[ Upstream commit ac3ad19584 ]
dev_kfree_skb() is aliased to consume_skb().
When a driver is dropping a packet by calling dev_kfree_skb_any()
we should propagate the drop reason instead of pretending
the packet was consumed.
Note: Now we have enum skb_drop_reason we could remove
enum skb_free_reason (for linux-6.4)
v2: added an unlikely(), suggested by Yunsheng Lin.
Fixes: e6247027e5 ("net: introduce dev_consume_skb_any()")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yunsheng Lin <linyunsheng@huawei.com>
Reviewed-by: Yunsheng Lin <linyunsheng@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 5f1eb1ff58 ]
This is a followup of commit 2558b8039d ("net: use a bounce
buffer for copying skb->mark")
x86 and powerpc define user_access_begin, meaning
that they are not able to perform user copy checks
when using user_write_access_begin() / unsafe_copy_to_user()
and friends [1]
Instead of waiting bugs to trigger on other arches,
add a check_object_size() in put_cmsg() to make sure
that new code tested on x86 with CONFIG_HARDENED_USERCOPY=y
will perform more security checks.
[1] We can not generically call check_object_size() from
unsafe_copy_to_user() because UACCESS is enabled at this point.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Kees Cook <keescook@chromium.org>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 584f374289 ]
Add sock_init_data_uid() to explicitly initialize the socket uid.
To initialise the socket uid, sock_init_data() assumes a the struct
socket* sock is always embedded in a struct socket_alloc, used to
access the corresponding inode uid. This may not be true.
Examples are sockets created in tun_chr_open() and tap_open().
Fixes: 86741ec254 ("net: core: Add a UID field to struct sock.")
Signed-off-by: Pietro Borrello <borrello@diag.uniroma1.it>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 1fe4850b34 upstream.
The bpf_fib_lookup() helper does not only look up the fib (ie. route)
but it also looks up the neigh. Before returning the neigh, the helper
does not check for NUD_VALID. When a neigh state (neigh->nud_state)
is in NUD_FAILED, its dmac (neigh->ha) could be all zeros. The helper
still returns SUCCESS instead of NO_NEIGH in this case. Because of the
SUCCESS return value, the bpf prog directly uses the returned dmac
and ends up filling all zero in the eth header.
This patch checks for NUD_VALID and returns NO_NEIGH if the neigh is
not valid.
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20230217004150.2980689-3-martin.lau@linux.dev
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit c1d2ecdf5e ]
Entries can linger in cache without timer for days, thanks to
the gc_thresh1 limit. As result, without traffic, the confirmed
time can be outdated and to appear to be in the future. Later,
on traffic, NUD_STALE entries can switch to NUD_DELAY and start
the timer which can see the invalid confirmed time and wrongly
switch to NUD_REACHABLE state instead of NUD_PROBE. As result,
timer is set many days in the future. This is more visible on
32-bit platforms, with higher HZ value.
Why this is a problem? While we expect unused entries to expire,
such entries stay in REACHABLE state for too long, locked in
cache. They are not expired normally, only when cache is full.
Problem and the wrong state change reported by Zhang Changzhong:
172.16.1.18 dev bond0 lladdr 0a:0e:0f:01:12:01 ref 1 used 350521/15994171/350520 probes 4 REACHABLE
350520 seconds have elapsed since this entry was last updated, but it is
still in the REACHABLE state (base_reachable_time_ms is 30000),
preventing lladdr from being updated through probe.
Fix it by ensuring timer is started with valid used/confirmed
times. Considering the valid time range is LONG_MAX jiffies,
we try not to go too much in the past while we are in
DELAY/PROBE state. There are also places that need
used/updated times to be validated while timer is not running.
Reported-by: Zhang Changzhong <zhangchangzhong@huawei.com>
Signed-off-by: Julian Anastasov <ja@ssi.bg>
Tested-by: Zhang Changzhong <zhangchangzhong@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 9b55d3f0a6 upstream.
When converting net_device_stats to rtnl_link_stats64 sign extension
is triggered on ILP32 machines as 6c1c509778 changed the previous
"ulong -> u64" conversion to "long -> u64" by accessing the
net_device_stats fields through a (signed) atomic_long_t.
This causes for example the received bytes counter to jump to 16EiB after
having received 2^31 bytes. Casting the atomic value to "unsigned long"
beforehand converting it into u64 avoids this.
Fixes: 6c1c509778 ("net: add atomic_long_t to net_device_stats fields")
Signed-off-by: Felix Riemann <felix.riemann@sma.de>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 54c3f1a814 ]
Anand hit a BUG() when pulling off headers on egress to a SW tunnel.
We get to skb_checksum_help() with an invalid checksum offset
(commit d7ea0d9df2 ("net: remove two BUG() from skb_checksum_help()")
converted those BUGs to WARN_ONs()).
He points out oddness in how skb_postpull_rcsum() gets used.
Indeed looks like we should pull before "postpull", otherwise
the CHECKSUM_PARTIAL fixup from skb_postpull_rcsum() will not
be able to do its job:
if (skb->ip_summed == CHECKSUM_PARTIAL &&
skb_checksum_start_offset(skb) < 0)
skb->ip_summed = CHECKSUM_NONE;
Reported-by: Anand Parthasarathy <anpartha@meta.com>
Fixes: 6578171a7f ("bpf: add bpf_skb_change_proto helper")
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20221220004701.402165-1-kuba@kernel.org
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 6c1c509778 ]
Long standing KCSAN issues are caused by data-race around
some dev->stats changes.
Most performance critical paths already use per-cpu
variables, or per-queue ones.
It is reasonable (and more correct) to use atomic operations
for the slow paths.
This patch adds an union for each field of net_device_stats,
so that we can convert paths that are not yet protected
by a spinlock or a mutex.
netdev_stats_to_stats64() no longer has an #if BITS_PER_LONG==64
Note that the memcpy() we were using on 64bit arches
had no provision to avoid load-tearing,
while atomic_long_read() is providing the needed protection
at no cost.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 07ec7b5028 ]
syzkaller managed to trigger another case where skb->len == 0
when we enter __dev_queue_xmit:
WARNING: CPU: 0 PID: 2470 at include/linux/skbuff.h:2576 skb_assert_len include/linux/skbuff.h:2576 [inline]
WARNING: CPU: 0 PID: 2470 at include/linux/skbuff.h:2576 __dev_queue_xmit+0x2069/0x35e0 net/core/dev.c:4295
Call Trace:
dev_queue_xmit+0x17/0x20 net/core/dev.c:4406
__bpf_tx_skb net/core/filter.c:2115 [inline]
__bpf_redirect_no_mac net/core/filter.c:2140 [inline]
__bpf_redirect+0x5fb/0xda0 net/core/filter.c:2163
____bpf_clone_redirect net/core/filter.c:2447 [inline]
bpf_clone_redirect+0x247/0x390 net/core/filter.c:2419
bpf_prog_48159a89cb4a9a16+0x59/0x5e
bpf_dispatcher_nop_func include/linux/bpf.h:897 [inline]
__bpf_prog_run include/linux/filter.h:596 [inline]
bpf_prog_run include/linux/filter.h:603 [inline]
bpf_test_run+0x46c/0x890 net/bpf/test_run.c:402
bpf_prog_test_run_skb+0xbdc/0x14c0 net/bpf/test_run.c:1170
bpf_prog_test_run+0x345/0x3c0 kernel/bpf/syscall.c:3648
__sys_bpf+0x43a/0x6c0 kernel/bpf/syscall.c:5005
__do_sys_bpf kernel/bpf/syscall.c:5091 [inline]
__se_sys_bpf kernel/bpf/syscall.c:5089 [inline]
__x64_sys_bpf+0x7c/0x90 kernel/bpf/syscall.c:5089
do_syscall_64+0x54/0x70 arch/x86/entry/common.c:48
entry_SYSCALL_64_after_hwframe+0x61/0xc6
The reproducer doesn't really reproduce outside of syzkaller
environment, so I'm taking a guess here. It looks like we
do generate correct ETH_HLEN-sized packet, but we redirect
the packet to the tunneling device. Before we do so, we
__skb_pull l2 header and arrive again at skb->len == 0.
Doesn't seem like we can do anything better than having
an explicit check after __skb_pull?
Cc: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot+f635e86ec3fa0a37e019@syzkaller.appspotmail.com
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20221027225537.353077-1-sdf@google.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit e0c8bccd40 ]
Changheon Lee reported TCP socket leaks, with a nice repro.
It seems we leak TCP sockets with the following sequence:
1) SOF_TIMESTAMPING_TX_ACK is enabled on the socket.
Each ACK will cook an skb put in error queue, from __skb_tstamp_tx().
__skb_tstamp_tx() is using skb_clone(), unless
SOF_TIMESTAMPING_OPT_TSONLY was also requested.
2) If the application is also using MSG_ZEROCOPY, then we put in the
error queue cloned skbs that had a struct ubuf_info attached to them.
Whenever an struct ubuf_info is allocated, sock_zerocopy_alloc()
does a sock_hold().
As long as the cloned skbs are still in sk_error_queue,
socket refcount is kept elevated.
3) Application closes the socket, while error queue is not empty.
Since tcp_close() no longer purges the socket error queue,
we might end up with a TCP socket with at least one skb in
error queue keeping the socket alive forever.
This bug can be (ab)used to consume all kernel memory
and freeze the host.
We need to purge the error queue, with proper synchronization
against concurrent writers.
Fixes: 24bcbe1cc6 ("net: stream: don't purge sk_error_queue in sk_stream_kill_queues()")
Reported-by: Changheon Lee <darklight2357@icloud.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2d7afdcbc9 ]
Extending the tail can have some unexpected side effects if a program uses
a helper like BPF_FUNC_skb_pull_data to read partial content beyond the
head skb headlen when all the skbs in the gso frag_list are linear with no
head_frag -
kernel BUG at net/core/skbuff.c:4219!
pc : skb_segment+0xcf4/0xd2c
lr : skb_segment+0x63c/0xd2c
Call trace:
skb_segment+0xcf4/0xd2c
__udp_gso_segment+0xa4/0x544
udp4_ufo_fragment+0x184/0x1c0
inet_gso_segment+0x16c/0x3a4
skb_mac_gso_segment+0xd4/0x1b0
__skb_gso_segment+0xcc/0x12c
udp_rcv_segment+0x54/0x16c
udp_queue_rcv_skb+0x78/0x144
udp_unicast_rcv_skb+0x8c/0xa4
__udp4_lib_rcv+0x490/0x68c
udp_rcv+0x20/0x30
ip_protocol_deliver_rcu+0x1b0/0x33c
ip_local_deliver+0xd8/0x1f0
ip_rcv+0x98/0x1a4
deliver_ptype_list_skb+0x98/0x1ec
__netif_receive_skb_core+0x978/0xc60
Fix this by marking these skbs as GSO_DODGY so segmentation can handle
the tail updates accordingly.
Fixes: 3dcbdb134f ("net: gso: Fix skb_segment splat when splitting gso_size mangled skb having linear-headed frag_list")
Signed-off-by: Sean Tranchetti <quic_stranche@quicinc.com>
Signed-off-by: Subash Abhinov Kasiviswanathan <quic_subashab@quicinc.com>
Reviewed-by: Alexander Duyck <alexanderduyck@fb.com>
Link: https://lore.kernel.org/r/1671084718-24796-1-git-send-email-quic_subashab@quicinc.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a351d6087b ]
When redirecting, we use sk_msg_to_ingress() to get the BPF_F_INGRESS
flag from the msg->flags. If apply_bytes is used and it is larger than
the current data being processed, sk_psock_msg_verdict() will not be
called when sendmsg() is called again. At this time, the msg->flags is 0,
and we lost the BPF_F_INGRESS flag.
So we need to save the BPF_F_INGRESS flag in sk_psock and use it when
redirection.
Fixes: 8934ce2fd0 ("bpf: sockmap redirect ingress support")
Signed-off-by: Pengcheng Yang <yangpc@wangsu.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jakub Sitnicki <jakub@cloudflare.com>
Link: https://lore.kernel.org/bpf/1669718441-2654-3-git-send-email-yangpc@wangsu.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 114039b342 ]
To avoid potentially breaking existing users.
Both mac/no-mac cases have to be amended; mac_header >= network_header
is not enough (verified with a new test, see next patch).
Fixes: fd18942244 ("bpf: Don't redirect packets with invalid pkt_len")
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20221121180340.1983627-1-sdf@google.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b261eda84e ]
Kazuho Oku reported that setsockopt(SO_INCOMING_CPU) does not work
with setsockopt(SO_REUSEPORT) since v4.6.
With the combination of SO_REUSEPORT and SO_INCOMING_CPU, we could
build a highly efficient server application.
setsockopt(SO_INCOMING_CPU) associates a CPU with a TCP listener
or UDP socket, and then incoming packets processed on the CPU will
likely be distributed to the socket. Technically, a socket could
even receive packets handled on another CPU if no sockets in the
reuseport group have the same CPU receiving the flow.
The logic exists in compute_score() so that a socket will get a higher
score if it has the same CPU with the flow. However, the score gets
ignored after the blamed two commits, which introduced a faster socket
selection algorithm for SO_REUSEPORT.
This patch introduces a counter of sockets with SO_INCOMING_CPU in
a reuseport group to check if we should iterate all sockets to find
a proper one. We increment the counter when
* calling listen() if the socket has SO_INCOMING_CPU and SO_REUSEPORT
* enabling SO_INCOMING_CPU if the socket is in a reuseport group
Also, we decrement it when
* detaching a socket out of the group to apply SO_INCOMING_CPU to
migrated TCP requests
* disabling SO_INCOMING_CPU if the socket is in a reuseport group
When the counter reaches 0, we can get back to the O(1) selection
algorithm.
The overall changes are negligible for the non-SO_INCOMING_CPU case,
and the only notable thing is that we have to update sk_incomnig_cpu
under reuseport_lock. Otherwise, the race prevents transitioning to
the O(n) algorithm and results in the wrong socket selection.
cpu1 (setsockopt) cpu2 (listen)
+-----------------+ +-------------+
lock_sock(sk1) lock_sock(sk2)
reuseport_update_incoming_cpu(sk1, val)
.
| /* set CPU as 0 */
|- WRITE_ONCE(sk1->incoming_cpu, val)
|
| spin_lock_bh(&reuseport_lock)
| reuseport_grow(sk2, reuse)
| .
| |- more_socks_size = reuse->max_socks * 2U;
| |- if (more_socks_size > U16_MAX &&
| | reuse->num_closed_socks)
| | .
| | |- RCU_INIT_POINTER(sk1->sk_reuseport_cb, NULL);
| | `- __reuseport_detach_closed_sock(sk1, reuse)
| | .
| | `- reuseport_put_incoming_cpu(sk1, reuse)
| | .
| | | /* Read shutdown()ed sk1's sk_incoming_cpu
| | | * without lock_sock().
| | | */
| | `- if (sk1->sk_incoming_cpu >= 0)
| | .
| | | /* decrement not-yet-incremented
| | | * count, which is never incremented.
| | | */
| | `- __reuseport_put_incoming_cpu(reuse);
| |
| `- spin_lock_bh(&reuseport_lock)
|
|- spin_lock_bh(&reuseport_lock)
|
|- reuse = rcu_dereference_protected(sk1->sk_reuseport_cb, ...)
|- if (!reuse)
| .
| | /* Cannot increment reuse->incoming_cpu. */
| `- goto out;
|
`- spin_unlock_bh(&reuseport_lock)
Fixes: e32ea7e747 ("soreuseport: fast reuseport UDP socket selection")
Fixes: c125e80b88 ("soreuseport: fast reuseport TCP socket selection")
Reported-by: Kazuho Oku <kazuhooku@gmail.com>
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 52d1aa8b82 ]
nf_conn:mark can be read from and written to in parallel. Use
READ_ONCE()/WRITE_ONCE() for reads and writes to prevent unwanted
compiler optimizations.
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 9e4b7a99a0 ]
Since commit 3dcbdb134f ("net: gso: Fix skb_segment splat when
splitting gso_size mangled skb having linear-headed frag_list"), it is
allowed to change gso_size of a GRO packet. However, that commit assumes
that "checking the first list_skb member suffices; i.e if either of the
list_skb members have non head_frag head, then the first one has too".
It turns out this assumption does not hold. We've seen BUG_ON being hit
in skb_segment when skbs on the frag_list had differing head_frag with
the vmxnet3 driver. This happens because __netdev_alloc_skb and
__napi_alloc_skb can return a skb that is page backed or kmalloced
depending on the requested size. As the result, the last small skb in
the GRO packet can be kmalloced.
There are three different locations where this can be fixed:
(1) We could check head_frag in GRO and not allow GROing skbs with
different head_frag. However, that would lead to performance
regression on normal forward paths with unmodified gso_size, where
!head_frag in the last packet is not a problem.
(2) Set a flag in bpf_skb_net_grow and bpf_skb_net_shrink indicating
that NETIF_F_SG is undesirable. That would need to eat a bit in
sk_buff. Furthermore, that flag can be unset when all skbs on the
frag_list are page backed. To retain good performance,
bpf_skb_net_grow/shrink would have to walk the frag_list.
(3) Walk the frag_list in skb_segment when determining whether
NETIF_F_SG should be cleared. This of course slows things down.
This patch implements (3). To limit the performance impact in
skb_segment, the list is walked only for skbs with SKB_GSO_DODGY set
that have gso_size changed. Normal paths thus will not hit it.
We could check only the last skb but since we need to walk the whole
list anyway, let's stay on the safe side.
Fixes: 3dcbdb134f ("net: gso: Fix skb_segment splat when splitting gso_size mangled skb having linear-headed frag_list")
Signed-off-by: Jiri Benc <jbenc@redhat.com>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Link: https://lore.kernel.org/r/e04426a6a91baf4d1081e1b478c82b5de25fdf21.1667407944.git.jbenc@redhat.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8bbabb3fdd ]
Stanislav reported a lockdep warning, which is caused by the
cancel_work_sync() called inside sock_map_close(), as analyzed
below by Jakub:
psock->work.func = sk_psock_backlog()
ACQUIRE psock->work_mutex
sk_psock_handle_skb()
skb_send_sock()
__skb_send_sock()
sendpage_unlocked()
kernel_sendpage()
sock->ops->sendpage = inet_sendpage()
sk->sk_prot->sendpage = tcp_sendpage()
ACQUIRE sk->sk_lock
tcp_sendpage_locked()
RELEASE sk->sk_lock
RELEASE psock->work_mutex
sock_map_close()
ACQUIRE sk->sk_lock
sk_psock_stop()
sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED)
cancel_work_sync()
__cancel_work_timer()
__flush_work()
// wait for psock->work to finish
RELEASE sk->sk_lock
We can move the cancel_work_sync() out of the sock lock protection,
but still before saved_close() was called.
Fixes: 799aa7f98d ("skmsg: Avoid lock_sock() in sk_psock_backlog()")
Reported-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Cong Wang <cong.wang@bytedance.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Jakub Sitnicki <jakub@cloudflare.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Jakub Sitnicki <jakub@cloudflare.com>
Link: https://lore.kernel.org/bpf/20221102043417.279409-1-xiyou.wangcong@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 697fb80a53 ]
syzbot reproduced the bug ...
BUG: sleeping function called from invalid context at kernel/workqueue.c:3010
... with the following stack trace fragment ...
start_flush_work kernel/workqueue.c:3010 [inline]
__flush_work+0x109/0xb10 kernel/workqueue.c:3074
__cancel_work_timer+0x3f9/0x570 kernel/workqueue.c:3162
sk_psock_stop+0x4cb/0x630 net/core/skmsg.c:802
sock_map_destroy+0x333/0x760 net/core/sock_map.c:1581
inet_csk_destroy_sock+0x196/0x440 net/ipv4/inet_connection_sock.c:1130
__tcp_close+0xd5b/0x12b0 net/ipv4/tcp.c:2897
tcp_close+0x29/0xc0 net/ipv4/tcp.c:2909
... introduced by d8616ee2af. Do a quick trace of the code path and the
bug is obvious:
inet_csk_destroy_sock(sk)
sk_prot->destroy(sk); <--- sock_map_destroy
sk_psock_stop(, true); <--- true so cancel workqueue
cancel_work_sync() <--- splat, because *_bh_disable()
We can not call cancel_work_sync() from inside destroy path. So mark
the sk_psock_stop call to skip this cancel_work_sync(). This will avoid
the BUG, but means we may run sk_psock_backlog after or during the
destroy op. We zapped the ingress_skb queue in sk_psock_stop (safe to
do with local_bh_disable) so its empty and the sk_psock_backlog work
item will not find any pkts to process here. However, because we are
not going to wait for it or clear its ->state its possible it kicks off
or is already running. This should be 'safe' up until psock drops its
refcnt to psock->sk. The sock_put() that drops this reference is only
done at psock destroy time from sk_psock_destroy(). This is done through
workqueue when sk_psock_drop() is called on psock refnt reaches 0.
And importantly sk_psock_destroy() does a cancel_work_sync(). So trivial
fix works.
I've had hit or miss luck reproducing this caught it once or twice with
the provided reproducer when running with many runners. However, syzkaller
is very good at reproducing so relying on syzkaller to verify fix.
Fixes: d8616ee2af ("bpf, sockmap: Fix sk->sk_forward_alloc warn_on in sk_stream_kill_queues")
Reported-by: syzbot+140186ceba0c496183bc@syzkaller.appspotmail.com
Suggested-by: Hillf Danton <hdanton@sina.com>
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Wang Yufen <wangyufen@huawei.com>
Link: https://lore.kernel.org/bpf/20220628035803.317876-1-john.fastabend@gmail.com
Stable-dep-of: 8bbabb3fdd ("bpf, sock_map: Move cancel_work_sync() out of sock lock")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d8616ee2af ]
During TCP sockmap redirect pressure test, the following warning is triggered:
WARNING: CPU: 3 PID: 2145 at net/core/stream.c:205 sk_stream_kill_queues+0xbc/0xd0
CPU: 3 PID: 2145 Comm: iperf Kdump: loaded Tainted: G W 5.10.0+ #9
Call Trace:
inet_csk_destroy_sock+0x55/0x110
inet_csk_listen_stop+0xbb/0x380
tcp_close+0x41b/0x480
inet_release+0x42/0x80
__sock_release+0x3d/0xa0
sock_close+0x11/0x20
__fput+0x9d/0x240
task_work_run+0x62/0x90
exit_to_user_mode_prepare+0x110/0x120
syscall_exit_to_user_mode+0x27/0x190
entry_SYSCALL_64_after_hwframe+0x44/0xa9
The reason we observed is that:
When the listener is closing, a connection may have completed the three-way
handshake but not accepted, and the client has sent some packets. The child
sks in accept queue release by inet_child_forget()->inet_csk_destroy_sock(),
but psocks of child sks have not released.
To fix, add sock_map_destroy to release psocks.
Signed-off-by: Wang Yufen <wangyufen@huawei.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Jakub Sitnicki <jakub@cloudflare.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20220524075311.649153-1-wangyufen@huawei.com
Stable-dep-of: 8bbabb3fdd ("bpf, sock_map: Move cancel_work_sync() out of sock lock")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f8017317cb ]
When IPv6 module gets initialized but hits an error in the middle,
kenel panic with:
KASAN: null-ptr-deref in range [0x0000000000000598-0x000000000000059f]
CPU: 1 PID: 361 Comm: insmod
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
RIP: 0010:__neigh_ifdown.isra.0+0x24b/0x370
RSP: 0018:ffff888012677908 EFLAGS: 00000202
...
Call Trace:
<TASK>
neigh_table_clear+0x94/0x2d0
ndisc_cleanup+0x27/0x40 [ipv6]
inet6_init+0x21c/0x2cb [ipv6]
do_one_initcall+0xd3/0x4d0
do_init_module+0x1ae/0x670
...
Kernel panic - not syncing: Fatal exception
When ipv6 initialization fails, it will try to cleanup and calls:
neigh_table_clear()
neigh_ifdown(tbl, NULL)
pneigh_queue_purge(&tbl->proxy_queue, dev_net(dev == NULL))
# dev_net(NULL) triggers null-ptr-deref.
Fix it by passing NULL to pneigh_queue_purge() in neigh_ifdown() if dev
is NULL, to make kernel not panic immediately.
Fixes: 66ba215cb5 ("neigh: fix possible DoS due to net iface start/stop loop")
Signed-off-by: Chen Zhongjin <chenzhongjin@huawei.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Denis V. Lunev <den@openvz.org>
Link: https://lore.kernel.org/r/20221101121552.21890-1-chenzhongjin@huawei.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d266935ac4 ]
When the ops_init() interface is invoked to initialize the net, but
ops->init() fails, data is released. However, the ptr pointer in
net->gen is invalid. In this case, when nfqnl_nf_hook_drop() is invoked
to release the net, invalid address access occurs.
The process is as follows:
setup_net()
ops_init()
data = kzalloc(...) ---> alloc "data"
net_assign_generic() ---> assign "date" to ptr in net->gen
...
ops->init() ---> failed
...
kfree(data); ---> ptr in net->gen is invalid
...
ops_exit_list()
...
nfqnl_nf_hook_drop()
*q = nfnl_queue_pernet(net) ---> q is invalid
The following is the Call Trace information:
BUG: KASAN: use-after-free in nfqnl_nf_hook_drop+0x264/0x280
Read of size 8 at addr ffff88810396b240 by task ip/15855
Call Trace:
<TASK>
dump_stack_lvl+0x8e/0xd1
print_report+0x155/0x454
kasan_report+0xba/0x1f0
nfqnl_nf_hook_drop+0x264/0x280
nf_queue_nf_hook_drop+0x8b/0x1b0
__nf_unregister_net_hook+0x1ae/0x5a0
nf_unregister_net_hooks+0xde/0x130
ops_exit_list+0xb0/0x170
setup_net+0x7ac/0xbd0
copy_net_ns+0x2e6/0x6b0
create_new_namespaces+0x382/0xa50
unshare_nsproxy_namespaces+0xa6/0x1c0
ksys_unshare+0x3a4/0x7e0
__x64_sys_unshare+0x2d/0x40
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
</TASK>
Allocated by task 15855:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
__kasan_kmalloc+0xa1/0xb0
__kmalloc+0x49/0xb0
ops_init+0xe7/0x410
setup_net+0x5aa/0xbd0
copy_net_ns+0x2e6/0x6b0
create_new_namespaces+0x382/0xa50
unshare_nsproxy_namespaces+0xa6/0x1c0
ksys_unshare+0x3a4/0x7e0
__x64_sys_unshare+0x2d/0x40
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
Freed by task 15855:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
kasan_save_free_info+0x2a/0x40
____kasan_slab_free+0x155/0x1b0
slab_free_freelist_hook+0x11b/0x220
__kmem_cache_free+0xa4/0x360
ops_init+0xb9/0x410
setup_net+0x5aa/0xbd0
copy_net_ns+0x2e6/0x6b0
create_new_namespaces+0x382/0xa50
unshare_nsproxy_namespaces+0xa6/0x1c0
ksys_unshare+0x3a4/0x7e0
__x64_sys_unshare+0x2d/0x40
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
Fixes: f875bae065 ("net: Automatically allocate per namespace data.")
Signed-off-by: Zhengchao Shao <shaozhengchao@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 69421bf984 ]
When we call connect() for a UDP socket in a reuseport group, we have
to update sk->sk_reuseport_cb->has_conns to 1. Otherwise, the kernel
could select a unconnected socket wrongly for packets sent to the
connected socket.
However, the current way to set has_conns is illegal and possible to
trigger that problem. reuseport_has_conns() changes has_conns under
rcu_read_lock(), which upgrades the RCU reader to the updater. Then,
it must do the update under the updater's lock, reuseport_lock, but
it doesn't for now.
For this reason, there is a race below where we fail to set has_conns
resulting in the wrong socket selection. To avoid the race, let's split
the reader and updater with proper locking.
cpu1 cpu2
+----+ +----+
__ip[46]_datagram_connect() reuseport_grow()
. .
|- reuseport_has_conns(sk, true) |- more_reuse = __reuseport_alloc(more_socks_size)
| . |
| |- rcu_read_lock()
| |- reuse = rcu_dereference(sk->sk_reuseport_cb)
| |
| | | /* reuse->has_conns == 0 here */
| | |- more_reuse->has_conns = reuse->has_conns
| |- reuse->has_conns = 1 | /* more_reuse->has_conns SHOULD BE 1 HERE */
| | |
| | |- rcu_assign_pointer(reuse->socks[i]->sk_reuseport_cb,
| | | more_reuse)
| `- rcu_read_unlock() `- kfree_rcu(reuse, rcu)
|
|- sk->sk_state = TCP_ESTABLISHED
Note the likely(reuse) in reuseport_has_conns_set() is always true,
but we put the test there for ease of review. [0]
For the record, usually, sk_reuseport_cb is changed under lock_sock().
The only exception is reuseport_grow() & TCP reqsk migration case.
1) shutdown() TCP listener, which is moved into the latter part of
reuse->socks[] to migrate reqsk.
2) New listen() overflows reuse->socks[] and call reuseport_grow().
3) reuse->max_socks overflows u16 with the new listener.
4) reuseport_grow() pops the old shutdown()ed listener from the array
and update its sk->sk_reuseport_cb as NULL without lock_sock().
shutdown()ed TCP sk->sk_reuseport_cb can be changed without lock_sock(),
but, reuseport_has_conns_set() is called only for UDP under lock_sock(),
so likely(reuse) never be false in reuseport_has_conns_set().
[0]: https://lore.kernel.org/netdev/CANn89iLja=eQHbsM_Ta2sQF0tOGU8vAGrh_izRuuHjuO1ouUag@mail.gmail.com/
Fixes: acdcecc612 ("udp: correct reuseport selection with connected sockets")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Link: https://lore.kernel.org/r/20221014182625.89913-1-kuniyu@amazon.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit bec217197b ]
In sk_psock_backlog function, for ingress direction skb, if no new data
packet arrives after the skb is cached, the cached skb does not have a
chance to be added to the receive queue of psock. As a result, the cached
skb cannot be received by the upper-layer application. Fix this by reschedule
the psock work to dispose the cached skb in sk_msg_recvmsg function.
Fixes: 604326b41a ("bpf, sockmap: convert to generic sk_msg interface")
Signed-off-by: Liu Jian <liujian56@huawei.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20220907071311.60534-1-liujian56@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 64ae13ed47 ]
__flow_hash_consistentify() wrongly swaps ipv4 addresses in few cases.
This function is indirectly used by __skb_get_hash_symmetric(), which is
used to fanout packets in AF_PACKET.
Intrusion detection systems may be impacted by this issue.
__flow_hash_consistentify() computes the addresses difference then swaps
them if the difference is negative. In few cases src - dst and dst - src
are both negative.
The following snippet mimics __flow_hash_consistentify():
```
#include <stdio.h>
#include <stdint.h>
int main(int argc, char** argv) {
int diffs_d, diffd_s;
uint32_t dst = 0xb225a8c0; /* 178.37.168.192 --> 192.168.37.178 */
uint32_t src = 0x3225a8c0; /* 50.37.168.192 --> 192.168.37.50 */
uint32_t dst2 = 0x3325a8c0; /* 51.37.168.192 --> 192.168.37.51 */
diffs_d = src - dst;
diffd_s = dst - src;
printf("src:%08x dst:%08x, diff(s-d)=%d(0x%x) diff(d-s)=%d(0x%x)\n",
src, dst, diffs_d, diffs_d, diffd_s, diffd_s);
diffs_d = src - dst2;
diffd_s = dst2 - src;
printf("src:%08x dst:%08x, diff(s-d)=%d(0x%x) diff(d-s)=%d(0x%x)\n",
src, dst2, diffs_d, diffs_d, diffd_s, diffd_s);
return 0;
}
```
Results:
src:3225a8c0 dst:b225a8c0, \
diff(s-d)=-2147483648(0x80000000) \
diff(d-s)=-2147483648(0x80000000)
src:3225a8c0 dst:3325a8c0, \
diff(s-d)=-16777216(0xff000000) \
diff(d-s)=16777216(0x1000000)
In the first case the addresses differences are always < 0, therefore
__flow_hash_consistentify() always swaps, thus dst->src and src->dst
packets have differents hashes.
Fixes: c3f8324188 ("net: Add full IPv6 addresses to flow_keys")
Signed-off-by: Ludovic Cintrat <ludovic.cintrat@gatewatcher.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 3261400639 ]
We got a recent syzbot report [1] showing a possible misuse
of pfmemalloc page status in TCP zerocopy paths.
Indeed, for pages coming from user space or other layers,
using page_is_pfmemalloc() is moot, and possibly could give
false positives.
There has been attempts to make page_is_pfmemalloc() more robust,
but not using it in the first place in this context is probably better,
removing cpu cycles.
Note to stable teams :
You need to backport 84ce071e38 ("net: introduce
__skb_fill_page_desc_noacc") as a prereq.
Race is more probable after commit c07aea3ef4
("mm: add a signature in struct page") because page_is_pfmemalloc()
is now using low order bit from page->lru.next, which can change
more often than page->index.
Low order bit should never be set for lru.next (when used as an anchor
in LRU list), so KCSAN report is mostly a false positive.
Backporting to older kernel versions seems not necessary.
[1]
BUG: KCSAN: data-race in lru_add_fn / tcp_build_frag
write to 0xffffea0004a1d2c8 of 8 bytes by task 18600 on cpu 0:
__list_add include/linux/list.h:73 [inline]
list_add include/linux/list.h:88 [inline]
lruvec_add_folio include/linux/mm_inline.h:105 [inline]
lru_add_fn+0x440/0x520 mm/swap.c:228
folio_batch_move_lru+0x1e1/0x2a0 mm/swap.c:246
folio_batch_add_and_move mm/swap.c:263 [inline]
folio_add_lru+0xf1/0x140 mm/swap.c:490
filemap_add_folio+0xf8/0x150 mm/filemap.c:948
__filemap_get_folio+0x510/0x6d0 mm/filemap.c:1981
pagecache_get_page+0x26/0x190 mm/folio-compat.c:104
grab_cache_page_write_begin+0x2a/0x30 mm/folio-compat.c:116
ext4_da_write_begin+0x2dd/0x5f0 fs/ext4/inode.c:2988
generic_perform_write+0x1d4/0x3f0 mm/filemap.c:3738
ext4_buffered_write_iter+0x235/0x3e0 fs/ext4/file.c:270
ext4_file_write_iter+0x2e3/0x1210
call_write_iter include/linux/fs.h:2187 [inline]
new_sync_write fs/read_write.c:491 [inline]
vfs_write+0x468/0x760 fs/read_write.c:578
ksys_write+0xe8/0x1a0 fs/read_write.c:631
__do_sys_write fs/read_write.c:643 [inline]
__se_sys_write fs/read_write.c:640 [inline]
__x64_sys_write+0x3e/0x50 fs/read_write.c:640
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x2b/0x70 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
read to 0xffffea0004a1d2c8 of 8 bytes by task 18611 on cpu 1:
page_is_pfmemalloc include/linux/mm.h:1740 [inline]
__skb_fill_page_desc include/linux/skbuff.h:2422 [inline]
skb_fill_page_desc include/linux/skbuff.h:2443 [inline]
tcp_build_frag+0x613/0xb20 net/ipv4/tcp.c:1018
do_tcp_sendpages+0x3e8/0xaf0 net/ipv4/tcp.c:1075
tcp_sendpage_locked net/ipv4/tcp.c:1140 [inline]
tcp_sendpage+0x89/0xb0 net/ipv4/tcp.c:1150
inet_sendpage+0x7f/0xc0 net/ipv4/af_inet.c:833
kernel_sendpage+0x184/0x300 net/socket.c:3561
sock_sendpage+0x5a/0x70 net/socket.c:1054
pipe_to_sendpage+0x128/0x160 fs/splice.c:361
splice_from_pipe_feed fs/splice.c:415 [inline]
__splice_from_pipe+0x222/0x4d0 fs/splice.c:559
splice_from_pipe fs/splice.c:594 [inline]
generic_splice_sendpage+0x89/0xc0 fs/splice.c:743
do_splice_from fs/splice.c:764 [inline]
direct_splice_actor+0x80/0xa0 fs/splice.c:931
splice_direct_to_actor+0x305/0x620 fs/splice.c:886
do_splice_direct+0xfb/0x180 fs/splice.c:974
do_sendfile+0x3bf/0x910 fs/read_write.c:1249
__do_sys_sendfile64 fs/read_write.c:1317 [inline]
__se_sys_sendfile64 fs/read_write.c:1303 [inline]
__x64_sys_sendfile64+0x10c/0x150 fs/read_write.c:1303
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x2b/0x70 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
value changed: 0x0000000000000000 -> 0xffffea0004a1d288
Reported by Kernel Concurrency Sanitizer on:
CPU: 1 PID: 18611 Comm: syz-executor.4 Not tainted 6.0.0-rc2-syzkaller-00248-ge022620b5d05-dirty #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/22/2022
Fixes: c07aea3ef4 ("mm: add a signature in struct page")
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit c624c58e08 ]
skb_copy_bits() could fail, which requires a check on the return
value.
Signed-off-by: Li Zhong <floridsleeves@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 583585e48d ]
Fix one kernel NULL pointer dereference as below:
[ 224.462334] Call Trace:
[ 224.462394] __tcp_bpf_recvmsg+0xd3/0x380
[ 224.462441] ? sock_has_perm+0x78/0xa0
[ 224.462463] tcp_bpf_recvmsg+0x12e/0x220
[ 224.462494] inet_recvmsg+0x5b/0xd0
[ 224.462534] __sys_recvfrom+0xc8/0x130
[ 224.462574] ? syscall_trace_enter+0x1df/0x2e0
[ 224.462606] ? __do_page_fault+0x2de/0x500
[ 224.462635] __x64_sys_recvfrom+0x24/0x30
[ 224.462660] do_syscall_64+0x5d/0x1d0
[ 224.462709] entry_SYSCALL_64_after_hwframe+0x65/0xca
In commit 9974d37ea7 ("skmsg: Fix invalid last sg check in
sk_msg_recvmsg()"), we change last sg check to sg_is_last(),
but in sockmap redirection case (without stream_parser/stream_verdict/
skb_verdict), we did not mark the end of the scatterlist. Check the
sk_msg_alloc, sk_msg_page_add, and bpf_msg_push_data functions, they all
do not mark the end of sg. They are expected to use sg.end for end
judgment. So the judgment of '(i != msg_rx->sg.end)' is added back here.
Fixes: 9974d37ea7 ("skmsg: Fix invalid last sg check in sk_msg_recvmsg()")
Signed-off-by: Liu Jian <liujian56@huawei.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Jakub Sitnicki <jakub@cloudflare.com>
Link: https://lore.kernel.org/bpf/20220809094915.150391-1-liujian56@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit d5485d9dd2 upstream.
It is not allowed to call kfree_skb() from hardware interrupt
context or with interrupts being disabled. So add all skb to
a tmp list, then free them after spin_unlock_irqrestore() at
once.
Fixes: 66ba215cb5 ("neigh: fix possible DoS due to net iface start/stop loop")
Suggested-by: Denis V. Lunev <den@openvz.org>
Signed-off-by: Yang Yingliang <yangyingliang@huawei.com>
Reviewed-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 66ba215cb5 ]
Normal processing of ARP request (usually this is Ethernet broadcast
packet) coming to the host is looking like the following:
* the packet comes to arp_process() call and is passed through routing
procedure
* the request is put into the queue using pneigh_enqueue() if
corresponding ARP record is not local (common case for container
records on the host)
* the request is processed by timer (within 80 jiffies by default) and
ARP reply is sent from the same arp_process() using
NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED condition (flag is set inside
pneigh_enqueue())
And here the problem comes. Linux kernel calls pneigh_queue_purge()
which destroys the whole queue of ARP requests on ANY network interface
start/stop event through __neigh_ifdown().
This is actually not a problem within the original world as network
interface start/stop was accessible to the host 'root' only, which
could do more destructive things. But the world is changed and there
are Linux containers available. Here container 'root' has an access
to this API and could be considered as untrusted user in the hosting
(container's) world.
Thus there is an attack vector to other containers on node when
container's root will endlessly start/stop interfaces. We have observed
similar situation on a real production node when docker container was
doing such activity and thus other containers on the node become not
accessible.
The patch proposed doing very simple thing. It drops only packets from
the same namespace in the pneigh_queue_purge() where network interface
state change is detected. This is enough to prevent the problem for the
whole node preserving original semantics of the code.
v2:
- do del_timer_sync() if queue is empty after pneigh_queue_purge()
v3:
- rebase to net tree
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Jakub Kicinski <kuba@kernel.org>
Cc: Paolo Abeni <pabeni@redhat.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: David Ahern <dsahern@kernel.org>
Cc: Yajun Deng <yajun.deng@linux.dev>
Cc: Roopa Prabhu <roopa@nvidia.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: netdev@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
Cc: Alexander Mikhalitsyn <alexander.mikhalitsyn@virtuozzo.com>
Cc: Konstantin Khorenko <khorenko@virtuozzo.com>
Cc: kernel@openvz.org
Cc: devel@openvz.org
Investigated-by: Alexander Mikhalitsyn <alexander.mikhalitsyn@virtuozzo.com>
Signed-off-by: Denis V. Lunev <den@openvz.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 2a0133723f upstream.
Syzkaller reports refcount bug as follows:
------------[ cut here ]------------
refcount_t: saturated; leaking memory.
WARNING: CPU: 1 PID: 3605 at lib/refcount.c:19 refcount_warn_saturate+0xf4/0x1e0 lib/refcount.c:19
Modules linked in:
CPU: 1 PID: 3605 Comm: syz-executor208 Not tainted 5.18.0-syzkaller-03023-g7e062cda7d90 #0
<TASK>
__refcount_add_not_zero include/linux/refcount.h:163 [inline]
__refcount_inc_not_zero include/linux/refcount.h:227 [inline]
refcount_inc_not_zero include/linux/refcount.h:245 [inline]
sk_psock_get+0x3bc/0x410 include/linux/skmsg.h:439
tls_data_ready+0x6d/0x1b0 net/tls/tls_sw.c:2091
tcp_data_ready+0x106/0x520 net/ipv4/tcp_input.c:4983
tcp_data_queue+0x25f2/0x4c90 net/ipv4/tcp_input.c:5057
tcp_rcv_state_process+0x1774/0x4e80 net/ipv4/tcp_input.c:6659
tcp_v4_do_rcv+0x339/0x980 net/ipv4/tcp_ipv4.c:1682
sk_backlog_rcv include/net/sock.h:1061 [inline]
__release_sock+0x134/0x3b0 net/core/sock.c:2849
release_sock+0x54/0x1b0 net/core/sock.c:3404
inet_shutdown+0x1e0/0x430 net/ipv4/af_inet.c:909
__sys_shutdown_sock net/socket.c:2331 [inline]
__sys_shutdown_sock net/socket.c:2325 [inline]
__sys_shutdown+0xf1/0x1b0 net/socket.c:2343
__do_sys_shutdown net/socket.c:2351 [inline]
__se_sys_shutdown net/socket.c:2349 [inline]
__x64_sys_shutdown+0x50/0x70 net/socket.c:2349
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
</TASK>
During SMC fallback process in connect syscall, kernel will
replaces TCP with SMC. In order to forward wakeup
smc socket waitqueue after fallback, kernel will sets
clcsk->sk_user_data to origin smc socket in
smc_fback_replace_callbacks().
Later, in shutdown syscall, kernel will calls
sk_psock_get(), which treats the clcsk->sk_user_data
as psock type, triggering the refcnt warning.
So, the root cause is that smc and psock, both will use
sk_user_data field. So they will mismatch this field
easily.
This patch solves it by using another bit(defined as
SK_USER_DATA_PSOCK) in PTRMASK, to mark whether
sk_user_data points to a psock object or not.
This patch depends on a PTRMASK introduced in commit f1ff5ce2cd
("net, sk_msg: Clear sk_user_data pointer on clone if tagged").
For there will possibly be more flags in the sk_user_data field,
this patch also refactor sk_user_data flags code to be more generic
to improve its maintainability.
Reported-and-tested-by: syzbot+5f26f85569bd179c18ce@syzkaller.appspotmail.com
Suggested-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Wen Gu <guwen@linux.alibaba.com>
Signed-off-by: Hawkins Jiawei <yin31149@gmail.com>
Reviewed-by: Jakub Sitnicki <jakub@cloudflare.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit fa45d484c5 ]
While reading netdev_budget_usecs, it can be changed concurrently.
Thus, we need to add READ_ONCE() to its reader.
Fixes: 7acf8a1e8a ("Replace 2 jiffies with sysctl netdev_budget_usecs to enable softirq tuning")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2e0c42374e ]
While reading netdev_budget, it can be changed concurrently.
Thus, we need to add READ_ONCE() to its reader.
Fixes: 51b0bdedb8 ("[NET]: Separate two usages of netdev_max_backlog.")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit e59ef36f07 ]
While reading sysctl_net_busy_read, it can be changed concurrently.
Thus, we need to add READ_ONCE() to its reader.
Fixes: 2d48d67fa8 ("net: poll/select low latency socket support")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d2154b0afa ]
While reading sysctl_tstamp_allow_data, it can be changed
concurrently. Thus, we need to add READ_ONCE() to its reader.
Fixes: b245be1f4d ("net-timestamp: no-payload only sysctl")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7de6d09f51 ]
While reading sysctl_optmem_max, it can be changed concurrently.
Thus, we need to add READ_ONCE() to its readers.
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 61adf447e3 ]
While reading netdev_tstamp_prequeue, it can be changed concurrently.
Thus, we need to add READ_ONCE() to its readers.
Fixes: 3b098e2d7c ("net: Consistent skb timestamping")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 5dcd08cd19 ]
While reading netdev_max_backlog, it can be changed concurrently.
Thus, we need to add READ_ONCE() to its readers.
While at it, we remove the unnecessary spaces in the doc.
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit bf955b5ab8 ]
While reading weight_p, it can be changed concurrently. Thus, we need
to add READ_ONCE() to its reader.
Also, dev_[rt]x_weight can be read/written at the same time. So, we
need to use READ_ONCE() and WRITE_ONCE() for its access. Moreover, to
use the same weight_p while changing dev_[rt]x_weight, we add a mutex
in proc_do_dev_weight().
Fixes: 3d48b53fb2 ("net: dev_weight: TX/RX orthogonality")
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1227c1771d ]
While reading sysctl_[rw]mem_(max|default), they can be changed
concurrently. Thus, we need to add READ_ONCE() to its readers.
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 6b4db2e528 upstream.
After a failed devlink reload, devlink parameters are still registered,
which means user space can set and get their values. In the case of the
mlxsw "acl_region_rehash_interval" parameter, these operations will
trigger a use-after-free [1].
Fix this by rejecting set and get operations while in the failed state.
Return the "-EOPNOTSUPP" error code which does not abort the parameters
dump, but instead causes it to skip over the problematic parameter.
Another possible fix is to perform these checks in the mlxsw parameter
callbacks, but other drivers might be affected by the same problem and I
am not aware of scenarios where these stricter checks will cause a
regression.
[1]
mlxsw_spectrum3 0000:00:10.0: Port 125: Failed to register netdev
mlxsw_spectrum3 0000:00:10.0: Failed to create ports
==================================================================
BUG: KASAN: use-after-free in mlxsw_sp_acl_tcam_vregion_rehash_intrvl_get+0xbd/0xd0 drivers/net/ethernet/mellanox/mlxsw/spectrum_acl_tcam.c:904
Read of size 4 at addr ffff8880099dcfd8 by task kworker/u4:4/777
CPU: 1 PID: 777 Comm: kworker/u4:4 Not tainted 5.19.0-rc7-custom-126601-gfe26f28c586d #1
Hardware name: QEMU MSN4700, BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
Workqueue: netns cleanup_net
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x92/0xbd lib/dump_stack.c:106
print_address_description mm/kasan/report.c:313 [inline]
print_report.cold+0x5e/0x5cf mm/kasan/report.c:429
kasan_report+0xb9/0xf0 mm/kasan/report.c:491
__asan_report_load4_noabort+0x14/0x20 mm/kasan/report_generic.c:306
mlxsw_sp_acl_tcam_vregion_rehash_intrvl_get+0xbd/0xd0 drivers/net/ethernet/mellanox/mlxsw/spectrum_acl_tcam.c:904
mlxsw_sp_acl_region_rehash_intrvl_get+0x49/0x60 drivers/net/ethernet/mellanox/mlxsw/spectrum_acl.c:1106
mlxsw_sp_params_acl_region_rehash_intrvl_get+0x33/0x80 drivers/net/ethernet/mellanox/mlxsw/spectrum.c:3854
devlink_param_get net/core/devlink.c:4981 [inline]
devlink_nl_param_fill+0x238/0x12d0 net/core/devlink.c:5089
devlink_param_notify+0xe5/0x230 net/core/devlink.c:5168
devlink_ns_change_notify net/core/devlink.c:4417 [inline]
devlink_ns_change_notify net/core/devlink.c:4396 [inline]
devlink_reload+0x15f/0x700 net/core/devlink.c:4507
devlink_pernet_pre_exit+0x112/0x1d0 net/core/devlink.c:12272
ops_pre_exit_list net/core/net_namespace.c:152 [inline]
cleanup_net+0x494/0xc00 net/core/net_namespace.c:582
process_one_work+0x9fc/0x1710 kernel/workqueue.c:2289
worker_thread+0x675/0x10b0 kernel/workqueue.c:2436
kthread+0x30c/0x3d0 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306
</TASK>
The buggy address belongs to the physical page:
page:ffffea0000267700 refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x99dc
flags: 0x100000000000000(node=0|zone=1)
raw: 0100000000000000 0000000000000000 dead000000000122 0000000000000000
raw: 0000000000000000 0000000000000000 00000000ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff8880099dce80: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ffff8880099dcf00: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
>ffff8880099dcf80: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
^
ffff8880099dd000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ffff8880099dd080: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
==================================================================
Fixes: 98bbf70c1c ("mlxsw: spectrum: add "acl_region_rehash_interval" devlink param")
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Reviewed-by: Jiri Pirko <jiri@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 52bd05eb7c upstream.
The value of sock local storage map is writable in map iterator, so check
max_rdwr_access instead of max_rdonly_access.
Fixes: 5ce6e77c7e ("bpf: Implement bpf iterator for sock local storage map")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/r/20220810080538.1845898-6-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f0d2b2716d upstream.
sock_map_iter_attach_target() acquires a map uref, and the uref may be
released before or in the middle of iterating map elements. For example,
the uref could be released in sock_map_iter_detach_target() as part of
bpf_link_release(), or could be released in bpf_map_put_with_uref() as
part of bpf_map_release().
Fixing it by acquiring an extra map uref in .init_seq_private and
releasing it in .fini_seq_private.
Fixes: 0365351524 ("net: Allow iterating sockmap and sockhash")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20220810080538.1845898-5-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>