt_avg += rt_delta * arch_scale_freq_capacity() >> SCHED_CAPACITY_SHIFT

Then, scale_rt_capacity can be summarized by:

  scale_rt_capacity = SCHED_CAPACITY_SCALE * available / total

with available = total - rq->rt_avg

This has been been optimized in current code by:

  scale_rt_capacity = available / (total >> SCHED_CAPACITY_SHIFT)

But we can also developed the equation like below:

  scale_rt_capacity = SCHED_CAPACITY_SCALE - ((rq->rt_avg << SCHED_CAPACITY_SHIFT) / total)

and we can optimize the equation by removing SCHED_CAPACITY_SHIFT shift in
the computation of rq->rt_avg and scale_rt_capacity().

so rq->rt_avg += rt_delta * arch_scale_freq_capacity()
and
scale_rt_capacity = SCHED_CAPACITY_SCALE - (rq->rt_avg / total)

arch_scale_frequency_capacity() will be called in the hot path of the scheduler
which implies to have a short and efficient function.

As an example, arch_scale_frequency_capacity() should return a cached value that
is updated periodically outside of the hot path.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Morten.Rasmussen@arm.com
Cc: dietmar.eggemann@arm.com
Cc: efault@gmx.de
Cc: kamalesh@linux.vnet.ibm.com
Cc: linaro-kernel@lists.linaro.org
Cc: nicolas.pitre@linaro.org
Cc: preeti@linux.vnet.ibm.com
Cc: riel@redhat.com
Link: http://lkml.kernel.org/r/1425052454-25797-6-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-27 09:36:01 +01:00
Vincent Guittot
36ee28e45d sched: Add sched_avg::utilization_avg_contrib
Add new statistics which reflect the average time a task is running on the CPU
and the sum of these running time of the tasks on a runqueue. The latter is
named utilization_load_avg.

This patch is based on the usage metric that was proposed in the 1st
versions of the per-entity load tracking patchset by Paul Turner
<pjt@google.com> but that has be removed afterwards. This version differs from
the original one in the sense that it's not linked to task_group.

The rq's utilization_load_avg will be used to check if a rq is overloaded or
not instead of trying to compute how many tasks a group of CPUs can handle.

Rename runnable_avg_period into avg_period as it is now used with both
runnable_avg_sum and running_avg_sum.

Add some descriptions of the variables to explain their differences.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Morten.Rasmussen@arm.com
Cc: Paul Turner <pjt@google.com>
Cc: dietmar.eggemann@arm.com
Cc: efault@gmx.de
Cc: kamalesh@linux.vnet.ibm.com
Cc: linaro-kernel@lists.linaro.org
Cc: nicolas.pitre@linaro.org
Cc: preeti@linux.vnet.ibm.com
Cc: riel@redhat.com
Link: http://lkml.kernel.org/r/1425052454-25797-2-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-27 09:35:57 +01:00
Steven Rostedt
b6366f048e sched/rt: Use IPI to trigger RT task push migration instead of pulling
When debugging the latencies on a 40 core box, where we hit 300 to
500 microsecond latencies, I found there was a huge contention on the
runqueue locks.

Investigating it further, running ftrace, I found that it was due to
the pulling of RT tasks.

The test that was run was the following:

 cyclictest --numa -p95 -m -d0 -i100

This created a thread on each CPU, that would set its wakeup in iterations
of 100 microseconds. The -d0 means that all the threads had the same
interval (100us). Each thread sleeps for 100us and wakes up and measures
its latencies.

cyclictest is maintained at:
 git://git.kernel.org/pub/scm/linux/kernel/git/clrkwllms/rt-tests.git

What happened was another RT task would be scheduled on one of the CPUs
that was running our test, when the other CPU tests went to sleep and
scheduled idle. This caused the "pull" operation to execute on all
these CPUs. Each one of these saw the RT task that was overloaded on
the CPU of the test that was still running, and each one tried
to grab that task in a thundering herd way.

To grab the task, each thread would do a double rq lock grab, grabbing
its own lock as well as the rq of the overloaded CPU. As the sched
domains on this box was rather flat for its size, I saw up to 12 CPUs
block on this lock at once. This caused a ripple affect with the
rq locks especially since the taking was done via a double rq lock, which
means that several of the CPUs had their own rq locks held while trying
to take this rq lock. As these locks were blocked, any wakeups or load
balanceing on these CPUs would also block on these locks, and the wait
time escalated.

I've tried various methods to lessen the load, but things like an
atomic counter to only let one CPU grab the task wont work, because
the task may have a limited affinity, and we may pick the wrong
CPU to take that lock and do the pull, to only find out that the
CPU we picked isn't in the task's affinity.

Instead of doing the PULL, I now have the CPUs that want the pull to
send over an IPI to the overloaded CPU, and let that CPU pick what
CPU to push the task to. No more need to grab the rq lock, and the
push/pull algorithm still works fine.

With this patch, the latency dropped to just 150us over a 20 hour run.
Without the patch, the huge latencies would trigger in seconds.

I've created a new sched feature called RT_PUSH_IPI, which is enabled
by default.

When RT_PUSH_IPI is not enabled, the old method of grabbing the rq locks
and having the pulling CPU do the work is implemented. When RT_PUSH_IPI
is enabled, the IPI is sent to the overloaded CPU to do a push.

To enabled or disable this at run time:

 # mount -t debugfs nodev /sys/kernel/debug
 # echo RT_PUSH_IPI > /sys/kernel/debug/sched_features
or
 # echo NO_RT_PUSH_IPI > /sys/kernel/debug/sched_features

Update: This original patch would send an IPI to all CPUs in the RT overload
list. But that could theoretically cause the reverse issue. That is, there
could be lots of overloaded RT queues and one CPU lowers its priority. It would
then send an IPI to all the overloaded RT queues and they could then all try
to grab the rq lock of the CPU lowering its priority, and then we have the
same problem.

The latest design sends out only one IPI to the first overloaded CPU. It tries to
push any tasks that it can, and then looks for the next overloaded CPU that can
push to the source CPU. The IPIs stop when all overloaded CPUs that have pushable
tasks that have priorities greater than the source CPU are covered. In case the
source CPU lowers its priority again, a flag is set to tell the IPI traversal to
restart with the first RT overloaded CPU after the source CPU.

Parts-suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Joern Engel <joern@purestorage.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20150318144946.2f3cc982@gandalf.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-23 10:55:22 +01:00
Peter Zijlstra
3960c8c0c7 sched: Make dl_task_time() use task_rq_lock()
Kirill reported that a dl task can be throttled and dequeued at the
same time. This happens, when it becomes throttled in schedule(),
which is called to go to sleep:

current->state = TASK_INTERRUPTIBLE;
schedule()
    deactivate_task()
        dequeue_task_dl()
            update_curr_dl()
                start_dl_timer()
            __dequeue_task_dl()
    prev->on_rq = 0;

This invalidates the assumption from commit 0f397f2c90 ("sched/dl:
Fix race in dl_task_timer()"):

  "The only reason we don't strictly need ->pi_lock now is because
   we're guaranteed to have p->state == TASK_RUNNING here and are
   thus free of ttwu races".

And therefore we have to use the full task_rq_lock() here.

This further amends the fact that we forgot to update the rq lock loop
for TASK_ON_RQ_MIGRATE, from commit cca26e8009 ("sched: Teach
scheduler to understand TASK_ON_RQ_MIGRATING state").

Reported-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Link: http://lkml.kernel.org/r/20150217123139.GN5029@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-18 14:27:30 +01:00
Peter Zijlstra
9edfbfed3f sched/core: Rework rq->clock update skips
The original purpose of rq::skip_clock_update was to avoid 'costly' clock
updates for back to back wakeup-preempt pairs. The big problem with it
has always been that the rq variable is unaware of the context and
causes indiscrimiate clock skips.

Rework the entire thing and create a sense of context by only allowing
schedule() to skip clock updates. (XXX can we measure the cost of the
added store?)

By ensuring only schedule can ever skip an update, we guarantee we're
never more than 1 tick behind on the update.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: umgwanakikbuti@gmail.com
Link: http://lkml.kernel.org/r/20150105103554.432381549@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-14 13:34:20 +01:00
Peter Zijlstra
cebde6d681 sched/core: Validate rq_clock*() serialization
rq->clock{,_task} are serialized by rq->lock, verify this.

One immediate fail is the usage in scale_rt_capability, so 'annotate'
that for now, there's more 'funny' there. Maybe change rq->lock into a
raw_seqlock_t?

(Only 32-bit is affected)

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20150105103554.361872747@infradead.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: umgwanakikbuti@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-14 13:34:19 +01:00
Ingo Molnar
e9ac5f0fa8 Merge branch 'sched/urgent' into sched/core, to pick up fixes before applying more changes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-16 10:50:25 +01:00
Stanislaw Gruszka
6e998916df sched/cputime: Fix clock_nanosleep()/clock_gettime() inconsistency
Commit d670ec1317 "posix-cpu-timers: Cure SMP wobbles" fixes one glibc
test case in cost of breaking another one. After that commit, calling
clock_nanosleep(TIMER_ABSTIME, X) and then clock_gettime(&Y) can result
of Y time being smaller than X time.

Reproducer/tester can be found further below, it can be compiled and ran by:

	gcc -o tst-cpuclock2 tst-cpuclock2.c -pthread
	while ./tst-cpuclock2 ; do : ; done

This reproducer, when running on a buggy kernel, will complain
about "clock_gettime difference too small".

Issue happens because on start in thread_group_cputimer() we initialize
sum_exec_runtime of cputimer with threads runtime not yet accounted and
then add the threads runtime to running cputimer again on scheduler
tick, making it's sum_exec_runtime bigger than actual threads runtime.

KOSAKI Motohiro posted a fix for this problem, but that patch was never
applied: https://lkml.org/lkml/2013/5/26/191 .

This patch takes different approach to cure the problem. It calls
update_curr() when cputimer starts, that assure we will have updated
stats of running threads and on the next schedule tick we will account
only the runtime that elapsed from cputimer start. That also assure we
have consistent state between cpu times of individual threads and cpu
time of the process consisted by those threads.

Full reproducer (tst-cpuclock2.c):

	#define _GNU_SOURCE
	#include <unistd.h>
	#include <sys/syscall.h>
	#include <stdio.h>
	#include <time.h>
	#include <pthread.h>
	#include <stdint.h>
	#include <inttypes.h>

	/* Parameters for the Linux kernel ABI for CPU clocks.  */
	#define CPUCLOCK_SCHED          2
	#define MAKE_PROCESS_CPUCLOCK(pid, clock) \
		((~(clockid_t) (pid) << 3) | (clockid_t) (clock))

	static pthread_barrier_t barrier;

	/* Help advance the clock.  */
	static void *chew_cpu(void *arg)
	{
		pthread_barrier_wait(&barrier);
		while (1) ;

		return NULL;
	}

	/* Don't use the glibc wrapper.  */
	static int do_nanosleep(int flags, const struct timespec *req)
	{
		clockid_t clock_id = MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED);

		return syscall(SYS_clock_nanosleep, clock_id, flags, req, NULL);
	}

	static int64_t tsdiff(const struct timespec *before, const struct timespec *after)
	{
		int64_t before_i = before->tv_sec * 1000000000ULL + before->tv_nsec;
		int64_t after_i = after->tv_sec * 1000000000ULL + after->tv_nsec;

		return after_i - before_i;
	}

	int main(void)
	{
		int result = 0;
		pthread_t th;

		pthread_barrier_init(&barrier, NULL, 2);

		if (pthread_create(&th, NULL, chew_cpu, NULL) != 0) {
			perror("pthread_create");
			return 1;
		}

		pthread_barrier_wait(&barrier);

		/* The test.  */
		struct timespec before, after, sleeptimeabs;
		int64_t sleepdiff, diffabs;
		const struct timespec sleeptime = {.tv_sec = 0,.tv_nsec = 100000000 };

		/* The relative nanosleep.  Not sure why this is needed, but its presence
		   seems to make it easier to reproduce the problem.  */
		if (do_nanosleep(0, &sleeptime) != 0) {
			perror("clock_nanosleep");
			return 1;
		}

		/* Get the current time.  */
		if (clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &before) < 0) {
			perror("clock_gettime[2]");
			return 1;
		}

		/* Compute the absolute sleep time based on the current time.  */
		uint64_t nsec = before.tv_nsec + sleeptime.tv_nsec;
		sleeptimeabs.tv_sec = before.tv_sec + nsec / 1000000000;
		sleeptimeabs.tv_nsec = nsec % 1000000000;

		/* Sleep for the computed time.  */
		if (do_nanosleep(TIMER_ABSTIME, &sleeptimeabs) != 0) {
			perror("absolute clock_nanosleep");
			return 1;
		}

		/* Get the time after the sleep.  */
		if (clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &after) < 0) {
			perror("clock_gettime[3]");
			return 1;
		}

		/* The time after sleep should always be equal to or after the absolute sleep
		   time passed to clock_nanosleep.  */
		sleepdiff = tsdiff(&sleeptimeabs, &after);
		if (sleepdiff < 0) {
			printf("absolute clock_nanosleep woke too early: %" PRId64 "\n", sleepdiff);
			result = 1;

			printf("Before %llu.%09llu\n", before.tv_sec, before.tv_nsec);
			printf("After  %llu.%09llu\n", after.tv_sec, after.tv_nsec);
			printf("Sleep  %llu.%09llu\n", sleeptimeabs.tv_sec, sleeptimeabs.tv_nsec);
		}

		/* The difference between the timestamps taken before and after the
		   clock_nanosleep call should be equal to or more than the duration of the
		   sleep.  */
		diffabs = tsdiff(&before, &after);
		if (diffabs < sleeptime.tv_nsec) {
			printf("clock_gettime difference too small: %" PRId64 "\n", diffabs);
			result = 1;
		}

		pthread_cancel(th);

		return result;
	}

Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20141112155843.GA24803@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-16 10:04:20 +01:00
Iulia Manda
44dba3d5d6 sched: Refactor task_struct to use numa_faults instead of numa_* pointers
This patch simplifies task_struct by removing the four numa_* pointers
in the same array and replacing them with the array pointer. By doing this,
on x86_64, the size of task_struct is reduced by 3 ulong pointers (24 bytes on
x86_64).

A new parameter is added to the task_faults_idx function so that it can return
an index to the correct offset, corresponding with the old precalculated
pointers.

All of the code in sched/ that depended on task_faults_idx and numa_* was
changed in order to match the new logic.

Signed-off-by: Iulia Manda <iulia.manda21@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: mgorman@suse.de
Cc: dave@stgolabs.net
Cc: riel@redhat.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20141031001331.GA30662@winterfell
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-04 07:17:57 +01:00
Wanpeng Li
acb32132ec sched/deadline: Add deadline rq status print
This patch add deadline rq status print.

Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Kirill Tkhai <ktkhai@parallels.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1414708776-124078-3-git-send-email-wanpeng.li@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-04 07:17:54 +01:00
Kirill Tkhai
67dfa1b756 sched/deadline: Implement cancel_dl_timer() to use in switched_from_dl()
Currently used hrtimer_try_to_cancel() is racy:

raw_spin_lock(&rq->lock)
...                            dl_task_timer                 raw_spin_lock(&rq->lock)
...                               raw_spin_lock(&rq->lock)   ...
   switched_from_dl()             ...                        ...
      hrtimer_try_to_cancel()     ...                        ...
   switched_to_fair()             ...                        ...
...                               ...                        ...
...                               ...                        ...
raw_spin_unlock(&rq->lock)        ...                        (asquired)
...                               ...                        ...
...                               ...                        ...
do_exit()                         ...                        ...
   schedule()                     ...                        ...
      raw_spin_lock(&rq->lock)    ...                        raw_spin_unlock(&rq->lock)
      ...                         ...                        ...
      raw_spin_unlock(&rq->lock)  ...                        raw_spin_lock(&rq->lock)
      ...                         ...                        (asquired)
      put_task_struct()           ...                        ...
          free_task_struct()      ...                        ...
      ...                         ...                        raw_spin_unlock(&rq->lock)
...                               (asquired)                 ...
...                               ...                        ...
...                               (use after free)           ...

So, let's implement 100% guaranteed way to cancel the timer and let's
be sure we are safe even in very unlikely situations.

rq unlocking does not limit the area of switched_from_dl() use, because
this has already been possible in pull_dl_task() below.

Let's consider the safety of of this unlocking. New code in the patch
is working when hrtimer_try_to_cancel() fails. This means the callback
is running. In this case hrtimer_cancel() is just waiting till the
callback is finished. Two

1) Since we are in switched_from_dl(), new class is not dl_sched_class and
new prio is not less MAX_DL_PRIO. So, the callback returns early; it's
right after !dl_task() check. After that hrtimer_cancel() returns back too.

The above is:

raw_spin_lock(rq->lock);                  ...
...                                       dl_task_timer()
...                                          raw_spin_lock(rq->lock);
   switched_from_dl()                        ...
       hrtimer_try_to_cancel()               ...
          raw_spin_unlock(rq->lock);         ...
          hrtimer_cancel()                   ...
          ...                                raw_spin_unlock(rq->lock);
          ...                                return HRTIMER_NORESTART;
          ...                             ...
          raw_spin_lock(rq->lock);        ...

2) But the below is also possible:
                                   dl_task_timer()
                                      raw_spin_lock(rq->lock);
                                      ...
                                      raw_spin_unlock(rq->lock);
raw_spin_lock(rq->lock);              ...
   switched_from_dl()                 ...
       hrtimer_try_to_cancel()        ...
       ...                            return HRTIMER_NORESTART;
       raw_spin_unlock(rq->lock);  ...
       hrtimer_cancel();           ...
       raw_spin_lock(rq->lock);    ...

In this case hrtimer_cancel() returns immediately. Very unlikely case,
just to mention.

Nobody can manipulate the task, because check_class_changed() is
always called with pi_lock locked. Nobody can force the task to
participate in (concurrent) priority inheritance schemes (the same reason).

All concurrent task operations require pi_lock, which is held by us.
No deadlocks with dl_task_timer() are possible, because it returns
right after !dl_task() check (it does nothing).

If we receive a new dl_task during the time of unlocked rq, we just
don't have to do pull_dl_task() in switched_from_dl() further.

Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
[ Added comments]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1414420852.19914.186.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-04 07:17:50 +01:00
Juri Lelli
7f51412a41 sched/deadline: Fix bandwidth check/update when migrating tasks between exclusive cpusets
Exclusive cpusets are the only way users can restrict SCHED_DEADLINE tasks
affinity (performing what is commonly called clustered scheduling).
Unfortunately, such thing is currently broken for two reasons:

 - No check is performed when the user tries to attach a task to
   an exlusive cpuset (recall that exclusive cpusets have an
   associated maximum allowed bandwidth).

 - Bandwidths of source and destination cpusets are not correctly
   updated after a task is migrated between them.

This patch fixes both things at once, as they are opposite faces
of the same coin.

The check is performed in cpuset_can_attach(), as there aren't any
points of failure after that function. The updated is split in two
halves. We first reserve bandwidth in the destination cpuset, after
we pass the check in cpuset_can_attach(). And we then release
bandwidth from the source cpuset when the task's affinity is
actually changed. Even if there can be time windows when sched_setattr()
may erroneously fail in the source cpuset, we are fine with it, as
we can't perfom an atomic update of both cpusets at once.

Reported-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Reported-by: Vincent Legout <vincent@legout.info>
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dario Faggioli <raistlin@linux.it>
Cc: Michael Trimarchi <michael@amarulasolutions.com>
Cc: Fabio Checconi <fchecconi@gmail.com>
Cc: michael@amarulasolutions.com
Cc: luca.abeni@unitn.it
Cc: Li Zefan <lizefan@huawei.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: cgroups@vger.kernel.org
Link: http://lkml.kernel.org/r/1411118561-26323-3-git-send-email-juri.lelli@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-10-28 10:47:58 +01:00
Rik van Riel
e3fe70b1f7 sched/numa: Classify the NUMA topology of a system
Smaller NUMA systems tend to have all NUMA nodes directly connected
to each other. This includes the degenerate case of a system with just
one node, ie. a non-NUMA system.

Larger systems can have two kinds of NUMA topology, which affects how
tasks and memory should be placed on the system.

On glueless mesh systems, nodes that are not directly connected to
each other will bounce traffic through intermediary nodes. Task groups
can be run closer to each other by moving tasks from a node to an
intermediary node between it and the task's preferred node.

On NUMA systems with backplane controllers, the intermediary hops
are incapable of running programs. This creates "islands" of nodes
that are at an equal distance to anywhere else in the system.

Each kind of topology requires a slightly different placement
algorithm; this patch provides the mechanism to detect the kind
of NUMA topology of a system.

Signed-off-by: Rik van Riel <riel@redhat.com>
Tested-by: Chegu Vinod <chegu_vinod@hp.com>
[ Changed to use kernel/sched/sched.h ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: mgorman@suse.de
Cc: chegu_vinod@hp.com
Link: http://lkml.kernel.org/r/1413530994-9732-3-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-10-28 10:47:48 +01:00
Rik van Riel
9942f79baa sched/numa: Export info needed for NUMA balancing on complex topologies
Export some information that is necessary to do placement of
tasks on systems with multi-level NUMA topologies.

Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: mgorman@suse.de
Cc: chegu_vinod@hp.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1413530994-9732-2-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-10-28 10:47:47 +01:00
Linus Torvalds
0429fbc0bd Merge branch 'for-3.18-consistent-ops' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu
Pull percpu consistent-ops changes from Tejun Heo:
 "Way back, before the current percpu allocator was implemented, static
  and dynamic percpu memory areas were allocated and handled separately
  and had their own accessors.  The distinction has been gone for many
  years now; however, the now duplicate two sets of accessors remained
  with the pointer based ones - this_cpu_*() - evolving various other
  operations over time.  During the process, we also accumulated other
  inconsistent operations.

  This pull request contains Christoph's patches to clean up the
  duplicate accessor situation.  __get_cpu_var() uses are replaced with
  with this_cpu_ptr() and __this_cpu_ptr() with raw_cpu_ptr().

  Unfortunately, the former sometimes is tricky thanks to C being a bit
  messy with the distinction between lvalues and pointers, which led to
  a rather ugly solution for cpumask_var_t involving the introduction of
  this_cpu_cpumask_var_ptr().

  This converts most of the uses but not all.  Christoph will follow up
  with the remaining conversions in this merge window and hopefully
  remove the obsolete accessors"

* 'for-3.18-consistent-ops' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (38 commits)
  irqchip: Properly fetch the per cpu offset
  percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t -fix
  ia64: sn_nodepda cannot be assigned to after this_cpu conversion. Use __this_cpu_write.
  percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t
  Revert "powerpc: Replace __get_cpu_var uses"
  percpu: Remove __this_cpu_ptr
  clocksource: Replace __this_cpu_ptr with raw_cpu_ptr
  sparc: Replace __get_cpu_var uses
  avr32: Replace __get_cpu_var with __this_cpu_write
  blackfin: Replace __get_cpu_var uses
  tile: Use this_cpu_ptr() for hardware counters
  tile: Replace __get_cpu_var uses
  powerpc: Replace __get_cpu_var uses
  alpha: Replace __get_cpu_var
  ia64: Replace __get_cpu_var uses
  s390: cio driver &__get_cpu_var replacements
  s390: Replace __get_cpu_var uses
  mips: Replace __get_cpu_var uses
  MIPS: Replace __get_cpu_var uses in FPU emulator.
  arm: Replace __this_cpu_ptr with raw_cpu_ptr
  ...
2014-10-15 07:48:18 +02:00
Peter Zijlstra
c55f5158f5 sched, mips, ia64: Remove __ARCH_WANT_UNLOCKED_CTXSW
Kirill found that there's a subtle race in the
__ARCH_WANT_UNLOCKED_CTXSW code, and instead of fixing it, remove the
entire exception because neither arch that uses it seems to actually
still require it.

Boot tested on mips64el (qemu) only.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kirill Tkhai <tkhai@yandex.ru>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Davidlohr Bueso <davidlohr@hp.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Qais Yousef <qais.yousef@imgtec.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: oleg@redhat.com
Cc: linux@roeck-us.net
Cc: linux-ia64@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mips@linux-mips.org
Link: http://lkml.kernel.org/r/20140923150641.GH3312@worktop.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-09-24 14:47:05 +02:00
Daniel Lezcano
442bf3aaf5 sched: Let the scheduler see CPU idle states
When the cpu enters idle, it stores the cpuidle state pointer in its
struct rq instance which in turn could be used to make a better decision
when balancing tasks.

As soon as the cpu exits its idle state, the struct rq reference is
cleared.

There are a couple of situations where the idle state pointer could be changed
while it is being consulted:

1. For x86/acpi with dynamic c-states, when a laptop switches from battery
   to AC that could result on removing the deeper idle state. The acpi driver
   triggers:
	'acpi_processor_cst_has_changed'
		'cpuidle_pause_and_lock'
			'cpuidle_uninstall_idle_handler'
				'kick_all_cpus_sync'.

All cpus will exit their idle state and the pointed object will be set to
NULL.

2. The cpuidle driver is unloaded. Logically that could happen but not
in practice because the drivers are always compiled in and 95% of them are
not coded to unregister themselves.  In any case, the unloading code must
call 'cpuidle_unregister_device', that calls 'cpuidle_pause_and_lock'
leading to 'kick_all_cpus_sync' as mentioned above.

A race can happen if we use the pointer and then one of these two scenarios
occurs at the same moment.

In order to be safe, the idle state pointer stored in the rq must be
used inside a rcu_read_lock section where we are protected with the
'rcu_barrier' in the 'cpuidle_uninstall_idle_handler' function. The
idle_get_state() and idle_put_state() accessors should be used to that
effect.

Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linux-pm@vger.kernel.org
Cc: linaro-kernel@lists.linaro.org
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-09-24 14:46:58 +02:00
Juri Lelli
a5e7be3b28 sched/deadline: Clear dl_entity params when setscheduling to different class
When a task is using SCHED_DEADLINE and the user setschedules it to a
different class its sched_dl_entity static parameters are not cleaned
up. This causes a bug if the user sets it back to SCHED_DEADLINE with
the same parameters again.  The problem resides in the check we
perform at the very beginning of dl_overflow():

	if (new_bw == p->dl.dl_bw)
		return 0;

This condition is met in the case depicted above, so the function
returns and dl_b->total_bw is not updated (the p->dl.dl_bw is not
added to it). After this, admission control is broken.

This patch fixes the thing, properly clearing static parameters for a
task that ceases to use SCHED_DEADLINE.

Reported-by: Daniele Alessandrelli <daniele.alessandrelli@gmail.com>
Reported-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Reported-by: Vincent Legout <vincent@legout.info>
Tested-by: Luca Abeni <luca.abeni@unitn.it>
Tested-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Tested-by: Vincent Legout <vincent@legout.info>
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Fabio Checconi <fchecconi@gmail.com>
Cc: Dario Faggioli <raistlin@linux.it>
Cc: Michael Trimarchi <michael@amarulasolutions.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1411118561-26323-2-git-send-email-juri.lelli@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-09-24 14:46:56 +02:00
Zhihui Zhang
9c58c79a8a sched: Clean up some typos and grammatical errors in code/comments
Signed-off-by: Zhihui Zhang <zzhsuny@gmail.com>
Cc: peterz@infradead.org
Link: http://lkml.kernel.org/r/1411262676-19928-1-git-send-email-zzhsuny@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-09-21 09:00:02 +02:00
Christoph Lameter
4a32fea9d7 scheduler: Replace __get_cpu_var with this_cpu_ptr
Convert all uses of __get_cpu_var for address calculation to use
this_cpu_ptr instead.

[Uses of __get_cpu_var with cpumask_var_t are no longer
handled by this patch]

Cc: Peter Zijlstra <peterz@infradead.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-26 13:45:45 -04:00
Kirill Tkhai
cca26e8009 sched: Teach scheduler to understand TASK_ON_RQ_MIGRATING state
This is a new p->on_rq state which will be used to indicate that a task
is in a process of migrating between two RQs. It allows to get
rid of double_rq_lock(), which we used to use to change a rq of
a queued task before.

Let's consider an example. To move a task between src_rq and
dst_rq we will do the following:

	raw_spin_lock(&src_rq->lock);
	/* p is a task which is queued on src_rq */
	p = ...;

	dequeue_task(src_rq, p, 0);
	p->on_rq = TASK_ON_RQ_MIGRATING;
	set_task_cpu(p, dst_cpu);
	raw_spin_unlock(&src_rq->lock);

    	/*
    	 * Both RQs are unlocked here.
    	 * Task p is dequeued from src_rq
    	 * but its on_rq value is not zero.
    	 */

	raw_spin_lock(&dst_rq->lock);
	p->on_rq = TASK_ON_RQ_QUEUED;
	enqueue_task(dst_rq, p, 0);
	raw_spin_unlock(&dst_rq->lock);

While p->on_rq is TASK_ON_RQ_MIGRATING, task is considered as
"migrating", and other parallel scheduler actions with it are
not available to parallel callers. The parallel caller is
spining till migration is completed.

The unavailable actions are changing of cpu affinity, changing
of priority etc, in other words all the functionality which used
to require task_rq(p)->lock before (and related to the task).

To implement TASK_ON_RQ_MIGRATING support we primarily are using
the following fact. Most of scheduler users (from which we are
protecting a migrating task) use task_rq_lock() and
__task_rq_lock() to get the lock of task_rq(p). These primitives
know that task's cpu may change, and they are spining while the
lock of the right RQ is not held. We add one more condition into
them, so they will be also spinning until the migration is
finished.

Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Turner <pjt@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1408528062.23412.88.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-08-20 14:53:00 +02:00
Kirill Tkhai
da0c1e65b5 sched: Add wrapper for checking task_struct::on_rq
Implement task_on_rq_queued() and use it everywhere instead of
on_rq check. No functional changes.

The only exception is we do not use the wrapper in
check_for_tasks(), because it requires to export
task_on_rq_queued() in global header files. Next patch in series
would return it back, so we do not twist it from here to there.

Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Turner <pjt@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1408528052.23412.87.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-08-20 14:52:59 +02:00
Pranith Kumar
8b06c55bdb sched: Match declaration with definition
Match the declaration of runqueues with the definition.

Signed-off-by: Pranith Kumar <bobby.prani@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1407950893-32731-1-git-send-email-bobby.prani@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-08-20 09:47:19 +02:00
Jason Baron
6e76ea8a82 sched: Remove extra static_key*() function indirection
I think its a bit simpler without having to follow an extra layer of static
inline fuctions. No functional change just cosmetic.

Signed-off-by: Jason Baron <jbaron@akamai.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: rostedt@goodmis.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/2ce52233ce200faad93b6029d90f1411cd926667.1404315388.git.jbaron@akamai.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-16 13:38:20 +02:00
Kirill Tkhai
8875125efe sched: Transform resched_task() into resched_curr()
We always use resched_task() with rq->curr argument.
It's not possible to reschedule any task but rq's current.

The patch introduces resched_curr(struct rq *) to
replace all of the repeating patterns. The main aim
is cleanup, but there is a little size profit too:

  (before)
	$ size kernel/sched/built-in.o
	   text	   data	    bss	    dec	    hex	filename
	155274	  16445	   7042	 178761	  2ba49	kernel/sched/built-in.o

	$ size vmlinux
	   text	   data	    bss	    dec	    hex	filename
	7411490	1178376	 991232	9581098	 92322a	vmlinux

  (after)
	$ size kernel/sched/built-in.o
	   text	   data	    bss	    dec	    hex	filename
	155130	  16445	   7042	 178617	  2b9b9	kernel/sched/built-in.o

	$ size vmlinux
	   text	   data	    bss	    dec	    hex	filename
	7411362	1178376	 991232	9580970	 9231aa	vmlinux

	I was choosing between resched_curr() and resched_rq(),
	and the first name looks better for me.

A little lie in Documentation/trace/ftrace.txt. I have not
actually collected the tracing again. With a hope the patch
won't make execution times much worse :)

Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20140628200219.1778.18735.stgit@localhost
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-16 13:38:19 +02:00
Tim Chen
4486edd12b sched/fair: Implement fast idling of CPUs when the system is partially loaded
When a system is lightly loaded (i.e. no more than 1 job per cpu),
attempt to pull job to a cpu before putting it to idle is unnecessary and
can be skipped.  This patch adds an indicator so the scheduler can know
when there's no more than 1 active job is on any CPU in the system to
skip needless job pulls.

On a 4 socket machine with a request/response kind of workload from
clients, we saw about 0.13 msec delay when we go through a full load
balance to try pull job from all the other cpus.  While 0.1 msec was
spent on processing the request and generating a response, the 0.13 msec
load balance overhead was actually more than the actual work being done.
This overhead can be skipped much of the time for lightly loaded systems.

With this patch, we tested with a netperf request/response workload that
has the server busy with half the cpus in a 4 socket system.  We found
the patch eliminated 75% of the load balance attempts before idling a cpu.

The overhead of setting/clearing the indicator is low as we already gather
the necessary info while we call add_nr_running() and update_sd_lb_stats.()
We switch to full load balance load immediately if any cpu got more than
one job on its run queue in add_nr_running.  We'll clear the indicator
to avoid load balance when we detect no cpu's have more than one job
when we scan the work queues in update_sg_lb_stats().  We are aggressive
in turning on the load balance and opportunistic in skipping the load
balance.

Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Jason Low <jason.low2@hp.com>
Cc: "Paul E.McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Davidlohr Bueso <davidlohr@hp.com>
Cc: Alex Shi <alex.shi@linaro.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Peter Hurley <peter@hurleysoftware.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403551009.2970.613.camel@schen9-DESK
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-05 11:17:32 +02:00
Frederic Weisbecker
3882ec6439 nohz: Use IPI implicit full barrier against rq->nr_running r/w
A full dynticks CPU is allowed to stop its tick when a single task runs.
Meanwhile when a new task gets enqueued, the CPU must be notified so that
it can restart its tick to maintain local fairness and other accounting
details.

This notification is performed by way of an IPI. Then when the target
receives the IPI, we expect it to see the new value of rq->nr_running.

Hence the following ordering scenario:

   CPU 0                   CPU 1

   write rq->running       get IPI
   smp_wmb()               smp_rmb()
   send IPI                read rq->nr_running

But Paul Mckenney says that nowadays IPIs imply a full barrier on
all architectures. So we can safely remove this pair and rely on the
implicit barriers that come along IPI send/receive. Lets
just comment on this new assumption.

Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2014-06-16 16:27:24 +02:00
Frederic Weisbecker
fd2ac4f4a6 nohz: Use nohz own full kick on 2nd task enqueue
Now that we have a nohz full remote kick based on irq work, lets use
it to notify a CPU that it's exiting single task mode.

This unbloats a bit the scheduler IPI that the nohz code was abusing
for its cool "callable anywhere/anytime" properties.

Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2014-06-16 16:26:55 +02:00
Linus Torvalds
b2e09f633a Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull more scheduler updates from Ingo Molnar:
 "Second round of scheduler changes:
   - try-to-wakeup and IPI reduction speedups, from Andy Lutomirski
   - continued power scheduling cleanups and refactorings, from Nicolas
     Pitre
   - misc fixes and enhancements"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched/deadline: Delete extraneous extern for to_ratio()
  sched/idle: Optimize try-to-wake-up IPI
  sched/idle: Simplify wake_up_idle_cpu()
  sched/idle: Clear polling before descheduling the idle thread
  sched, trace: Add a tracepoint for IPI-less remote wakeups
  cpuidle: Set polling in poll_idle
  sched: Remove redundant assignment to "rt_rq" in update_curr_rt(...)
  sched: Rename capacity related flags
  sched: Final power vs. capacity cleanups
  sched: Remove remaining dubious usage of "power"
  sched: Let 'struct sched_group_power' care about CPU capacity
  sched/fair: Disambiguate existing/remaining "capacity" usage
  sched/fair: Change "has_capacity" to "has_free_capacity"
  sched/fair: Remove "power" from 'struct numa_stats'
  sched: Fix signedness bug in yield_to()
  sched/fair: Use time_after() in record_wakee()
  sched/balancing: Reduce the rate of needless idle load balancing
  sched/fair: Fix unlocked reads of some cfs_b->quota/period
2014-06-12 19:42:15 -07:00
Linus Torvalds
3f17ea6dea Merge branch 'next' (accumulated 3.16 merge window patches) into master
Now that 3.15 is released, this merges the 'next' branch into 'master',
bringing us to the normal situation where my 'master' branch is the
merge window.

* accumulated work in next: (6809 commits)
  ufs: sb mutex merge + mutex_destroy
  powerpc: update comments for generic idle conversion
  cris: update comments for generic idle conversion
  idle: remove cpu_idle() forward declarations
  nbd: zero from and len fields in NBD_CMD_DISCONNECT.
  mm: convert some level-less printks to pr_*
  MAINTAINERS: adi-buildroot-devel is moderated
  MAINTAINERS: add linux-api for review of API/ABI changes
  mm/kmemleak-test.c: use pr_fmt for logging
  fs/dlm/debug_fs.c: replace seq_printf by seq_puts
  fs/dlm/lockspace.c: convert simple_str to kstr
  fs/dlm/config.c: convert simple_str to kstr
  mm: mark remap_file_pages() syscall as deprecated
  mm: memcontrol: remove unnecessary memcg argument from soft limit functions
  mm: memcontrol: clean up memcg zoneinfo lookup
  mm/memblock.c: call kmemleak directly from memblock_(alloc|free)
  mm/mempool.c: update the kmemleak stack trace for mempool allocations
  lib/radix-tree.c: update the kmemleak stack trace for radix tree allocations
  mm: introduce kmemleak_update_trace()
  mm/kmemleak.c: use %u to print ->checksum
  ...
2014-06-08 11:31:16 -07:00
Peter Zijlstra
e3baac47f0 sched/idle: Optimize try-to-wake-up IPI
[ This series reduces the number of IPIs on Andy's workload by something like
  99%. It's down from many hundreds per second to very few.

  The basic idea behind this series is to make TIF_POLLING_NRFLAG be a
  reliable indication that the idle task is polling.  Once that's done,
  the rest is reasonably straightforward. ]

When enqueueing tasks on remote LLC domains, we send an IPI to do the
work 'locally' and avoid bouncing all the cachelines over.

However, when the remote CPU is idle (and polling, say x86 mwait), we
don't need to send an IPI, we can simply kick the TIF word to wake it
up and have the 'idle' loop do the work.

So when _TIF_POLLING_NRFLAG is set, but _TIF_NEED_RESCHED is not (yet)
set, set _TIF_NEED_RESCHED and avoid sending the IPI.

Much-requested-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
[Edited by Andy Lutomirski, but this is mostly Peter Zijlstra's code.]
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Cc: nicolas.pitre@linaro.org
Cc: daniel.lezcano@linaro.org
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: umgwanakikbuti@gmail.com
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/ce06f8b02e7e337be63e97597fc4b248d3aa6f9b.1401902905.git.luto@amacapital.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-06-05 12:09:53 +02:00
Nicolas Pitre
ced549fa5f sched: Remove remaining dubious usage of "power"
It is better not to think about compute capacity as being equivalent
to "CPU power".  The upcoming "power aware" scheduler work may create
confusion with the notion of energy consumption if "power" is used too
liberally.

This is the remaining "power" -> "capacity" rename for local symbols.
Those symbols visible to the rest of the kernel are not included yet.

Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linaro-kernel@lists.linaro.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/n/tip-yyyhohzhkwnaotr3lx8zd5aa@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-06-05 11:52:29 +02:00
Nicolas Pitre
63b2ca30bd sched: Let 'struct sched_group_power' care about CPU capacity
It is better not to think about compute capacity as being equivalent
to "CPU power".  The upcoming "power aware" scheduler work may create
confusion with the notion of energy consumption if "power" is used too
liberally.

Since struct sched_group_power is really about compute capacity of sched
groups, let's rename it to struct sched_group_capacity. Similarly sgp
becomes sgc. Related variables and functions dealing with groups are also
adjusted accordingly.

Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linaro-kernel@lists.linaro.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/n/tip-5yeix833vvgf2uyj5o36hpu9@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-06-05 11:52:26 +02:00
Roman Gushchin
09dc4ab039 sched/fair: Fix tg_set_cfs_bandwidth() deadlock on rq->lock
tg_set_cfs_bandwidth() sets cfs_b->timer_active to 0 to
force the period timer restart. It's not safe, because
can lead to deadlock, described in commit 927b54fccb:
"__start_cfs_bandwidth calls hrtimer_cancel while holding rq->lock,
waiting for the hrtimer to finish. However, if sched_cfs_period_timer
runs for another loop iteration, the hrtimer can attempt to take
rq->lock, resulting in deadlock."

Three CPUs must be involved:

  CPU0               CPU1                         CPU2
  take rq->lock      period timer fired
  ...                take cfs_b lock
  ...                ...                          tg_set_cfs_bandwidth()
  throttle_cfs_rq()  release cfs_b lock           take cfs_b lock
  ...                distribute_cfs_runtime()     timer_active = 0
  take cfs_b->lock   wait for rq->lock            ...
  __start_cfs_bandwidth()
  {wait for timer callback
   break if timer_active == 1}

So, CPU0 and CPU1 are deadlocked.

Instead of resetting cfs_b->timer_active, tg_set_cfs_bandwidth can
wait for period timer callbacks (ignoring cfs_b->timer_active) and
restart the timer explicitly.

Signed-off-by: Roman Gushchin <klamm@yandex-team.ru>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/87wqdi9g8e.wl\%klamm@yandex-team.ru
Cc: pjt@google.com
Cc: chris.j.arges@canonical.com
Cc: gregkh@linuxfoundation.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-06-05 11:51:34 +02:00
Kirill Tkhai
7246544786 sched, nohz: Change rq->nr_running to always use wrappers
Sometimes ->nr_running may cross 2 but interrupt is not being
sent to rq's cpu. In this case we don't reenable the timer.
Looks like this may be the reason for rare unexpected effects,
if nohz is enabled.

Patch replaces all places of direct changing of nr_running
and makes add_nr_running() caring about crossing border.

Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140508225830.2469.97461.stgit@localhost
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-05-22 11:16:33 +02:00
Kirill Tkhai
46383648b3 sched: Revert commit 4c6c4e38c4 ("sched/core: Fix endless loop in pick_next_task()")
This reverts commit 4c6c4e38c4 ("sched/core: Fix endless loop in
pick_next_task()"), which is not necessary after ("sched/rt: Substract number
of tasks of throttled queues from rq->nr_running").

Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
[conflict resolution with stop task checking patch]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1394835307.18748.34.camel@HP-250-G1-Notebook-PC
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-04-18 12:07:29 +02:00
Kirill Tkhai
f4ebcbc0d7 sched/rt: Substract number of tasks of throttled queues from rq->nr_running
Now rq->rt becomes to be able to be in dequeued or enqueued state.
We add new member rt_rq->rt_queued, which is used to indicate this.
The member is used only for top queue rq->rt_rq.

The goal is to fit generic scheme which is used in deadline and
fair classes, i.e. throttled rt_rq's rt_nr_running is beeing
substracted from rq->nr_running.

Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1394835300.18748.33.camel@HP-250-G1-Notebook-PC
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-04-18 12:07:28 +02:00
Mike Galbraith
60e69eed85 sched/numa: Fix task_numa_free() lockdep splat
Sasha reported that lockdep claims that the following commit:
made numa_group.lock interrupt unsafe:

  156654f491 ("sched/numa: Move task_numa_free() to __put_task_struct()")

While I don't see how that could be, given the commit in question moved
task_numa_free() from one irq enabled region to another, the below does
make both gripes and lockups upon gripe with numa=fake=4 go away.

Reported-by: Sasha Levin <sasha.levin@oracle.com>
Fixes: 156654f491 ("sched/numa: Move task_numa_free() to __put_task_struct()")
Signed-off-by: Mike Galbraith <bitbucket@online.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: torvalds@linux-foundation.org
Cc: mgorman@suse.com
Cc: akpm@linux-foundation.org
Cc: Dave Jones <davej@redhat.com>
Link: http://lkml.kernel.org/r/1396860915.5170.5.camel@marge.simpson.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-04-11 10:39:15 +02:00
Linus Torvalds
a21e40877a Merge branch 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Ingo Molnar:
 "The main purpose is to fix a full dynticks bug related to
  virtualization, where steal time accounting appears to be zero in
  /proc/stat even after a few seconds of competing guests running busy
  loops in a same host CPU.  It's not a regression though as it was
  there since the beginning.

  The other commits are preparatory work to fix the bug and various
  cleanups"

* 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  arch: Remove stub cputime.h headers
  sched: Remove needless round trip nsecs <-> tick conversion of steal time
  cputime: Fix jiffies based cputime assumption on steal accounting
  cputime: Bring cputime -> nsecs conversion
  cputime: Default implementation of nsecs -> cputime conversion
  cputime: Fix nsecs_to_cputime() return type cast
2014-04-01 10:16:10 -07:00
Frederic Weisbecker
300a9d887e sched: Remove needless round trip nsecs <-> tick conversion of steal time
When update_rq_clock_task() accounts the pending steal time for a task,
it converts the steal delta from nsecs to tick then from tick to nsecs.

There is no apparent good reason for doing that though because both
the task clock and the prev steal delta are u64 and store values
in nsecs.

So lets remove the needless conversion.

Cc: Ingo Molnar <mingo@kernel.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2014-03-13 15:56:44 +01:00
Kirill Tkhai
4c6c4e38c4 sched/core: Fix endless loop in pick_next_task()
1) Single cpu machine case.

When rq has only RT tasks, but no one of them can be picked
because of throttling, we enter in endless loop.

pick_next_task_{dl,rt} return NULL.

In pick_next_task_fair() we permanently go to retry

	if (rq->nr_running != rq->cfs.h_nr_running)
		return RETRY_TASK;

(rq->nr_running is not being decremented when rt_rq becomes
throttled).

No chances to unthrottle any rt_rq or to wake fair here,
because of rq is locked permanently and interrupts are
disabled.

2) In case of SMP this can cause a hang too. Although we unlock
   rq in idle_balance(), interrupts are still disabled.

The solution is to check for available tasks in DL and RT
classes instead of checking for sum.

Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1394098321.19290.11.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-03-11 12:05:39 +01:00
Ingo Molnar
a02ed5e3e0 Merge branch 'sched/urgent' into sched/core
Pick up fixes before queueing up new changes.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-03-11 11:34:27 +01:00
Peter Zijlstra
37e117c07b sched: Guarantee task priority in pick_next_task()
Michael spotted that the idle_balance() push down created a task
priority problem.

Previously, when we called idle_balance() before pick_next_task() it
wasn't a problem when -- because of the rq->lock droppage -- an rt/dl
task slipped in.

Similarly for pre_schedule(), rt pre-schedule could have a dl task
slip in.

But by pulling it into the pick_next_task() loop, we'll not try a
higher task priority again.

Cure this by creating a re-start condition in pick_next_task(); and
triggering this from pick_next_task_{rt,fair}().

It also fixes a live-lock where we get stuck in pick_next_task_fair()
due to idle_balance() seeing !0 nr_running but there not actually
being any fair tasks about.

Reported-by: Michael Wang <wangyun@linux.vnet.ibm.com>
Fixes: 38033c37fa ("sched: Push down pre_schedule() and idle_balance()")
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20140224121218.GR15586@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-27 12:41:02 +01:00
Dietmar Eggemann
f5f9739d7a sched: Put rq's sched_avg under CONFIG_FAIR_GROUP_SCHED
The struct sched_avg of struct rq is only used in case group
scheduling is enabled inside __update_tg_runnable_avg() to update
per-cpu representation of a task group.  I.e. that there is no need to
maintain the runnable avg of a rq in the !CONFIG_FAIR_GROUP_SCHED case.

This patch guards struct sched_avg of struct rq and
update_rq_runnable_avg() with CONFIG_FAIR_GROUP_SCHED.

There is an extra empty definition for update_rq_runnable_avg()
necessary for the !CONFIG_FAIR_GROUP_SCHED && CONFIG_SMP case.

The function print_cfs_group_stats() which prints out struct sched_avg
of struct rq is already guarded with CONFIG_FAIR_GROUP_SCHED.

Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/530DCDC5.1060406@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-27 12:41:00 +01:00
Li Zefan
d82fd25356 sched/rt: Remove 'leaf_rt_rq_list' from 'struct rq'
This is a leftover from commit e23ee74777
("sched/rt: Simplify pull_rt_task() logic and remove .leaf_rt_rq_list").

Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/52F5CBF6.4060901@huawei.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-22 18:10:43 +01:00
Peter Zijlstra
dc87734106 sched: Remove some #ifdeffery
Remove a few gratuitous #ifdefs in pick_next_task*().

Cc: Ingo Molnar <mingo@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-nnzddp5c4fijyzzxxrwlxghf@git.kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-02-21 21:43:18 +01:00
Peter Zijlstra
3f1d2a3181 sched: Fix hotplug task migration
Dan Carpenter reported:

> kernel/sched/rt.c:1347 pick_next_task_rt() warn: variable dereferenced before check 'prev' (see line 1338)
> kernel/sched/deadline.c:1011 pick_next_task_dl() warn: variable dereferenced before check 'prev' (see line 1005)

Kirill also spotted that migrate_tasks() will have an instant NULL
deref because pick_next_task() will immediately deref prev.

Instead of fixing all the corner cases because migrate_tasks() can
pass in a NULL prev task in the unlikely case of hot-un-plug, provide
a fake task such that we can remove all the NULL checks from the far
more common paths.

A further problem; not previously spotted; is that because we pushed
pre_schedule() and idle_balance() into pick_next_task() we now need to
avoid those getting called and pulling more tasks on our dying CPU.

We avoid pull_{dl,rt}_task() by setting fake_task.prio to MAX_PRIO+1.
We also note that since we call pick_next_task() exactly the amount of
times we have runnable tasks present, we should never land in
idle_balance().

Fixes: 38033c37fa ("sched: Push down pre_schedule() and idle_balance()")
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Reported-by: Kirill Tkhai <tkhai@yandex.ru>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140212094930.GB3545@laptop.programming.kicks-ass.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-02-21 21:43:18 +01:00
Peter Zijlstra
6e83125c6b sched/fair: Remove idle_balance() declaration in sched.h
Remove idle_balance() from the public life; also reduce some #ifdef
clutter by folding the pick_next_task_fair() idle path into
idle_balance().

Cc: mingo@kernel.org
Reported-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140211151148.GP27965@twins.programming.kicks-ass.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-02-21 21:43:17 +01:00
Kirill Tkhai
995b9ea440 sched/deadline: Remove useless dl_nr_total
In deadline class we do not have group scheduling like in RT.

dl_nr_total is the same as dl_nr_running. So, one of them should
be removed.

Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/368631392675853@web20h.yandex.ru
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-02-21 21:27:10 +01:00
Peter Zijlstra
38033c37fa sched: Push down pre_schedule() and idle_balance()
This patch both merged idle_balance() and pre_schedule() and pushes
both of them into pick_next_task().

Conceptually pre_schedule() and idle_balance() are rather similar,
both are used to pull more work onto the current CPU.

We cannot however first move idle_balance() into pre_schedule_fair()
since there is no guarantee the last runnable task is a fair task, and
thus we would miss newidle balances.

Similarly, the dl and rt pre_schedule calls must be ran before
idle_balance() since their respective tasks have higher priority and
it would not do to delay their execution searching for less important
tasks first.

However, by noticing that pick_next_tasks() already traverses the
sched_class hierarchy in the right order, we can get the right
behaviour and do away with both calls.

We must however change the special case optimization to also require
that prev is of sched_class_fair, otherwise we can miss doing a dl or
rt pull where we needed one.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/n/tip-a8k6vvaebtn64nie345kx1je@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-11 09:58:10 +01:00
Peter Zijlstra
606dba2e28 sched: Push put_prev_task() into pick_next_task()
In order to avoid having to do put/set on a whole cgroup hierarchy
when we context switch, push the put into pick_next_task() so that
both operations are in the same function. Further changes then allow
us to possibly optimize away redundant work.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1328936700.2476.17.camel@laptop
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-10 16:17:13 +01:00
Daniel Lezcano
3c4017c13f sched: Move rq->idle_stamp up to the core
idle_balance() modifies the rq->idle_stamp field, making this information
shared across core.c and fair.c.

As we know if the cpu is going to idle or not with the previous patch, let's
encapsulate the rq->idle_stamp information in core.c by moving it up to the
caller.

The idle_balance() function returns true in case a balancing occured and the
cpu won't be idle, false if no balance happened and the cpu is going idle.

Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: alex.shi@linaro.org
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1389949444-14821-3-git-send-email-daniel.lezcano@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-10 16:17:07 +01:00
Daniel Lezcano
b4f2ab4361 sched: Remove 'cpu' parameter from idle_balance()
The cpu parameter passed to idle_balance() is not needed as it could
be retrieved from 'struct rq.'

Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: alex.shi@linaro.org
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1389949444-14821-1-git-send-email-daniel.lezcano@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-10 16:17:01 +01:00
Dongsheng Yang
6b6350f155 sched: Expose some macros related to priority
Some macros in kernel/sched/sched.h about priority are
private to kernel/sched. But they are useful to other
parts of the core kernel.

This patch moves these macros from kernel/sched/sched.h to
include/linux/sched/prio.h so that they are available to
other subsystems.

Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Cc: raistlin@linux.it
Cc: juri.lelli@gmail.com
Cc: clark.williams@gmail.com
Cc: rostedt@goodmis.org
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/2b022810905b52d13238466807f4b2a691577180.1390859827.git.yangds.fnst@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-09 13:31:51 +01:00
Daniel Lezcano
7caff66f36 sched: Reduce trigger_load_balance() parameters
The cpu information is already stored in the struct rq, so no need to pass it
as parameter to the trigger_load_balance function.

Cc: linaro-kernel@lists.linaro.org
Cc: preeti.lkml@gmail.com
Cc: mingo@redhat.com
Cc: peterz@infradead.org
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1389008085-9069-2-git-send-email-daniel.lezcano@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-13 13:47:26 +01:00
Peter Zijlstra
1724813d9f sched/deadline: Remove the sysctl_sched_dl knobs
Remove the deadline specific sysctls for now. The problem with them is
that the interaction with the exisiting rt knobs is nearly impossible
to get right.

The current (as per before this patch) situation is that the rt and dl
bandwidth is completely separate and we enforce rt+dl < 100%. This is
undesirable because this means that the rt default of 95% leaves us
hardly any room, even though dl tasks are saver than rt tasks.

Another proposed solution was (a discarted patch) to have the dl
bandwidth be a fraction of the rt bandwidth. This is highly
confusing imo.

Furthermore neither proposal is consistent with the situation we
actually want; which is rt tasks ran from a dl server. In which case
the rt bandwidth is a direct subset of dl.

So whichever way we go, the introduction of dl controls at this point
is painful. Therefore remove them and instead share the rt budget.

This means that for now the rt knobs are used for dl admission control
and the dl runtime is accounted against the rt runtime. I realise that
this isn't entirely desirable either; but whatever we do we appear to
need to change the interface later, so better have a small interface
for now.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-zpyqbqds1r0vyxtxza1e7rdc@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-13 13:47:23 +01:00
Juri Lelli
6bfd6d72f5 sched/deadline: speed up SCHED_DEADLINE pushes with a push-heap
Data from tests confirmed that the original active load balancing
logic didn't scale neither in the number of CPU nor in the number of
tasks (as sched_rt does).

Here we provide a global data structure to keep track of deadlines
of the running tasks in the system. The structure is composed by
a bitmask showing the free CPUs and a max-heap, needed when the system
is heavily loaded.

The implementation and concurrent access scheme are kept simple by
design. However, our measurements show that we can compete with sched_rt
on large multi-CPUs machines [1].

Only the push path is addressed, the extension to use this structure
also for pull decisions is straightforward. However, we are currently
evaluating different (in order to decrease/avoid contention) data
structures to solve possibly both problems. We are also going to re-run
tests considering recent changes inside cpupri [2].

 [1] http://retis.sssup.it/~jlelli/papers/Ospert11Lelli.pdf
 [2] http://www.spinics.net/lists/linux-rt-users/msg06778.html

Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1383831828-15501-14-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-13 13:46:46 +01:00
Dario Faggioli
332ac17ef5 sched/deadline: Add bandwidth management for SCHED_DEADLINE tasks
In order of deadline scheduling to be effective and useful, it is
important that some method of having the allocation of the available
CPU bandwidth to tasks and task groups under control.
This is usually called "admission control" and if it is not performed
at all, no guarantee can be given on the actual scheduling of the
-deadline tasks.

Since when RT-throttling has been introduced each task group have a
bandwidth associated to itself, calculated as a certain amount of
runtime over a period. Moreover, to make it possible to manipulate
such bandwidth, readable/writable controls have been added to both
procfs (for system wide settings) and cgroupfs (for per-group
settings).

Therefore, the same interface is being used for controlling the
bandwidth distrubution to -deadline tasks and task groups, i.e.,
new controls but with similar names, equivalent meaning and with
the same usage paradigm are added.

However, more discussion is needed in order to figure out how
we want to manage SCHED_DEADLINE bandwidth at the task group level.
Therefore, this patch adds a less sophisticated, but actually
very sensible, mechanism to ensure that a certain utilization
cap is not overcome per each root_domain (the single rq for !SMP
configurations).

Another main difference between deadline bandwidth management and
RT-throttling is that -deadline tasks have bandwidth on their own
(while -rt ones doesn't!), and thus we don't need an higher level
throttling mechanism to enforce the desired bandwidth.

This patch, therefore:

 - adds system wide deadline bandwidth management by means of:
    * /proc/sys/kernel/sched_dl_runtime_us,
    * /proc/sys/kernel/sched_dl_period_us,
   that determine (i.e., runtime / period) the total bandwidth
   available on each CPU of each root_domain for -deadline tasks;

 - couples the RT and deadline bandwidth management, i.e., enforces
   that the sum of how much bandwidth is being devoted to -rt
   -deadline tasks to stay below 100%.

This means that, for a root_domain comprising M CPUs, -deadline tasks
can be created until the sum of their bandwidths stay below:

    M * (sched_dl_runtime_us / sched_dl_period_us)

It is also possible to disable this bandwidth management logic, and
be thus free of oversubscribing the system up to any arbitrary level.

Signed-off-by: Dario Faggioli <raistlin@linux.it>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1383831828-15501-12-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-13 13:46:42 +01:00
Dario Faggioli
2d3d891d33 sched/deadline: Add SCHED_DEADLINE inheritance logic
Some method to deal with rt-mutexes and make sched_dl interact with
the current PI-coded is needed, raising all but trivial issues, that
needs (according to us) to be solved with some restructuring of
the pi-code (i.e., going toward a proxy execution-ish implementation).

This is under development, in the meanwhile, as a temporary solution,
what this commits does is:

 - ensure a pi-lock owner with waiters is never throttled down. Instead,
   when it runs out of runtime, it immediately gets replenished and it's
   deadline is postponed;

 - the scheduling parameters (relative deadline and default runtime)
   used for that replenishments --during the whole period it holds the
   pi-lock-- are the ones of the waiting task with earliest deadline.

Acting this way, we provide some kind of boosting to the lock-owner,
still by using the existing (actually, slightly modified by the previous
commit) pi-architecture.

We would stress the fact that this is only a surely needed, all but
clean solution to the problem. In the end it's only a way to re-start
discussion within the community. So, as always, comments, ideas, rants,
etc.. are welcome! :-)

Signed-off-by: Dario Faggioli <raistlin@linux.it>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
[ Added !RT_MUTEXES build fix. ]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1383831828-15501-11-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-13 13:42:56 +01:00
Juri Lelli
1baca4ce16 sched/deadline: Add SCHED_DEADLINE SMP-related data structures & logic
Introduces data structures relevant for implementing dynamic
migration of -deadline tasks and the logic for checking if
runqueues are overloaded with -deadline tasks and for choosing
where a task should migrate, when it is the case.

Adds also dynamic migrations to SCHED_DEADLINE, so that tasks can
be moved among CPUs when necessary. It is also possible to bind a
task to a (set of) CPU(s), thus restricting its capability of
migrating, or forbidding migrations at all.

The very same approach used in sched_rt is utilised:
 - -deadline tasks are kept into CPU-specific runqueues,
 - -deadline tasks are migrated among runqueues to achieve the
   following:
    * on an M-CPU system the M earliest deadline ready tasks
      are always running;
    * affinity/cpusets settings of all the -deadline tasks is
      always respected.

Therefore, this very special form of "load balancing" is done with
an active method, i.e., the scheduler pushes or pulls tasks between
runqueues when they are woken up and/or (de)scheduled.
IOW, every time a preemption occurs, the descheduled task might be sent
to some other CPU (depending on its deadline) to continue executing
(push). On the other hand, every time a CPU becomes idle, it might pull
the second earliest deadline ready task from some other CPU.

To enforce this, a pull operation is always attempted before taking any
scheduling decision (pre_schedule()), as well as a push one after each
scheduling decision (post_schedule()). In addition, when a task arrives
or wakes up, the best CPU where to resume it is selected taking into
account its affinity mask, the system topology, but also its deadline.
E.g., from the scheduling point of view, the best CPU where to wake
up (and also where to push) a task is the one which is running the task
with the latest deadline among the M executing ones.

In order to facilitate these decisions, per-runqueue "caching" of the
deadlines of the currently running and of the first ready task is used.
Queued but not running tasks are also parked in another rb-tree to
speed-up pushes.

Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Dario Faggioli <raistlin@linux.it>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1383831828-15501-5-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-13 13:41:07 +01:00
Dario Faggioli
aab03e05e8 sched/deadline: Add SCHED_DEADLINE structures & implementation
Introduces the data structures, constants and symbols needed for
SCHED_DEADLINE implementation.

Core data structure of SCHED_DEADLINE are defined, along with their
initializers. Hooks for checking if a task belong to the new policy
are also added where they are needed.

Adds a scheduling class, in sched/dl.c and a new policy called
SCHED_DEADLINE. It is an implementation of the Earliest Deadline
First (EDF) scheduling algorithm, augmented with a mechanism (called
Constant Bandwidth Server, CBS) that makes it possible to isolate
the behaviour of tasks between each other.

The typical -deadline task will be made up of a computation phase
(instance) which is activated on a periodic or sporadic fashion. The
expected (maximum) duration of such computation is called the task's
runtime; the time interval by which each instance need to be completed
is called the task's relative deadline. The task's absolute deadline
is dynamically calculated as the time instant a task (better, an
instance) activates plus the relative deadline.

The EDF algorithms selects the task with the smallest absolute
deadline as the one to be executed first, while the CBS ensures each
task to run for at most its runtime every (relative) deadline
length time interval, avoiding any interference between different
tasks (bandwidth isolation).
Thanks to this feature, also tasks that do not strictly comply with
the computational model sketched above can effectively use the new
policy.

To summarize, this patch:
 - introduces the data structures, constants and symbols needed;
 - implements the core logic of the scheduling algorithm in the new
   scheduling class file;
 - provides all the glue code between the new scheduling class and
   the core scheduler and refines the interactions between sched/dl
   and the other existing scheduling classes.

Signed-off-by: Dario Faggioli <raistlin@linux.it>
Signed-off-by: Michael Trimarchi <michael@amarulasolutions.com>
Signed-off-by: Fabio Checconi <fchecconi@gmail.com>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1383831828-15501-4-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-13 13:41:06 +01:00
Dario Faggioli
d50dde5a10 sched: Add new scheduler syscalls to support an extended scheduling parameters ABI
Add the syscalls needed for supporting scheduling algorithms
with extended scheduling parameters (e.g., SCHED_DEADLINE).

In general, it makes possible to specify a periodic/sporadic task,
that executes for a given amount of runtime at each instance, and is
scheduled according to the urgency of their own timing constraints,
i.e.:

 - a (maximum/typical) instance execution time,
 - a minimum interval between consecutive instances,
 - a time constraint by which each instance must be completed.

Thus, both the data structure that holds the scheduling parameters of
the tasks and the system calls dealing with it must be extended.
Unfortunately, modifying the existing struct sched_param would break
the ABI and result in potentially serious compatibility issues with
legacy binaries.

For these reasons, this patch:

 - defines the new struct sched_attr, containing all the fields
   that are necessary for specifying a task in the computational
   model described above;

 - defines and implements the new scheduling related syscalls that
   manipulate it, i.e., sched_setattr() and sched_getattr().

Syscalls are introduced for x86 (32 and 64 bits) and ARM only, as a
proof of concept and for developing and testing purposes. Making them
available on other architectures is straightforward.

Since no "user" for these new parameters is introduced in this patch,
the implementation of the new system calls is just identical to their
already existing counterpart. Future patches that implement scheduling
policies able to exploit the new data structure must also take care of
modifying the sched_*attr() calls accordingly with their own purposes.

Signed-off-by: Dario Faggioli <raistlin@linux.it>
[ Rewrote to use sched_attr. ]
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
[ Removed sched_setscheduler2() for now. ]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1383831828-15501-3-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-13 13:41:04 +01:00
Dario Faggioli
e6c390f2df sched: Add sched_class->task_dead() method
Add a new function to the scheduling class interface. It is called
at the end of a context switch, if the prev task is in TASK_DEAD state.

It will be useful for the scheduling classes that want to be notified
when one of their tasks dies, e.g. to perform some cleanup actions,
such as SCHED_DEADLINE.

Signed-off-by: Dario Faggioli <raistlin@linux.it>
Reviewed-by: Paul Turner <pjt@google.com>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Cc: bruce.ashfield@windriver.com
Cc: claudio@evidence.eu.com
Cc: darren@dvhart.com
Cc: dhaval.giani@gmail.com
Cc: fchecconi@gmail.com
Cc: fweisbec@gmail.com
Cc: harald.gustafsson@ericsson.com
Cc: hgu1972@gmail.com
Cc: insop.song@gmail.com
Cc: jkacur@redhat.com
Cc: johan.eker@ericsson.com
Cc: liming.wang@windriver.com
Cc: luca.abeni@unitn.it
Cc: michael@amarulasolutions.com
Cc: nicola.manica@disi.unitn.it
Cc: oleg@redhat.com
Cc: paulmck@linux.vnet.ibm.com
Cc: p.faure@akatech.ch
Cc: rostedt@goodmis.org
Cc: tommaso.cucinotta@sssup.it
Cc: vincent.guittot@linaro.org
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1383831828-15501-2-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-11-27 14:08:50 +01:00
Preeti U Murthy
37dc6b50ce sched: Remove unnecessary iteration over sched domains to update nr_busy_cpus
nr_busy_cpus parameter is used by nohz_kick_needed() to find out the
number of busy cpus in a sched domain which has SD_SHARE_PKG_RESOURCES
flag set.  Therefore instead of updating nr_busy_cpus at every level
of sched domain, since it is irrelevant, we can update this parameter
only at the parent domain of the sd which has this flag set. Introduce
a per-cpu parameter sd_busy which represents this parent domain.

In nohz_kick_needed() we directly query the nr_busy_cpus parameter
associated with the groups of sd_busy.

By associating sd_busy with the highest domain which has
SD_SHARE_PKG_RESOURCES flag set, we cover all lower level domains
which could have this flag set and trigger nohz_idle_balancing if any
of the levels have more than one busy cpu.

sd_busy is irrelevant for asymmetric load balancing. However sd_asym
has been introduced to represent the highest sched domain which has
SD_ASYM_PACKING flag set so that it can be queried directly when
required.

While we are at it, we might as well change the nohz_idle parameter to
be updated at the sd_busy domain level alone and not the base domain
level of a CPU.  This will unify the concept of busy cpus at just one
level of sched domain where it is currently used.

Signed-off-by: Preeti U Murthy<preeti@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: svaidy@linux.vnet.ibm.com
Cc: vincent.guittot@linaro.org
Cc: bitbucket@online.de
Cc: benh@kernel.crashing.org
Cc: anton@samba.org
Cc: Morten.Rasmussen@arm.com
Cc: pjt@google.com
Cc: peterz@infradead.org
Cc: mikey@neuling.org
Link: http://lkml.kernel.org/r/20131030031252.23426.4417.stgit@preeti.in.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-11-06 12:37:55 +01:00
Ben Segall
1ee14e6c8c sched: Fix race on toggling cfs_bandwidth_used
When we transition cfs_bandwidth_used to false, any currently
throttled groups will incorrectly return false from cfs_rq_throttled.
While tg_set_cfs_bandwidth will unthrottle them eventually, currently
running code (including at least dequeue_task_fair and
distribute_cfs_runtime) will cause errors.

Fix this by turning off cfs_bandwidth_used only after unthrottling all
cfs_rqs.

Tested: toggle bandwidth back and forth on a loaded cgroup. Caused
crashes in minutes without the patch, hasn't crashed with it.

Signed-off-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: pjt@google.com
Link: http://lkml.kernel.org/r/20131016181611.22647.80365.stgit@sword-of-the-dawn.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-29 12:02:19 +01:00
Peter Zijlstra
746023159c sched: Fix race in migrate_swap_stop()
There is a subtle race in migrate_swap, when task P, on CPU A, decides to swap
places with task T, on CPU B.

Task P:
  - call migrate_swap
Task T:
  - go to sleep, removing itself from the runqueue
Task P:
  - double lock the runqueues on CPU A & B
Task T:
  - get woken up, place itself on the runqueue of CPU C
Task P:
  - see that task T is on a runqueue, and pretend to remove it
    from the runqueue on CPU B

Now CPUs B & C both have corrupted scheduler data structures.

This patch fixes it, by holding the pi_lock for both of the tasks
involved in the migrate swap. This prevents task T from waking up,
and placing itself onto another runqueue, until after migrate_swap
has released all locks.

This means that, when migrate_swap checks, task T will be either
on the runqueue where it was originally seen, or not on any
runqueue at all. Migrate_swap deals correctly with of those cases.

Tested-by: Joe Mario <jmario@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: hannes@cmpxchg.org
Cc: aarcange@redhat.com
Cc: srikar@linux.vnet.ibm.com
Cc: tglx@linutronix.de
Cc: hpa@zytor.com
Link: http://lkml.kernel.org/r/20131010181722.GO13848@laptop.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-16 14:22:14 +02:00
Peter Zijlstra
0ec8aa00f2 sched/numa: Avoid migrating tasks that are placed on their preferred node
This patch classifies scheduler domains and runqueues into types depending
the number of tasks that are about their NUMA placement and the number
that are currently running on their preferred node. The types are

regular: There are tasks running that do not care about their NUMA
	placement.

remote: There are tasks running that care about their placement but are
	currently running on a node remote to their ideal placement

all: No distinction

To implement this the patch tracks the number of tasks that are optimally
NUMA placed (rq->nr_preferred_running) and the number of tasks running
that care about their placement (nr_numa_running). The load balancer
uses this information to avoid migrating idea placed NUMA tasks as long
as better options for load balancing exists. For example, it will not
consider balancing between a group whose tasks are all perfectly placed
and a group with remote tasks.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1381141781-10992-56-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 14:48:10 +02:00
Rik van Riel
82727018b0 sched/numa: Call task_numa_free() from do_execve()
It is possible for a task in a numa group to call exec, and
have the new (unrelated) executable inherit the numa group
association from its former self.

This has the potential to break numa grouping, and is trivial
to fix.

Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-51-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 14:48:00 +02:00
Peter Zijlstra
8c8a743c50 sched/numa: Use {cpu, pid} to create task groups for shared faults
While parallel applications tend to align their data on the cache
boundary, they tend not to align on the page or THP boundary.
Consequently tasks that partition their data can still "false-share"
pages presenting a problem for optimal NUMA placement.

This patch uses NUMA hinting faults to chain tasks together into
numa_groups. As well as storing the NID a task was running on when
accessing a page a truncated representation of the faulting PID is
stored. If subsequent faults are from different PIDs it is reasonable
to assume that those two tasks share a page and are candidates for
being grouped together. Note that this patch makes no scheduling
decisions based on the grouping information.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1381141781-10992-44-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 14:47:47 +02:00
Mel Gorman
fb13c7ee0e sched/numa: Use a system-wide search to find swap/migration candidates
This patch implements a system-wide search for swap/migration candidates
based on total NUMA hinting faults. It has a balance limit, however it
doesn't properly consider total node balance.

In the old scheme a task selected a preferred node based on the highest
number of private faults recorded on the node. In this scheme, the preferred
node is based on the total number of faults. If the preferred node for a
task changes then task_numa_migrate will search the whole system looking
for tasks to swap with that would improve both the overall compute
balance and minimise the expected number of remote NUMA hinting faults.

Not there is no guarantee that the node the source task is placed
on by task_numa_migrate() has any relationship to the newly selected
task->numa_preferred_nid due to compute overloading.

Signed-off-by: Mel Gorman <mgorman@suse.de>
[ Do not swap with tasks that cannot run on source cpu]
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
[ Fixed compiler warning on UP. ]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-40-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 14:47:25 +02:00
Peter Zijlstra
ac66f54772 sched/numa: Introduce migrate_swap()
Use the new stop_two_cpus() to implement migrate_swap(), a function that
flips two tasks between their respective cpus.

I'm fairly sure there's a less crude way than employing the stop_two_cpus()
method, but everything I tried either got horribly fragile and/or complex. So
keep it simple for now.

The notable detail is how we 'migrate' tasks that aren't runnable
anymore. We'll make it appear like we migrated them before they went to
sleep. The sole difference is the previous cpu in the wakeup path, so we
override this.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Link: http://lkml.kernel.org/r/1381141781-10992-39-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:40:46 +02:00
Mel Gorman
e6628d5b0a sched/numa: Reschedule task on preferred NUMA node once selected
A preferred node is selected based on the node the most NUMA hinting
faults was incurred on. There is no guarantee that the task is running
on that node at the time so this patch rescheules the task to run on
the most idle CPU of the selected node when selected. This avoids
waiting for the balancer to make a decision.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-25-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:40:28 +02:00
Mel Gorman
f809ca9a55 sched/numa: Track NUMA hinting faults on per-node basis
This patch tracks what nodes numa hinting faults were incurred on.
This information is later used to schedule a task on the node storing
the pages most frequently faulted by the task.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-20-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:40:22 +02:00
Jason Low
9bd721c55c sched/balancing: Consider max cost of idle balance per sched domain
In this patch, we keep track of the max cost we spend doing idle load balancing
for each sched domain. If the avg time the CPU remains idle is less then the
time we have already spent on idle balancing + the max cost of idle balancing
in the sched domain, then we don't continue to attempt the balance. We also
keep a per rq variable, max_idle_balance_cost, which keeps track of the max
time spent on newidle load balances throughout all its domains so that we can
determine the avg_idle's max value.

By using the max, we avoid overrunning the average. This further reduces the
chance we attempt balancing when the CPU is not idle for longer than the cost
to balance.

Signed-off-by: Jason Low <jason.low2@hp.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1379096813-3032-3-git-send-email-jason.low2@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-09-20 12:03:44 +02:00
Peter Zijlstra
6263322c5e sched/fair: Rewrite group_imb trigger
Change the group_imb detection from the old 'load-spike' detector to
an actual imbalance detector. We set it from the lower domain balance
pass when it fails to create a balance in the presence of task
affinities.

The advantage is that this should no longer generate the false
positive group_imb conditions generated by transient load spikes from
the normal balancing/bulk-wakeup etc. behaviour.

While I haven't actually observed those they could happen.

I'm not entirely happy with this patch; it somehow feels a little
fragile.

Nor does it solve the biggest issue I have with the group_imb code; it
it still a fragile construct in that once we 'fixed' the imbalance
we'll not detect the group_imb again and could end up re-creating it.

That said, this patch does seem to preserve behaviour for the
described degenerate case. In particular on my 2*6*2 wsm-ep:

  taskset -c 3-11 bash -c 'for ((i=0;i<9;i++)) do while :; do :; done & done'

ends up with 9 spinners, each on their own CPU; whereas if you disable
the group_imb code that typically doesn't happen (you'll get one pair
sharing a CPU most of the time).

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-36fpbgl39dv4u51b6yz2ypz5@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-09-12 19:14:42 +02:00
Linus Torvalds
0d99b70873 Merge branches 'perf-urgent-for-linus' and 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf changes from Ingo Molnar:
 "As a first remark I'd like to point out that the obsolete '-f'
  (--force) option, which has not done anything for several releases,
  has been removed from 'perf record' and related utilities.  Everyone
  please update muscle memory accordingly! :-)

  Main changes on the perf kernel side:

   - Performance optimizations:
        . for trace events, by Steve Rostedt.
        . for time values, by Peter Zijlstra

   - New hardware support:
        . for Intel Silvermont (22nm Atom) CPUs, by Zheng Yan
        . for Intel SNB-EP uncore PMUs, by Zheng Yan

   - Enhanced hardware support:
        . for Intel uncore PMUs: add filter support for QPI boxes, by Zheng Yan

   - Core perf events code enhancements and fixes:
        . for full-nohz feature handling, by Frederic Weisbecker
        . for group events, by Jiri Olsa
        . for call chains, by Frederic Weisbecker
        . for event stream parsing, by Adrian Hunter

   - New ABI details:
        . Add attr->mmap2 attribute, by Stephane Eranian
        . Add PERF_EVENT_IOC_ID ioctl to return event ID, by Jiri Olsa
        . Export u64 time_zero on the mmap header page to allow TSC
          calculation, by Adrian Hunter
        . Add dummy software event, by Adrian Hunter.
        . Add a new PERF_SAMPLE_IDENTIFIER to make samples always
          parseable, by Adrian Hunter.
        . Make Power7 events available via sysfs, by Runzhen Wang.

   - Code cleanups and refactorings:
        . for nohz-full, by Frederic Weisbecker
        . for group events, by Jiri Olsa

   - Documentation updates:
        . for perf_event_type, by Peter Zijlstra

  Main changes on the perf tooling side (some of these tooling changes
  utilize the above kernel side changes):

   - Lots of 'perf trace' enhancements:

        . Make 'perf trace' command line arguments consistent with
          'perf record', by David Ahern.

        . Allow specifying syscalls a la strace, by Arnaldo Carvalho de Melo.

        . Add --verbose and -o/--output options, by Arnaldo Carvalho de Melo.

        . Support ! in -e expressions, to filter a list of syscalls,
          by Arnaldo Carvalho de Melo.

        . Arg formatting improvements to allow masking arguments in
          syscalls such as futex and open, where the some arguments are
          ignored and thus should not be printed depending on other args,
          by Arnaldo Carvalho de Melo.

        . Beautify futex open, openat, open_by_handle_at, lseek and futex
          syscalls, by Arnaldo Carvalho de Melo.

        . Add option to analyze events in a file versus live, so that
          one can do:

           [root@zoo ~]# perf record -a -e raw_syscalls:* sleep 1
           [ perf record: Woken up 0 times to write data ]
           [ perf record: Captured and wrote 25.150 MB perf.data (~1098836 samples) ]
           [root@zoo ~]# perf trace -i perf.data -e futex --duration 1
              17.799 ( 1.020 ms): 7127 futex(uaddr: 0x7fff3f6c6674, op: 393, val: 1, utime: 0x7fff3f6c6470, ua
             113.344 (95.429 ms): 7127 futex(uaddr: 0x7fff3f6c6674, op: 393, val: 1, utime: 0x7fff3f6c6470, uaddr2: 0x7fff3f6c6648, val3: 4294967
             133.778 ( 1.042 ms): 18004 futex(uaddr: 0x7fff3f6c6674, op: 393, val: 1, utime: 0x7fff3f6c6470, uaddr2: 0x7fff3f6c6648, val3: 429496
           [root@zoo ~]#

          By David Ahern.

        . Honor target pid / tid options when analyzing a file, by David Ahern.

        . Introduce better formatting of syscall arguments, including so
          far beautifiers for mmap, madvise, syscall return values,
          by Arnaldo Carvalho de Melo.

        . Handle HUGEPAGE defines in the mmap beautifier, by David Ahern.

   - 'perf report/top' enhancements:

        . Do annotation using /proc/kcore and /proc/kallsyms when
          available, removing the forced need for a vmlinux file kernel
          assembly annotation. This also improves this use case because
          vmlinux has just the initial kernel image, not what is actually
          in use after various code patchings by things like alternatives.
          By Adrian Hunter.

        . Add --ignore-callees=<regex> option to collapse undesired parts
          of call graphs, by Greg Price.

        . Simplify symbol filtering by doing it at machine class level,
          by Adrian Hunter.

        . Add support for callchains in the gtk UI, by Namhyung Kim.

        . Add --objdump option to 'perf top', by Sukadev Bhattiprolu.

   - 'perf kvm' enhancements:

        . Add option to print only events that exceed a specified time
          duration, by David Ahern.

        . Improve stack trace printing, by David Ahern.

        . Update documentation of the live command, by David Ahern

        . Add perf kvm stat live mode that combines aspects of 'perf kvm
          stat' record and report, by David Ahern.

        . Add option to analyze specific VM in perf kvm stat report, by
          David Ahern.

        . Do not require /lib/modules/* on a guest, by Jason Wessel.

   - 'perf script' enhancements:

        . Fix symbol offset computation for some dsos, by David Ahern.

        . Fix named threads support, by David Ahern.

        . Don't install scripting files files when perl/python support
          is disabled, by Arnaldo Carvalho de Melo.

   - 'perf test' enhancements:

        . Add various improvements and fixes to the "vmlinux matches
          kallsyms" 'perf test' entry, related to the /proc/kcore
          annotation feature. By Adrian Hunter.

        . Add sample parsing test, by Adrian Hunter.

        . Add test for reading object code, by Adrian Hunter.

        . Add attr record group sampling test, by Jiri Olsa.

        . Misc testing infrastructure improvements and other details,
          by Jiri Olsa.

   - 'perf list' enhancements:

        . Skip unsupported hardware events, by Namhyung Kim.

        . List pmu events, by Andi Kleen.

   - 'perf diff' enhancements:

        . Add support for more than two files comparison, by Jiri Olsa.

   - 'perf sched' enhancements:

        . Various improvements, including removing reliance on some
          scheduler tracepoints that provide the same information as the
          PERF_RECORD_{FORK,EXIT} events. By David Ahern.

        . Remove odd build stall by moving a large struct initialization
          from a local variable to a global one, by Namhyung Kim.

   - 'perf stat' enhancements:

        . Add --initial-delay option to skip measuring for a defined
          startup phase, by Andi Kleen.

   - Generic perf tooling infrastructure/plumbing changes:

        . Tidy up sample parsing validation, by Adrian Hunter.

        . Fix up jobserver setup in libtraceevent Makefile.
          by Arnaldo Carvalho de Melo.

        . Debug improvements, by Adrian Hunter.

        . Fix correlation of samples coming after PERF_RECORD_EXIT event,
          by David Ahern.

        . Improve robustness of the topology parsing code,
          by Stephane Eranian.

        . Add group leader sampling, that allows just one event in a group
          to sample while the other events have just its values read,
          by Jiri Olsa.

        . Add support for a new modifier "D", which requests that the
          event, or group of events, be pinned to the PMU.
          By Michael Ellerman.

        . Support callchain sorting based on addresses, by Andi Kleen

        . Prep work for multi perf data file storage, by Jiri Olsa.

        . libtraceevent cleanups, by Namhyung Kim.

  And lots and lots of other fixes and code reorganizations that did not
  make it into the list, see the shortlog, diffstat and the Git log for
  details!"

[ Also merge a leftover from the 3.11 cycle ]

* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  perf: Prevent race in unthrottling code

* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (237 commits)
  perf trace: Tell arg formatters the arg index
  perf trace: Add beautifier for open's flags arg
  perf trace: Add beautifier for lseek's whence arg
  perf tools: Fix symbol offset computation for some dsos
  perf list: Skip unsupported events
  perf tests: Add 'keep tracking' test
  perf tools: Add support for PERF_COUNT_SW_DUMMY
  perf: Add a dummy software event to keep tracking
  perf trace: Add beautifier for futex 'operation' parm
  perf trace: Allow syscall arg formatters to mask args
  perf: Convert kmalloc_node(...GFP_ZERO...) to kzalloc_node()
  perf: Export struct perf_branch_entry to userspace
  perf: Add attr->mmap2 attribute to an event
  perf/x86: Add Silvermont (22nm Atom) support
  perf/x86: use INTEL_UEVENT_EXTRA_REG to define MSR_OFFCORE_RSP_X
  perf trace: Handle missing HUGEPAGE defines
  perf trace: Honor target pid / tid options when analyzing a file
  perf trace: Add option to analyze events in a file versus live
  perf evlist: Add tracepoint lookup by name
  perf tests: Add a sample parsing test
  ...
2013-09-04 08:25:35 -07:00
Tejun Heo
8af01f56a0 cgroup: s/cgroup_subsys_state/cgroup_css/ s/task_subsys_state/task_css/
The names of the two struct cgroup_subsys_state accessors -
cgroup_subsys_state() and task_subsys_state() - are somewhat awkward.
The former clashes with the type name and the latter doesn't even
indicate it's somehow related to cgroup.

We're about to revamp large portion of cgroup API, so, let's rename
them so that they're less awkward.  Most per-controller usages of the
accessors are localized in accessor wrappers and given the amount of
scheduled changes, this isn't gonna add any noticeable headache.

Rename cgroup_subsys_state() to cgroup_css() and task_subsys_state()
to task_css().  This patch is pure rename.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2013-08-08 20:11:22 -04:00
Peter Zijlstra
7d9ffa8961 sched: Micro-optimize the smart wake-affine logic
Smart wake-affine is using node-size as the factor currently, but the overhead
of the mask operation is high.

Thus, this patch introduce the 'sd_llc_size' percpu variable, which will record
the highest cache-share domain size, and make it to be the new factor, in order
to reduce the overhead and make it more reasonable.

Tested-by: Davidlohr Bueso <davidlohr.bueso@hp.com>
Tested-by: Michael Wang <wangyun@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Michael Wang <wangyun@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Link: http://lkml.kernel.org/r/51D5008E.6030102@linux.vnet.ibm.com
[ Tidied up the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-07-23 12:22:06 +02:00
Vladimir Davydov
685207963b sched: Move h_load calculation to task_h_load()
The bad thing about update_h_load(), which computes hierarchical load
factor for task groups, is that it is called for each task group in the
system before every load balancer run, and since rebalance can be
triggered very often, this function can eat really a lot of cpu time if
there are many cpu cgroups in the system.

Although the situation was improved significantly by commit a35b646
('sched, cgroup: Reduce rq->lock hold times for large cgroup
hierarchies'), the problem still can arise under some kinds of loads,
e.g. when cpus are switching from idle to busy and back very frequently.

For instance, when I start 1000 of processes that wake up every
millisecond on my 8 cpus host, 'top' and 'perf top' show:

Cpu(s): 17.8%us, 24.3%sy,  0.0%ni, 57.9%id,  0.0%wa,  0.0%hi,  0.0%si
Events: 243K cycles
  7.57%  [kernel]               [k] __schedule
  7.08%  [kernel]               [k] timerqueue_add
  6.13%  libc-2.12.so           [.] usleep

Then if I create 10000 *idle* cpu cgroups (no processes in them), cpu
usage increases significantly although the 'wakers' are still executing
in the root cpu cgroup:

Cpu(s): 19.1%us, 48.7%sy,  0.0%ni, 31.6%id,  0.0%wa,  0.0%hi,  0.7%si
Events: 230K cycles
 24.56%  [kernel]            [k] tg_load_down
  5.76%  [kernel]            [k] __schedule

This happens because this particular kind of load triggers 'new idle'
rebalance very frequently, which requires calling update_h_load(),
which, in turn, calls tg_load_down() for every *idle* cpu cgroup even
though it is absolutely useless, because idle cpu cgroups have no tasks
to pull.

This patch tries to improve the situation by making h_load calculation
proceed only when h_load is really necessary. To achieve this, it
substitutes update_h_load() with update_cfs_rq_h_load(), which computes
h_load only for a given cfs_rq and all its ascendants, and makes the
load balancer call this function whenever it considers if a task should
be pulled, i.e. it moves h_load calculations directly to task_h_load().
For h_load of the same cfs_rq not to be updated multiple times (in case
several tasks in the same cgroup are considered during the same balance
run), the patch keeps the time of the last h_load update for each cfs_rq
and breaks calculation when it finds h_load to be uptodate.

The benefit of it is that h_load is computed only for those cfs_rq's,
which really need it, in particular all idle task groups are skipped.
Although this, in fact, moves h_load calculation under rq lock, it
should not affect latency much, because the amount of work done under rq
lock while trying to pull tasks is limited by sched_nr_migrate.

After the patch applied with the setup described above (1000 wakers in
the root cgroup and 10000 idle cgroups), I get:

Cpu(s): 16.9%us, 24.8%sy,  0.0%ni, 58.4%id,  0.0%wa,  0.0%hi,  0.0%si
Events: 242K cycles
  7.57%  [kernel]                  [k] __schedule
  6.70%  [kernel]                  [k] timerqueue_add
  5.93%  libc-2.12.so              [.] usleep

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1373896159-1278-1-git-send-email-vdavydov@parallels.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-07-23 12:18:41 +02:00
Alex Shi
a9cef46a10 sched/tg: Remove tg.load_weight
Since no one use it.

Signed-off-by: Alex Shi <alex.shi@intel.com>
Reviewed-by: Paul Turner <pjt@google.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1371694737-29336-13-git-send-email-alex.shi@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-06-27 10:07:43 +02:00
Alex Shi
2509940fd7 sched/cfs_rq: Change atomic64_t removed_load to atomic_long_t
Similar to runnable_load_avg, blocked_load_avg variable, long type is
enough for removed_load in 64 bit or 32 bit machine.

Then we avoid the expensive atomic64 operations on 32 bit machine.

Signed-off-by: Alex Shi <alex.shi@intel.com>
Reviewed-by: Paul Turner <pjt@google.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1371694737-29336-12-git-send-email-alex.shi@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-06-27 10:07:41 +02:00
Alex Shi
bf5b986ed4 sched/tg: Use 'unsigned long' for load variable in task group
Since tg->load_avg is smaller than tg->load_weight, we don't need a
atomic64_t variable for load_avg in 32 bit machine.
The same reason for cfs_rq->tg_load_contrib.

The atomic_long_t/unsigned long variable type are more efficient and
convenience for them.

Signed-off-by: Alex Shi <alex.shi@intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1371694737-29336-11-git-send-email-alex.shi@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-06-27 10:07:40 +02:00
Alex Shi
72a4cf20cb sched: Change cfs_rq load avg to unsigned long
Since the 'u64 runnable_load_avg, blocked_load_avg' in cfs_rq struct are
smaller than 'unsigned long' cfs_rq->load.weight. We don't need u64
vaiables to describe them. unsigned long is more efficient and convenience.

Signed-off-by: Alex Shi <alex.shi@intel.com>
Reviewed-by: Paul Turner <pjt@google.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1371694737-29336-10-git-send-email-alex.shi@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-06-27 10:07:38 +02:00
Alex Shi
a75cdaa915 sched: Set an initial value of runnable avg for new forked task
We need to initialize the se.avg.{decay_count, load_avg_contrib} for a
new forked task. Otherwise random values of above variables cause a
mess when a new task is enqueued:

    enqueue_task_fair
        enqueue_entity
            enqueue_entity_load_avg

and make fork balancing imbalance due to incorrect load_avg_contrib.

Further more, Morten Rasmussen notice some tasks were not launched at
once after created. So Paul and Peter suggest giving a start value for
new task runnable avg time same as sched_slice().

PeterZ said:

> So the 'problem' is that our running avg is a 'floating' average; ie. it
> decays with time. Now we have to guess about the future of our newly
> spawned task -- something that is nigh impossible seeing these CPU
> vendors keep refusing to implement the crystal ball instruction.
>
> So there's two asymptotic cases we want to deal well with; 1) the case
> where the newly spawned program will be 'nearly' idle for its lifetime;
> and 2) the case where its cpu-bound.
>
> Since we have to guess, we'll go for worst case and assume its
> cpu-bound; now we don't want to make the avg so heavy adjusting to the
> near-idle case takes forever. We want to be able to quickly adjust and
> lower our running avg.
>
> Now we also don't want to make our avg too light, such that it gets
> decremented just for the new task not having had a chance to run yet --
> even if when it would run, it would be more cpu-bound than not.
>
> So what we do is we make the initial avg of the same duration as that we
> guess it takes to run each task on the system at least once -- aka
> sched_slice().
>
> Of course we can defeat this with wakeup/fork bombs, but in the 'normal'
> case it should be good enough.

Paul also contributed most of the code comments in this commit.

Signed-off-by: Alex Shi <alex.shi@intel.com>
Reviewed-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
Reviewed-by: Paul Turner <pjt@google.com>
[peterz; added explanation of sched_slice() usage]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1371694737-29336-4-git-send-email-alex.shi@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-06-27 10:07:30 +02:00
Alex Shi
fa6bddeb14 sched: Move a few runnable tg variables into CONFIG_SMP
The following 2 variables are only used under CONFIG_SMP, so its
better to move their definiation into CONFIG_SMP too.

        atomic64_t load_avg;
        atomic_t runnable_avg;

Signed-off-by: Alex Shi <alex.shi@intel.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1371694737-29336-3-git-send-email-alex.shi@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-06-27 10:07:29 +02:00
Alex Shi
141965c749 Revert "sched: Introduce temporary FAIR_GROUP_SCHED dependency for load-tracking"
Remove CONFIG_FAIR_GROUP_SCHED that covers the runnable info, then
we can use runnable load variables.

Also remove 2 CONFIG_FAIR_GROUP_SCHED setting which is not in reverted
patch(introduced in 9ee474f), but also need to revert.

Signed-off-by: Alex Shi <alex.shi@intel.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/51CA76A3.3050207@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-06-27 10:07:22 +02:00
Kirill Tkhai
e23ee74777 sched/rt: Simplify pull_rt_task() logic and remove .leaf_rt_rq_list
[ Peter, this is based off of some of my work, I ran it though a few
  tests and it passed. I also reviewed it, and added my SOB as I am
  somewhat a co-author to it. ]

Based on the patch by Steven Rostedt from previous year:

https://lkml.org/lkml/2012/4/18/517

1)Simplify pull_rt_task() logic: search in pushable tasks of dest runqueue.
The only pullable tasks are the tasks which are pushable in their local rq,
and no others.

2)Remove .leaf_rt_rq_list member of struct rt_rq and functions connected
with it: nobody uses it since now.

Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/287571370557898@web7d.yandex.ru
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-06-19 12:58:40 +02:00
Frederic Weisbecker
78becc2709 sched: Use an accessor to read the rq clock
Read the runqueue clock through an accessor. This
prepares for adding a debugging infrastructure to
detect missing or redundant calls to update_rq_clock()
between a scheduler's entry and exit point.

Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Turner <pjt@google.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1365724262-20142-6-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-05-28 09:40:27 +02:00
Neil Zhang
c5405a495e sched: Remove redundant update_runtime notifier
migration_call() will do all the things that update_runtime() does.
So let's remove it.

Furthermore, there is potential risk that the current code will catch
BUG_ON at line 689 of rt.c when do cpu hotplug while there are realtime
threads running because of enabling runtime twice while the rt_runtime
may already changed.

Signed-off-by: Neil Zhang <zhangwm@marvell.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1365685499-26515-1-git-send-email-zhangwm@marvell.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-05-28 09:40:22 +02:00
Paul Gortmaker
8527632dc9 sched: Move update_load_*() methods from sched.h to fair.c
These inlines are only used by kernel/sched/fair.c so they do
not need to be present in the main kernel/sched/sched.h file.

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/1366398650-31599-3-git-send-email-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-05-07 13:14:51 +02:00
Paul Gortmaker
45ceebf776 sched: Factor out load calculation code from sched/core.c --> sched/proc.c
This large chunk of load calculation code can be easily divorced
from the main core.c scheduler file, with only a couple
prototypes and externs added to a kernel/sched header.

Some recent commits expanded the code and the documentation of
it, making it large enough to warrant separation.  For example,
see:

  556061b, "sched/nohz: Fix rq->cpu_load[] calculations"
  5aaa0b7, "sched/nohz: Fix rq->cpu_load calculations some more"
  5167e8d, "sched/nohz: Rewrite and fix load-avg computation -- again"

More importantly, it helps reduce the size of the main
sched/core.c by yet another significant amount (~600 lines).

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/1366398650-31599-2-git-send-email-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-05-07 13:14:50 +02:00
Frederic Weisbecker
265f22a975 sched: Keep at least 1 tick per second for active dynticks tasks
The scheduler doesn't yet fully support environments
with a single task running without a periodic tick.

In order to ensure we still maintain the duties of scheduler_tick(),
keep at least 1 tick per second.

This makes sure that we keep the progression of various scheduler
accounting and background maintainance even with a very low granularity.
Examples include cpu load, sched average, CFS entity vruntime,
avenrun and events such as load balancing, amongst other details
handled in sched_class::task_tick().

This limitation will be removed in the future once we get
these individual items to work in full dynticks CPUs.

Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
2013-05-04 08:32:02 +02:00