mremap will attempt to create a 'duplicate' mapping if old_size == 0 is
specified. In the case of private mappings, mremap will actually create
a fresh separate private mapping unrelated to the original. This does
not fit with the design semantics of mremap as the intention is to
create a new mapping based on the original.
Therefore, return EINVAL in the case where an attempt is made to
duplicate a private mapping. Also, print a warning message (once) if
such an attempt is made.
Link: http://lkml.kernel.org/r/cb9d9f6a-7095-582f-15a5-62643d65c736@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When mremap is called with MREMAP_FIXED it unmaps memory at the
destination address without notifying userfaultfd monitor.
If the destination were registered with userfaultfd, the monitor has no
way to distinguish between the old and new ranges and to properly relate
the page faults that would occur in the destination region.
Fixes: 897ab3e0c4 ("userfaultfd: non-cooperative: add event for memory unmaps")
Link: http://lkml.kernel.org/r/1500276876-3350-1-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Acked-by: Pavel Emelyanov <xemul@virtuozzo.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Nadav Amit identified a theoritical race between page reclaim and
mprotect due to TLB flushes being batched outside of the PTL being held.
He described the race as follows:
CPU0 CPU1
---- ----
user accesses memory using RW PTE
[PTE now cached in TLB]
try_to_unmap_one()
==> ptep_get_and_clear()
==> set_tlb_ubc_flush_pending()
mprotect(addr, PROT_READ)
==> change_pte_range()
==> [ PTE non-present - no flush ]
user writes using cached RW PTE
...
try_to_unmap_flush()
The same type of race exists for reads when protecting for PROT_NONE and
also exists for operations that can leave an old TLB entry behind such
as munmap, mremap and madvise.
For some operations like mprotect, it's not necessarily a data integrity
issue but it is a correctness issue as there is a window where an
mprotect that limits access still allows access. For munmap, it's
potentially a data integrity issue although the race is massive as an
munmap, mmap and return to userspace must all complete between the
window when reclaim drops the PTL and flushes the TLB. However, it's
theoritically possible so handle this issue by flushing the mm if
reclaim is potentially currently batching TLB flushes.
Other instances where a flush is required for a present pte should be ok
as either the page lock is held preventing parallel reclaim or a page
reference count is elevated preventing a parallel free leading to
corruption. In the case of page_mkclean there isn't an obvious path
that userspace could take advantage of without using the operations that
are guarded by this patch. Other users such as gup as a race with
reclaim looks just at PTEs. huge page variants should be ok as they
don't race with reclaim. mincore only looks at PTEs. userfault also
should be ok as if a parallel reclaim takes place, it will either fault
the page back in or read some of the data before the flush occurs
triggering a fault.
Note that a variant of this patch was acked by Andy Lutomirski but this
was for the x86 parts on top of his PCID work which didn't make the 4.13
merge window as expected. His ack is dropped from this version and
there will be a follow-on patch on top of PCID that will include his
ack.
[akpm@linux-foundation.org: tweak comments]
[akpm@linux-foundation.org: fix spello]
Link: http://lkml.kernel.org/r/20170717155523.emckq2esjro6hf3z@suse.de
Reported-by: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: <stable@vger.kernel.org> [v4.4+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Convert all non-architecture-specific code to 5-level paging.
It's mostly mechanical adding handling one more page table level in
places where we deal with pud_t.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a non-cooperative userfaultfd monitor copies pages in the
background, it may encounter regions that were already unmapped.
Addition of UFFD_EVENT_UNMAP allows the uffd monitor to track precisely
changes in the virtual memory layout.
Since there might be different uffd contexts for the affected VMAs, we
first should create a temporary representation for the unmap event for
each uffd context and then notify them one by one to the appropriate
userfault file descriptors.
The event notification occurs after the mmap_sem has been released.
[arnd@arndb.de: fix nommu build]
Link: http://lkml.kernel.org/r/20170203165141.3665284-1-arnd@arndb.de
[mhocko@suse.com: fix nommu build]
Link: http://lkml.kernel.org/r/20170202091503.GA22823@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/1485542673-24387-3-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Optimize the mremap_userfaultfd_complete() interface to pass only the
vm_userfaultfd_ctx pointer through the stack as a microoptimization.
Link: http://lkml.kernel.org/r/20161216144821.5183-13-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Michael Rapoport <RAPOPORT@il.ibm.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The event denotes that an area [start:end] moves to different location.
Length change isn't reported as "new" addresses, if they appear on the
uffd reader side they will not contain any data and the latter can just
zeromap them.
Waiting for the event ACK is also done outside of mmap sem, as for fork
event.
Link: http://lkml.kernel.org/r/20161216144821.5183-12-aarcange@redhat.com
Signed-off-by: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michael Rapoport <RAPOPORT@il.ibm.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Linus found there still is a race in mremap after commit 5d1904204c
("mremap: fix race between mremap() and page cleanning").
As described by Linus:
"the issue is that another thread might make the pte be dirty (in the
hardware walker, so no locking of ours will make any difference)
*after* we checked whether it was dirty, but *before* we removed it
from the page tables"
Fix it by moving the check after we removed it from the page table.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Prior to 3.15, there was a race between zap_pte_range() and
page_mkclean() where writes to a page could be lost. Dave Hansen
discovered by inspection that there is a similar race between
move_ptes() and page_mkclean().
We've been able to reproduce the issue by enlarging the race window with
a msleep(), but have not been able to hit it without modifying the code.
So, we think it's a real issue, but is difficult or impossible to hit in
practice.
The zap_pte_range() issue is fixed by commit 1cf35d47712d("mm: split
'tlb_flush_mmu()' into tlb flushing and memory freeing parts"). And
this patch is to fix the race between page_mkclean() and mremap().
Here is one possible way to hit the race: suppose a process mmapped a
file with READ | WRITE and SHARED, it has two threads and they are bound
to 2 different CPUs, e.g. CPU1 and CPU2. mmap returned X, then thread
1 did a write to addr X so that CPU1 now has a writable TLB for addr X
on it. Thread 2 starts mremaping from addr X to Y while thread 1
cleaned the page and then did another write to the old addr X again.
The 2nd write from thread 1 could succeed but the value will get lost.
thread 1 thread 2
(bound to CPU1) (bound to CPU2)
1: write 1 to addr X to get a
writeable TLB on this CPU
2: mremap starts
3: move_ptes emptied PTE for addr X
and setup new PTE for addr Y and
then dropped PTL for X and Y
4: page laundering for N by doing
fadvise FADV_DONTNEED. When done,
pageframe N is deemed clean.
5: *write 2 to addr X
6: tlb flush for addr X
7: munmap (Y, pagesize) to make the
page unmapped
8: fadvise with FADV_DONTNEED again
to kick the page off the pagecache
9: pread the page from file to verify
the value. If 1 is there, it means
we have lost the written 2.
*the write may or may not cause segmentation fault, it depends on
if the TLB is still on the CPU.
Please note that this is only one specific way of how the race could
occur, it didn't mean that the race could only occur in exact the above
config, e.g. more than 2 threads could be involved and fadvise() could
be done in another thread, etc.
For anonymous pages, they could race between mremap() and page reclaim:
THP: a huge PMD is moved by mremap to a new huge PMD, then the new huge
PMD gets unmapped/splitted/pagedout before the flush tlb happened for
the old huge PMD in move_page_tables() and we could still write data to
it. The normal anonymous page has similar situation.
To fix this, check for any dirty PTE in move_ptes()/move_huge_pmd() and
if any, did the flush before dropping the PTL. If we did the flush for
every move_ptes()/move_huge_pmd() call then we do not need to do the
flush in move_pages_tables() for the whole range. But if we didn't, we
still need to do the whole range flush.
Alternatively, we can track which part of the range is flushed in
move_ptes()/move_huge_pmd() and which didn't to avoid flushing the whole
range in move_page_tables(). But that would require multiple tlb
flushes for the different sub-ranges and should be less efficient than
the single whole range flush.
KBuild test on my Sandybridge desktop doesn't show any noticeable change.
v4.9-rc4:
real 5m14.048s
user 32m19.800s
sys 4m50.320s
With this commit:
real 5m13.888s
user 32m19.330s
sys 4m51.200s
Reported-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
split_huge_pmd() doesn't guarantee that the pmd is normal pmd pointing
to pte entries, which can be checked with pmd_trans_unstable(). Some
callers make this assertion and some do it differently and some not, so
let's do it in a unified manner.
Link: http://lkml.kernel.org/r/1464741400-12143-1-git-send-email-n-horiguchi@ah.jp.nec.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a follow up work for oom_reaper [1]. As the async OOM killing
depends on oom_sem for read we would really appreciate if a holder for
write didn't stood in the way. This patchset is changing many of
down_write calls to be killable to help those cases when the writer is
blocked and waiting for readers to release the lock and so help
__oom_reap_task to process the oom victim.
Most of the patches are really trivial because the lock is help from a
shallow syscall paths where we can return EINTR trivially and allow the
current task to die (note that EINTR will never get to the userspace as
the task has fatal signal pending). Others seem to be easy as well as
the callers are already handling fatal errors and bail and return to
userspace which should be sufficient to handle the failure gracefully.
I am not familiar with all those code paths so a deeper review is really
appreciated.
As this work is touching more areas which are not directly connected I
have tried to keep the CC list as small as possible and people who I
believed would be familiar are CCed only to the specific patches (all
should have received the cover though).
This patchset is based on linux-next and it depends on
down_write_killable for rw_semaphores which got merged into tip
locking/rwsem branch and it is merged into this next tree. I guess it
would be easiest to route these patches via mmotm because of the
dependency on the tip tree but if respective maintainers prefer other
way I have no objections.
I haven't covered all the mmap_write(mm->mmap_sem) instances here
$ git grep "down_write(.*\<mmap_sem\>)" next/master | wc -l
98
$ git grep "down_write(.*\<mmap_sem\>)" | wc -l
62
I have tried to cover those which should be relatively easy to review in
this series because this alone should be a nice improvement. Other
places can be changed on top.
[0] http://lkml.kernel.org/r/1456752417-9626-1-git-send-email-mhocko@kernel.org
[1] http://lkml.kernel.org/r/1452094975-551-1-git-send-email-mhocko@kernel.org
[2] http://lkml.kernel.org/r/1456750705-7141-1-git-send-email-mhocko@kernel.org
This patch (of 18):
This is the first step in making mmap_sem write waiters killable. It
focuses on the trivial ones which are taking the lock early after
entering the syscall and they are not changing state before.
Therefore it is very easy to change them to use down_write_killable and
immediately return with -EINTR. This will allow the waiter to pass away
without blocking the mmap_sem which might be required to make a forward
progress. E.g. the oom reaper will need the lock for reading to
dismantle the OOM victim address space.
The only tricky function in this patch is vm_mmap_pgoff which has many
call sites via vm_mmap. To reduce the risk keep vm_mmap with the
original non-killable semantic for now.
vm_munmap callers do not bother checking the return value so open code
it into the munmap syscall path for now for simplicity.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Whatever huge pagecache implementation we go with, file rmap locking
must be added to anon rmap locking, when mremap's move_page_tables()
finds a pmd_trans_huge pmd entry: a simple change, let's do it now.
Factor out take_rmap_locks() and drop_rmap_locks() to handle the locking
for make move_ptes() and move_page_tables(), and delete the
VM_BUG_ON_VMA which rejected vm_file and required anon_vma.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Yang Shi <yang.shi@linaro.org>
Cc: Ning Qu <quning@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove move_huge_pmd()'s redundant new_vma arg: all it was used for was
a VM_NOHUGEPAGE check on new_vma flags, but the new_vma is cloned from
the old vma, so a trans_huge_pmd in the new_vma will be as acceptable as
it was in the old vma, alignment and size permitting.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Yang Shi <yang.shi@linaro.org>
Cc: Ning Qu <quning@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are few things about *pte_alloc*() helpers worth cleaning up:
- 'vma' argument is unused, let's drop it;
- most __pte_alloc() callers do speculative check for pmd_none(),
before taking ptl: let's introduce pte_alloc() macro which does
the check.
The only direct user of __pte_alloc left is userfaultfd, which has
different expectation about atomicity wrt pmd.
- pte_alloc_map() and pte_alloc_map_lock() are redefined using
pte_alloc().
[sudeep.holla@arm.com: fix build for arm64 hugetlbpage]
[sfr@canb.auug.org.au: fix arch/arm/mm/mmu.c some more]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
max_map_count sysctl unrelated to scheduler. Move its bits from
include/linux/sched/sysctl.h to include/linux/mm.h.
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
DAX implements split_huge_pmd() by clearing pmd. This simple approach
reduces memory overhead, as we don't need to deposit page table on huge
page mapping to make split_huge_pmd() never-fail. PTE table can be
allocated and populated later on page fault from backing store.
But one side effect is that have to check if pmd is pmd_none() after
split_huge_pmd(). In most places we do this already to deal with
parallel MADV_DONTNEED.
But I found two call sites which is not affected by MADV_DONTNEED (due
down_write(mmap_sem)), but need to have the check to work with DAX
properly.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When inspecting a vague code inside prctl(PR_SET_MM_MEM) call (which
testing the RLIMIT_DATA value to figure out if we're allowed to assign
new @start_brk, @brk, @start_data, @end_data from mm_struct) it's been
commited that RLIMIT_DATA in a form it's implemented now doesn't do
anything useful because most of user-space libraries use mmap() syscall
for dynamic memory allocations.
Linus suggested to convert RLIMIT_DATA rlimit into something suitable
for anonymous memory accounting. But in this patch we go further, and
the changes are bundled together as:
* keep vma counting if CONFIG_PROC_FS=n, will be used for limits
* replace mm->shared_vm with better defined mm->data_vm
* account anonymous executable areas as executable
* account file-backed growsdown/up areas as stack
* drop struct file* argument from vm_stat_account
* enforce RLIMIT_DATA for size of data areas
This way code looks cleaner: now code/stack/data classification depends
only on vm_flags state:
VM_EXEC & ~VM_WRITE -> code (VmExe + VmLib in proc)
VM_GROWSUP | VM_GROWSDOWN -> stack (VmStk)
VM_WRITE & ~VM_SHARED & !stack -> data (VmData)
The rest (VmSize - VmData - VmStk - VmExe - VmLib) could be called
"shared", but that might be strange beast like readonly-private or VM_IO
area.
- RLIMIT_AS limits whole address space "VmSize"
- RLIMIT_STACK limits stack "VmStk" (but each vma individually)
- RLIMIT_DATA now limits "VmData"
Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Willy Tarreau <w@1wt.eu>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Kees Cook <keescook@google.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mremap() with MREMAP_FIXED on a VM_PFNMAP range causes the following
WARN_ON_ONCE() message in untrack_pfn().
WARNING: CPU: 1 PID: 3493 at arch/x86/mm/pat.c:985 untrack_pfn+0xbd/0xd0()
Call Trace:
[<ffffffff817729ea>] dump_stack+0x45/0x57
[<ffffffff8109e4b6>] warn_slowpath_common+0x86/0xc0
[<ffffffff8109e5ea>] warn_slowpath_null+0x1a/0x20
[<ffffffff8106a88d>] untrack_pfn+0xbd/0xd0
[<ffffffff811d2d5e>] unmap_single_vma+0x80e/0x860
[<ffffffff811d3725>] unmap_vmas+0x55/0xb0
[<ffffffff811d916c>] unmap_region+0xac/0x120
[<ffffffff811db86a>] do_munmap+0x28a/0x460
[<ffffffff811dec33>] move_vma+0x1b3/0x2e0
[<ffffffff811df113>] SyS_mremap+0x3b3/0x510
[<ffffffff817793ee>] entry_SYSCALL_64_fastpath+0x12/0x71
MREMAP_FIXED moves a pfnmap from old vma to new vma. untrack_pfn() is
called with the old vma after its pfnmap page table has been removed,
which causes follow_phys() to fail. The new vma has a new pfnmap to
the same pfn & cache type with VM_PAT set. Therefore, we only need to
clear VM_PAT from the old vma in this case.
Add untrack_pfn_moved(), which clears VM_PAT from a given old vma.
move_vma() is changed to call this function with the old vma when
VM_PFNMAP is set. move_vma() then calls do_munmap(), and untrack_pfn()
is a no-op since VM_PAT is cleared.
Reported-by: Stas Sergeev <stsp@list.ru>
Signed-off-by: Toshi Kani <toshi.kani@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/1450832064-10093-2-git-send-email-toshi.kani@hpe.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Minor, but this check is overcomplicated. Two half-intervals do NOT
overlap if END1 <= START2 || END2 <= START1, mremap_to() just needs to
negate this check.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Benjamin LaHaise <bcrl@kvack.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The "new_len > old_len" branch in vma_to_resize() looks very confusing.
It only covers the VM_DONTEXPAND/pgoff checks but everything below is
equally unneeded if new_len == old_len.
Change this code to return if "new_len == old_len", new_len < old_len is
not possible, otherwise the code below is wrong anyway.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Benjamin LaHaise <bcrl@kvack.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
move_vma() sets *locked even if move_page_tables() or ->mremap() fails,
change sys_mremap() to check "ret & ~PAGE_MASK".
I think we should simply remove the VM_LOCKED code in move_vma(), that is
why this patch doesn't change move_vma(). But this needs more cleanups.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Benjamin LaHaise <bcrl@kvack.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vma->vm_ops->mremap() looks more natural and clean in move_vma(), and this
way ->mremap() can have more users. Say, vdso.
While at it, s/aio_ring_remap/aio_ring_mremap/.
Note: this is the minimal change before ->mremap() finds another user in
file_operations; this method should have more arguments, and it can be
used to kill arch_remap().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Benjamin LaHaise <bcrl@kvack.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
move_vma() can't just return if f_op->mremap() fails, we should unmap the
new vma like we do if move_page_tables() fails. To avoid the code
duplication this patch moves the "move entries back" under the new "if
(err)" branch.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Benjamin LaHaise <bcrl@kvack.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some architectures would like to be triggered when a memory area is moved
through the mremap system call.
This patch introduces a new arch_remap() mm hook which is placed in the
path of mremap, and is called before the old area is unmapped (and the
arch_unmap() hook is called).
Signed-off-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As suggested by Kirill the "goto"s in vma_to_resize aren't necessary, just
change them to explicit return.
Signed-off-by: Derek Che <crquan@ymail.com>
Suggested-by: "Kirill A. Shutemov" <kirill@shutemov.name>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Recently I straced bash behavior in this dd zero pipe to read test, in
part of testing under vm.overcommit_memory=2 (OVERCOMMIT_NEVER mode):
# dd if=/dev/zero | read x
The bash sub shell is calling mremap to reallocate more and more memory
untill it finally failed -ENOMEM (I expect), or to be killed by system OOM
killer (which should not happen under OVERCOMMIT_NEVER mode); But the
mremap system call actually failed of -EFAULT, which is a surprise to me,
I think it's supposed to be -ENOMEM? then I wrote this piece of C code
testing confirmed it: https://gist.github.com/crquan/326bde37e1ddda8effe5
$ ./remap
allocated one page @0x7f686bf71000, (PAGE_SIZE: 4096)
grabbed 7680512000 bytes of memory (1875125 pages) @ 00007f6690993000.
mremap failed Bad address (14).
The -EFAULT comes from the branch of security_vm_enough_memory_mm failure,
underlyingly it calls __vm_enough_memory which returns only 0 for success
or -ENOMEM; So why vma_to_resize needs to return -EFAULT in this case?
this sounds like a mistake to me.
Some more digging into git history:
1) Before commit 119f657c7 ("RLIMIT_AS checking fix") in May 1 2005
(pre 2.6.12 days) it was returning -ENOMEM for this failure;
2) but commit 119f657c7 ("untangling do_mremap(), part 1") changed it
accidentally, to what ever is preserved in local ret, which happened to
be -EFAULT, in a previous assignment;
3) then in commit 54f5de709 code refactoring, it's explicitly returning
-EFAULT, should be wrong.
Signed-off-by: Derek Che <crquan@ymail.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
teach ->mremap() method to return an error and have it fail for
aio mappings in process of being killed
Note that in case of ->mremap() failure we need to undo move_page_tables()
we'd already done; we could call ->mremap() first, but then the failure of
move_page_tables() would require undoing whatever _successful_ ->mremap()
has done, which would be a lot more headache in general.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
One bit in ->vm_flags is unused now!
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull aio updates from Benjamin LaHaise.
* git://git.kvack.org/~bcrl/aio-next:
aio: Skip timer for io_getevents if timeout=0
aio: Make it possible to remap aio ring
There are actually two issues this patch addresses. Let me start with
the one I tried to solve in the beginning.
So, in the checkpoint-restore project (criu) we try to dump tasks'
state and restore one back exactly as it was. One of the tasks' state
bits is rings set up with io_setup() call. There's (almost) no problems
in dumping them, there's a problem restoring them -- if I dump a task
with aio ring originally mapped at address A, I want to restore one
back at exactly the same address A. Unfortunately, the io_setup() does
not allow for that -- it mmaps the ring at whatever place mm finds
appropriate (it calls do_mmap_pgoff() with zero address and without
the MAP_FIXED flag).
To make restore possible I'm going to mremap() the freshly created ring
into the address A (under which it was seen before dump). The problem is
that the ring's virtual address is passed back to the user-space as the
context ID and this ID is then used as search key by all the other io_foo()
calls. Reworking this ID to be just some integer doesn't seem to work, as
this value is already used by libaio as a pointer using which this library
accesses memory for aio meta-data.
So, to make restore work we need to make sure that
a) ring is mapped at desired virtual address
b) kioctx->user_id matches this value
Having said that, the patch makes mremap() on aio region update the
kioctx's user_id and mmap_base values.
Here appears the 2nd issue I mentioned in the beginning of this mail.
If (regardless of the C/R dances I do) someone creates an io context
with io_setup(), then mremap()-s the ring and then destroys the context,
the kill_ioctx() routine will call munmap() on wrong (old) address.
This will result in a) aio ring remaining in memory and b) some other
vma get unexpectedly unmapped.
What do you think?
Signed-off-by: Pavel Emelyanov <xemul@parallels.com>
Acked-by: Dmitry Monakhov <dmonakhov@openvz.org>
Signed-off-by: Benjamin LaHaise <bcrl@kvack.org>
The i_mmap_mutex is a close cousin of the anon vma lock, both protecting
similar data, one for file backed pages and the other for anon memory. To
this end, this lock can also be a rwsem. In addition, there are some
important opportunities to share the lock when there are no tree
modifications.
This conversion is straightforward. For now, all users take the write
lock.
[sfr@canb.auug.org.au: update fremap.c]
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: "Kirill A. Shutemov" <kirill@shutemov.name>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
"WARNING: Use #include <linux/uaccess.h> instead of <asm/uaccess.h>"
Signed-off-by: Paul McQuade <paulmcquad@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Trivially convert a few VM_BUG_ON calls to VM_BUG_ON_VMA to extract
more information when they trigger.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michel Lespinasse <walken@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's critical for split_huge_page() (and migration) to catch and freeze
all PMDs on rmap walk. It gets tricky if there's concurrent fork() or
mremap() since usually we copy/move page table entries on dup_mm() or
move_page_tables() without rmap lock taken. To get it work we rely on
rmap walk order to not miss any entry. We expect to see destination VMA
after source one to work correctly.
But after switching rmap implementation to interval tree it's not always
possible to preserve expected walk order.
It works fine for dup_mm() since new VMA has the same vma_start_pgoff()
/ vma_last_pgoff() and explicitly insert dst VMA after src one with
vma_interval_tree_insert_after().
But on move_vma() destination VMA can be merged into adjacent one and as
result shifted left in interval tree. Fortunately, we can detect the
situation and prevent race with rmap walk by moving page table entries
under rmap lock. See commit 38a76013ad.
Problem is that we miss the lock when we move transhuge PMD. Most
likely this bug caused the crash[1].
[1] http://thread.gmane.org/gmane.linux.kernel.mm/96473
Fixes: 108d6642ad ("mm anon rmap: remove anon_vma_moveto_tail")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Michel Lespinasse <walken@google.com>
Cc: Dave Jones <davej@redhat.com>
Cc: David Miller <davem@davemloft.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org> [3.7+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Revert commit 1ecfd533f4 ("mm/mremap.c: call pud_free() after fail
calling pmd_alloc()").
The original code was correct: pud_alloc(), pmd_alloc(), pte_alloc_map()
ensure that the pud, pmd, pt is already allocated, and seldom do they
need to allocate; on failure, upper levels are freed if appropriate by
the subsequent do_munmap(). Whereas commit 1ecfd533f4 did an
unconditional pud_free() of a most-likely still-in-use pud: saved only
by the near-impossiblity of pmd_alloc() failing.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Chen Gang <gang.chen@asianux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In alloc_new_pmd(), if pud_alloc() was called successfully, but
pmd_alloc() fails, avoid leaking `pud'.
Signed-off-by: Chen Gang <gang.chen@asianux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dave reported corrupted swap entries
| [ 4588.541886] swap_free: Unused swap offset entry 00002d15
| [ 4588.541952] BUG: Bad page map in process trinity-kid12 pte:005a2a80 pmd:22c01f067
and Hugh pointed that in move_ptes _PAGE_SOFT_DIRTY bit set regardless
the type of entry pte consists of. The trick here is that when we carry
soft dirty status in swap entries we are to use _PAGE_SWP_SOFT_DIRTY
instead, because this is the only place in pte which can be used for own
needs without intersecting with bits owned by swap entry type/offset.
Reported-and-tested-by: Dave Jones <davej@redhat.com>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Pavel Emelyanov <xemul@parallels.com>
Analyzed-by: Hugh Dickins <hughd@google.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is very similar to commit 84d96d8976 ("mm: madvise:
complete input validation before taking lock"): perform some basic
validation of the input to mremap() before taking the
¤t->mm->mmap_sem lock.
This also makes the MREMAP_FIXED => MREMAP_MAYMOVE dependency slightly
more explicit.
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The soft-dirty is a bit on a PTE which helps to track which pages a task
writes to. In order to do this tracking one should
1. Clear soft-dirty bits from PTEs ("echo 4 > /proc/PID/clear_refs)
2. Wait some time.
3. Read soft-dirty bits (55'th in /proc/PID/pagemap2 entries)
To do this tracking, the writable bit is cleared from PTEs when the
soft-dirty bit is. Thus, after this, when the task tries to modify a
page at some virtual address the #PF occurs and the kernel sets the
soft-dirty bit on the respective PTE.
Note, that although all the task's address space is marked as r/o after
the soft-dirty bits clear, the #PF-s that occur after that are processed
fast. This is so, since the pages are still mapped to physical memory,
and thus all the kernel does is finds this fact out and puts back
writable, dirty and soft-dirty bits on the PTE.
Another thing to note, is that when mremap moves PTEs they are marked
with soft-dirty as well, since from the user perspective mremap modifies
the virtual memory at mremap's new address.
Signed-off-by: Pavel Emelyanov <xemul@parallels.com>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The comment in commit 4fc3f1d66b ("mm/rmap, migration: Make
rmap_walk_anon() and try_to_unmap_anon() more scalable") says:
| Rename anon_vma_[un]lock() => anon_vma_[un]lock_write(),
| to make it clearer that it's an exclusive write-lock in
| that case - suggested by Rik van Riel.
But that commit renames only anon_vma_lock()
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move the sysctl-related bits from include/linux/sched.h into
a new file: include/linux/sched/sysctl.h. Then update source
files requiring access to those bits by including the new
header file.
Signed-off-by: Clark Williams <williams@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20130207094659.06dced96@riff.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.18 (GNU/Linux)
iQIcBAABAgAGBQJQx0kQAAoJEHzG/DNEskfi4fQP/R5PRovayroZALBMLnVJDaLD
Ttr9p40VNXbiJ+MfRgatJjSSJZ4Jl+fC3NEqBhcwVZhckZZb9R2s0WtrSQo5+ZbB
vdRfiuKoCaKM4cSZ08C12uTvsF6xjhjd27CTUlMkyOcDoKxMEFKelv0hocSxe4Wo
xqlv3eF+VsY7kE1BNbgBP06SX4tDpIHRxXfqJPMHaSKQmre+cU0xG2GcEu3QGbHT
DEDTI788YSaWLmBfMC+kWoaQl1+bV/FYvavIAS8/o4K9IKvgR42VzrXmaFaqrbgb
72ksa6xfAi57yTmZHqyGmts06qYeBbPpKI+yIhCMInxA9CY3lPbvHppRf0RQOyzj
YOi4hovGEMJKE+BCILukhJcZ9jCTtS3zut6v1rdvR88f4y7uhR9RfmRfsxuW7PNj
3Rmh191+n0lVWDmhOs2psXuCLJr3LEiA0dFffN1z8REUTtTAZMsj8Rz+SvBNAZDR
hsJhERVeXB6X5uQ5rkLDzbn1Zic60LjVw7LIp6SF2OYf/YKaF8vhyWOA8dyCEu8W
CGo7AoG0BO8tIIr8+LvFe8CweypysZImx4AjCfIs4u9pu/v11zmBvO9NO5yfuObF
BreEERYgTes/UITxn1qdIW4/q+Nr0iKO3CTqsmu6L1GfCz3/XzPGs3U26fUhllqi
Ka0JKgnWvsa6ez6FSzKI
=ivQa
-----END PGP SIGNATURE-----
Merge tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma
Pull Automatic NUMA Balancing bare-bones from Mel Gorman:
"There are three implementations for NUMA balancing, this tree
(balancenuma), numacore which has been developed in tip/master and
autonuma which is in aa.git.
In almost all respects balancenuma is the dumbest of the three because
its main impact is on the VM side with no attempt to be smart about
scheduling. In the interest of getting the ball rolling, it would be
desirable to see this much merged for 3.8 with the view to building
scheduler smarts on top and adapting the VM where required for 3.9.
The most recent set of comparisons available from different people are
mel: https://lkml.org/lkml/2012/12/9/108
mingo: https://lkml.org/lkml/2012/12/7/331
tglx: https://lkml.org/lkml/2012/12/10/437
srikar: https://lkml.org/lkml/2012/12/10/397
The results are a mixed bag. In my own tests, balancenuma does
reasonably well. It's dumb as rocks and does not regress against
mainline. On the other hand, Ingo's tests shows that balancenuma is
incapable of converging for this workloads driven by perf which is bad
but is potentially explained by the lack of scheduler smarts. Thomas'
results show balancenuma improves on mainline but falls far short of
numacore or autonuma. Srikar's results indicate we all suffer on a
large machine with imbalanced node sizes.
My own testing showed that recent numacore results have improved
dramatically, particularly in the last week but not universally.
We've butted heads heavily on system CPU usage and high levels of
migration even when it shows that overall performance is better.
There are also cases where it regresses. Of interest is that for
specjbb in some configurations it will regress for lower numbers of
warehouses and show gains for higher numbers which is not reported by
the tool by default and sometimes missed in treports. Recently I
reported for numacore that the JVM was crashing with
NullPointerExceptions but currently it's unclear what the source of
this problem is. Initially I thought it was in how numacore batch
handles PTEs but I'm no longer think this is the case. It's possible
numacore is just able to trigger it due to higher rates of migration.
These reports were quite late in the cycle so I/we would like to start
with this tree as it contains much of the code we can agree on and has
not changed significantly over the last 2-3 weeks."
* tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma: (50 commits)
mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalable
mm/rmap: Convert the struct anon_vma::mutex to an rwsem
mm: migrate: Account a transhuge page properly when rate limiting
mm: numa: Account for failed allocations and isolations as migration failures
mm: numa: Add THP migration for the NUMA working set scanning fault case build fix
mm: numa: Add THP migration for the NUMA working set scanning fault case.
mm: sched: numa: Delay PTE scanning until a task is scheduled on a new node
mm: sched: numa: Control enabling and disabling of NUMA balancing if !SCHED_DEBUG
mm: sched: numa: Control enabling and disabling of NUMA balancing
mm: sched: Adapt the scanning rate if a NUMA hinting fault does not migrate
mm: numa: Use a two-stage filter to restrict pages being migrated for unlikely task<->node relationships
mm: numa: migrate: Set last_nid on newly allocated page
mm: numa: split_huge_page: Transfer last_nid on tail page
mm: numa: Introduce last_nid to the page frame
sched: numa: Slowly increase the scanning period as NUMA faults are handled
mm: numa: Rate limit setting of pte_numa if node is saturated
mm: numa: Rate limit the amount of memory that is migrated between nodes
mm: numa: Structures for Migrate On Fault per NUMA migration rate limiting
mm: numa: Migrate pages handled during a pmd_numa hinting fault
mm: numa: Migrate on reference policy
...
Pass vma instead of mm and add address parameter.
In most cases we already have vma on the stack. We provides
split_huge_page_pmd_mm() for few cases when we have mm, but not vma.
This change is preparation to huge zero pmd splitting implementation.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@linux.intel.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
rmap_walk_anon() and try_to_unmap_anon() appears to be too
careful about locking the anon vma: while it needs protection
against anon vma list modifications, it does not need exclusive
access to the list itself.
Transforming this exclusive lock to a read-locked rwsem removes
a global lock from the hot path of page-migration intense
threaded workloads which can cause pathological performance like
this:
96.43% process 0 [kernel.kallsyms] [k] perf_trace_sched_switch
|
--- perf_trace_sched_switch
__schedule
schedule
schedule_preempt_disabled
__mutex_lock_common.isra.6
__mutex_lock_slowpath
mutex_lock
|
|--50.61%-- rmap_walk
| move_to_new_page
| migrate_pages
| migrate_misplaced_page
| __do_numa_page.isra.69
| handle_pte_fault
| handle_mm_fault
| __do_page_fault
| do_page_fault
| page_fault
| __memset_sse2
| |
| --100.00%-- worker_thread
| |
| --100.00%-- start_thread
|
--49.39%-- page_lock_anon_vma
try_to_unmap_anon
try_to_unmap
migrate_pages
migrate_misplaced_page
__do_numa_page.isra.69
handle_pte_fault
handle_mm_fault
__do_page_fault
do_page_fault
page_fault
__memset_sse2
|
--100.00%-- worker_thread
start_thread
With this change applied the profile is now nicely flat
and there's no anon-vma related scheduling/blocking.
Rename anon_vma_[un]lock() => anon_vma_[un]lock_write(),
to make it clearer that it's an exclusive write-lock in
that case - suggested by Rik van Riel.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Turner <pjt@google.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
In order to allow sleeping during mmu notifier calls, we need to avoid
invoking them under the page table spinlock. This patch solves the
problem by calling invalidate_page notification after releasing the lock
(but before freeing the page itself), or by wrapping the page invalidation
with calls to invalidate_range_begin and invalidate_range_end.
To prevent accidental changes to the invalidate_range_end arguments after
the call to invalidate_range_begin, the patch introduces a convention of
saving the arguments in consistently named locals:
unsigned long mmun_start; /* For mmu_notifiers */
unsigned long mmun_end; /* For mmu_notifiers */
...
mmun_start = ...
mmun_end = ...
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
...
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
The patch changes code to use this convention for all calls to
mmu_notifier_invalidate_range_start/end, except those where the calls are
close enough so that anyone who glances at the code can see the values
aren't changing.
This patchset is a preliminary step towards on-demand paging design to be
added to the RDMA stack.
Why do we want on-demand paging for Infiniband?
Applications register memory with an RDMA adapter using system calls,
and subsequently post IO operations that refer to the corresponding
virtual addresses directly to HW. Until now, this was achieved by
pinning the memory during the registration calls. The goal of on demand
paging is to avoid pinning the pages of registered memory regions (MRs).
This will allow users the same flexibility they get when swapping any
other part of their processes address spaces. Instead of requiring the
entire MR to fit in physical memory, we can allow the MR to be larger,
and only fit the current working set in physical memory.
Why should anyone care? What problems are users currently experiencing?
This can make programming with RDMA much simpler. Today, developers
that are working with more data than their RAM can hold need either to
deregister and reregister memory regions throughout their process's
life, or keep a single memory region and copy the data to it. On demand
paging will allow these developers to register a single MR at the
beginning of their process's life, and let the operating system manage
which pages needs to be fetched at a given time. In the future, we
might be able to provide a single memory access key for each process
that would provide the entire process's address as one large memory
region, and the developers wouldn't need to register memory regions at
all.
Is there any prospect that any other subsystems will utilise these
infrastructural changes? If so, which and how, etc?
As for other subsystems, I understand that XPMEM wanted to sleep in
MMU notifiers, as Christoph Lameter wrote at
http://lkml.indiana.edu/hypermail/linux/kernel/0802.1/0460.html and
perhaps Andrea knows about other use cases.
Scheduling in mmu notifications is required since we need to sync the
hardware with the secondary page tables change. A TLB flush of an IO
device is inherently slower than a CPU TLB flush, so our design works by
sending the invalidation request to the device, and waiting for an
interrupt before exiting the mmu notifier handler.
Avi said:
kvm may be a buyer. kvm::mmu_lock, which serializes guest page
faults, also protects long operations such as destroying large ranges.
It would be good to convert it into a spinlock, but as it is used inside
mmu notifiers, this cannot be done.
(there are alternatives, such as keeping the spinlock and using a
generation counter to do the teardown in O(1), which is what the "may"
is doing up there).
[akpm@linux-foundation.orgpossible speed tweak in hugetlb_cow(), cleanups]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Sagi Grimberg <sagig@mellanox.com>
Signed-off-by: Haggai Eran <haggaie@mellanox.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Or Gerlitz <ogerlitz@mellanox.com>
Cc: Haggai Eran <haggaie@mellanox.com>
Cc: Shachar Raindel <raindel@mellanox.com>
Cc: Liran Liss <liranl@mellanox.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Avi Kivity <avi@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During mremap(), the destination VMA is generally placed after the
original vma in rmap traversal order: in move_vma(), we always have
new_pgoff >= vma->vm_pgoff, and as a result new_vma->vm_pgoff >=
vma->vm_pgoff unless vma_merge() merged the new vma with an adjacent one.
When the destination VMA is placed after the original in rmap traversal
order, we can avoid taking the rmap locks in move_ptes().
Essentially, this reintroduces the optimization that had been disabled in
"mm anon rmap: remove anon_vma_moveto_tail". The difference is that we
don't try to impose the rmap traversal order; instead we just rely on
things being in the desired order in the common case and fall back to
taking locks in the uncommon case. Also we skip the i_mmap_mutex in
addition to the anon_vma lock: in both cases, the vmas are traversed in
increasing vm_pgoff order with ties resolved in tree insertion order.
Signed-off-by: Michel Lespinasse <walken@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Daniel Santos <daniel.santos@pobox.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mremap() had a clever optimization where move_ptes() did not take the
anon_vma lock to avoid a race with anon rmap users such as page migration.
Instead, the avc's were ordered in such a way that the origin vma was
always visited by rmap before the destination. This ordering and the use
of page table locks rmap usage safe. However, we want to replace the use
of linked lists in anon rmap with an interval tree, and this will make it
harder to impose such ordering as the interval tree will always be sorted
by the avc->vma->vm_pgoff value. For now, let's replace the
anon_vma_moveto_tail() ordering function with proper anon_vma locking in
move_ptes(). Once we have the anon interval tree in place, we will
re-introduce an optimization to avoid taking these locks in the most
common cases.
Signed-off-by: Michel Lespinasse <walken@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Daniel Santos <daniel.santos@pobox.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vm_stat_account() accounts the shared_vm, stack_vm and reserved_vm now.
But we can also account for total_vm in the vm_stat_account() which makes
the code tidy.
Even for mprotect_fixup(), we can get the right result in the end.
Signed-off-by: Huang Shijie <shijie8@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
it really should be done by get_unmapped_area(); that cuts down on
the amount of callers considerably and it's the right place for
that stuff anyway.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Collapse security_vm_enough_memory() variants into a single function.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: James Morris <jmorris@namei.org>
migrate was doing an rmap_walk with speculative lock-less access on
pagetables. That could lead it to not serializing properly against mremap
PT locks. But a second problem remains in the order of vmas in the
same_anon_vma list used by the rmap_walk.
If vma_merge succeeds in copy_vma, the src vma could be placed after the
dst vma in the same_anon_vma list. That could still lead to migrate
missing some pte.
This patch adds an anon_vma_moveto_tail() function to force the dst vma at
the end of the list before mremap starts to solve the problem.
If the mremap is very large and there are a lots of parents or childs
sharing the anon_vma root lock, this should still scale better than taking
the anon_vma root lock around every pte copy practically for the whole
duration of mremap.
Update: Hugh noticed special care is needed in the error path where
move_page_tables goes in the reverse direction, a second
anon_vma_moveto_tail() call is needed in the error path.
This program exercises the anon_vma_moveto_tail:
===
int main()
{
static struct timeval oldstamp, newstamp;
long diffsec;
char *p, *p2, *p3, *p4;
if (posix_memalign((void **)&p, 2*1024*1024, SIZE))
perror("memalign"), exit(1);
if (posix_memalign((void **)&p2, 2*1024*1024, SIZE))
perror("memalign"), exit(1);
if (posix_memalign((void **)&p3, 2*1024*1024, SIZE))
perror("memalign"), exit(1);
memset(p, 0xff, SIZE);
printf("%p\n", p);
memset(p2, 0xff, SIZE);
memset(p3, 0x77, 4096);
if (memcmp(p, p2, SIZE))
printf("error\n");
p4 = mremap(p+SIZE/2, SIZE/2, SIZE/2, MREMAP_FIXED|MREMAP_MAYMOVE, p3);
if (p4 != p3)
perror("mremap"), exit(1);
p4 = mremap(p4, SIZE/2, SIZE/2, MREMAP_FIXED|MREMAP_MAYMOVE, p+SIZE/2);
if (p4 != p+SIZE/2)
perror("mremap"), exit(1);
if (memcmp(p, p2, SIZE))
printf("error\n");
printf("ok\n");
return 0;
}
===
$ perf probe -a anon_vma_moveto_tail
Add new event:
probe:anon_vma_moveto_tail (on anon_vma_moveto_tail)
You can now use it on all perf tools, such as:
perf record -e probe:anon_vma_moveto_tail -aR sleep 1
$ perf record -e probe:anon_vma_moveto_tail -aR ./anon_vma_moveto_tail
0x7f2ca2800000
ok
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.043 MB perf.data (~1860 samples) ]
$ perf report --stdio
100.00% anon_vma_moveto [kernel.kallsyms] [k] anon_vma_moveto_tail
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Nai Xia <nai.xia@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Pawel Sikora <pluto@agmk.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds THP support to mremap (decreases the number of split_huge_page()
calls).
Here are also some benchmarks with a proggy like this:
===
#define _GNU_SOURCE
#include <sys/mman.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sys/time.h>
#define SIZE (5UL*1024*1024*1024)
int main()
{
static struct timeval oldstamp, newstamp;
long diffsec;
char *p, *p2, *p3, *p4;
if (posix_memalign((void **)&p, 2*1024*1024, SIZE))
perror("memalign"), exit(1);
if (posix_memalign((void **)&p2, 2*1024*1024, SIZE))
perror("memalign"), exit(1);
if (posix_memalign((void **)&p3, 2*1024*1024, 4096))
perror("memalign"), exit(1);
memset(p, 0xff, SIZE);
memset(p2, 0xff, SIZE);
memset(p3, 0x77, 4096);
gettimeofday(&oldstamp, NULL);
p4 = mremap(p, SIZE, SIZE, MREMAP_FIXED|MREMAP_MAYMOVE, p3);
gettimeofday(&newstamp, NULL);
diffsec = newstamp.tv_sec - oldstamp.tv_sec;
diffsec = newstamp.tv_usec - oldstamp.tv_usec + 1000000 * diffsec;
printf("usec %ld\n", diffsec);
if (p == MAP_FAILED || p4 != p3)
//if (p == MAP_FAILED)
perror("mremap"), exit(1);
if (memcmp(p4, p2, SIZE))
printf("mremap bug\n"), exit(1);
printf("ok\n");
return 0;
}
===
THP on
Performance counter stats for './largepage13' (3 runs):
69195836 dTLB-loads ( +- 3.546% ) (scaled from 50.30%)
60708 dTLB-load-misses ( +- 11.776% ) (scaled from 52.62%)
676266476 dTLB-stores ( +- 5.654% ) (scaled from 69.54%)
29856 dTLB-store-misses ( +- 4.081% ) (scaled from 89.22%)
1055848782 iTLB-loads ( +- 4.526% ) (scaled from 80.18%)
8689 iTLB-load-misses ( +- 2.987% ) (scaled from 58.20%)
7.314454164 seconds time elapsed ( +- 0.023% )
THP off
Performance counter stats for './largepage13' (3 runs):
1967379311 dTLB-loads ( +- 0.506% ) (scaled from 60.59%)
9238687 dTLB-load-misses ( +- 22.547% ) (scaled from 61.87%)
2014239444 dTLB-stores ( +- 0.692% ) (scaled from 60.40%)
3312335 dTLB-store-misses ( +- 7.304% ) (scaled from 67.60%)
6764372065 iTLB-loads ( +- 0.925% ) (scaled from 79.00%)
8202 iTLB-load-misses ( +- 0.475% ) (scaled from 70.55%)
9.693655243 seconds time elapsed ( +- 0.069% )
grep thp /proc/vmstat
thp_fault_alloc 35849
thp_fault_fallback 0
thp_collapse_alloc 3
thp_collapse_alloc_failed 0
thp_split 0
thp_split 0 confirms no thp split despite plenty of hugepages allocated.
The measurement of only the mremap time (so excluding the 3 long
memset and final long 10GB memory accessing memcmp):
THP on
usec 14824
usec 14862
usec 14859
THP off
usec 256416
usec 255981
usec 255847
With an older kernel without the mremap optimizations (the below patch
optimizes the non THP version too).
THP on
usec 392107
usec 390237
usec 404124
THP off
usec 444294
usec 445237
usec 445820
I guess with a threaded program that sends more IPI on large SMP it'd
create an even larger difference.
All debug options are off except DEBUG_VM to avoid skewing the
results.
The only problem for native 2M mremap like it happens above both the
source and destination address must be 2M aligned or the hugepmd can't be
moved without a split but that is an hardware limitation.
[akpm@linux-foundation.org: coding-style nitpicking]
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Johannes Weiner <jweiner@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This replaces ptep_clear_flush() with ptep_get_and_clear() and a single
flush_tlb_range() at the end of the loop, to avoid sending one IPI for
each page.
The mmu_notifier_invalidate_range_start/end section is enlarged
accordingly but this is not going to fundamentally change things. It was
more by accident that the region under mremap was for the most part still
available for secondary MMUs: the primary MMU was never allowed to
reliably access that region for the duration of the mremap (modulo
trapping SIGSEGV on the old address range which sounds unpractical and
flakey). If users wants secondary MMUs not to lose access to a large
region under mremap they should reduce the mremap size accordingly in
userland and run multiple calls. Overall this will run faster so it's
actually going to reduce the time the region is under mremap for the
primary MMU which should provide a net benefit to apps.
For KVM this is a noop because the guest physical memory is never
mremapped, there's just no point it ever moving it while guest runs. One
target of this optimization is JVM GC (so unrelated to the mmu notifier
logic).
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Johannes Weiner <jweiner@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Using "- 1" relies on the old_end to be page aligned and PAGE_SIZE > 1,
those are reasonable requirements but the check remains obscure and it
looks more like an off by one error than an overflow check. This I feel
will improve readability.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Johannes Weiner <jweiner@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Straightforward conversion of i_mmap_lock to a mutex.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Miller <davem@davemloft.net>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Tony Luck <tony.luck@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hugh says:
"The only significant loser, I think, would be page reclaim (when
concurrent with truncation): could spin for a long time waiting for
the i_mmap_mutex it expects would soon be dropped? "
Counter points:
- cpu contention makes the spin stop (need_resched())
- zap pages should be freeing pages at a higher rate than reclaim
ever can
I think the simplification of the truncate code is definitely worth it.
Effectively reverts: 2aa15890f3 ("mm: prevent concurrent
unmap_mapping_range() on the same inode") and takes out the code that
caused its problem.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Miller <davem@davemloft.net>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The normal mmap paths all avoid creating a mapping where the pgoff
inside the mapping could wrap around due to overflow. However, an
expanding mremap() can take such a non-wrapping mapping and make it
bigger and cause a wrapping condition.
Noticed by Robert Swiecki when running a system call fuzzer, where it
caused a BUG_ON() due to terminally confusing the vma_prio_tree code. A
vma dumping patch by Hugh then pinpointed the crazy wrapped case.
Reported-and-tested-by: Robert Swiecki <robert@swiecki.net>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Robert Swiecki reported a BUG_ON(page_mapped) from a fuzzer, punching
a hole with madvise(,, MADV_REMOVE). That path is under mutex, and
cannot be explained by lack of serialization in unmap_mapping_range().
Reviewing the code, I found one place where vm_truncate_count handling
should have been updated, when I switched at the last minute from one
way of managing the restart_addr to another: mremap move changes the
virtual addresses, so it ought to adjust the restart_addr.
But rather than exporting the notion of restart_addr from memory.c, or
converting to restart_pgoff throughout, simply reset vm_truncate_count
to 0 to force a rescan if mremap move races with preempted truncation.
We have no confirmation that this fixes Robert's BUG,
but it is a fix that's worth making anyway.
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
split_huge_page_pmd compat code. Each one of those would need to be
expanded to hundred of lines of complex code without a fully reliable
split_huge_page_pmd design.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pte alloc routines must wait for split_huge_page if the pmd is not present
and not null (i.e. pmd_trans_splitting). The additional branches are
optimized away at compile time by pmd_trans_splitting if the config option
is off. However we must pass the vma down in order to know the anon_vma
lock to wait for.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since we no longer need to provide KM_type, the whole pte_*map_nested()
API is now redundant, remove it.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Chris Metcalf <cmetcalf@tilera.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Miller <davem@davemloft.net>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
The old anon_vma code can lead to scalability issues with heavily forking
workloads. Specifically, each anon_vma will be shared between the parent
process and all its child processes.
In a workload with 1000 child processes and a VMA with 1000 anonymous
pages per process that get COWed, this leads to a system with a million
anonymous pages in the same anon_vma, each of which is mapped in just one
of the 1000 processes. However, the current rmap code needs to walk them
all, leading to O(N) scanning complexity for each page.
This can result in systems where one CPU is walking the page tables of
1000 processes in page_referenced_one, while all other CPUs are stuck on
the anon_vma lock. This leads to catastrophic failure for a benchmark
like AIM7, where the total number of processes can reach in the tens of
thousands. Real workloads are still a factor 10 less process intensive
than AIM7, but they are catching up.
This patch changes the way anon_vmas and VMAs are linked, which allows us
to associate multiple anon_vmas with a VMA. At fork time, each child
process gets its own anon_vmas, in which its COWed pages will be
instantiated. The parents' anon_vma is also linked to the VMA, because
non-COWed pages could be present in any of the children.
This reduces rmap scanning complexity to O(1) for the pages of the 1000
child processes, with O(N) complexity for at most 1/N pages in the system.
This reduces the average scanning cost in heavily forking workloads from
O(N) to 2.
The only real complexity in this patch stems from the fact that linking a
VMA to anon_vmas now involves memory allocations. This means vma_adjust
can fail, if it needs to attach a VMA to anon_vma structures. This in
turn means error handling needs to be added to the calling functions.
A second source of complexity is that, because there can be multiple
anon_vmas, the anon_vma linking in vma_adjust can no longer be done under
"the" anon_vma lock. To prevent the rmap code from walking up an
incomplete VMA, this patch introduces the VM_LOCK_RMAP VMA flag. This bit
flag uses the same slot as the NOMMU VM_MAPPED_COPY, with an ifdef in mm.h
to make sure it is impossible to compile a kernel that needs both symbolic
values for the same bitflag.
Some test results:
Without the anon_vma changes, when AIM7 hits around 9.7k users (on a test
box with 16GB RAM and not quite enough IO), the system ends up running
>99% in system time, with every CPU on the same anon_vma lock in the
pageout code.
With these changes, AIM7 hits the cross-over point around 29.7k users.
This happens with ~99% IO wait time, there never seems to be any spike in
system time. The anon_vma lock contention appears to be resolved.
[akpm@linux-foundation.org: cleanups]
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make sure compiler won't do weird things with limits. E.g. fetching them
twice may return 2 different values after writable limits are implemented.
I.e. either use rlimit helpers added in
3e10e716ab ("resource: add helpers for
fetching rlimits") or ACCESS_ONCE if not applicable.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Take the check for being able to expand vma in place into a separate
helper.
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Take the MREMAP_FIXED into a separate helper, simplify the living
hell out of conditions in both cases.
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Take locating vma and checks on it to a separate helper (it will be
shared between MREMAP_FIXED/non-MREMAP_FIXED cases when we split
them in the next patch)
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Introduce new truncate helpers truncate_pagecache and inode_newsize_ok.
vmtruncate is also consolidated from mm/memory.c and mm/nommu.c and
into mm/truncate.c.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
mremap move's use of ksm_madvise() was assuming -ENOMEM on failure,
because ksm_madvise used to say -EAGAIN for that; but ksm_madvise now says
-ENOMEM (letting madvise convert that to -EAGAIN), and can also say
-ERESTARTSYS when signalled: so pass the error from ksm_madvise.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
KSM's scan allows for user pages to be COWed or unmapped at any time,
without requiring any notification. But its stable tree does assume that
when it finds a KSM page where it placed a KSM page, then it is the same
KSM page that it placed there.
mremap move could break that assumption: if an area containing a KSM page
was unmapped, then an area containing a different KSM page was moved with
mremap into the place of the original, before KSM's scan came around to
notice. That could then poison a node of the stable tree, so that memcmps
would "lie" and upset the ordering of the tree.
Probably noone will ever need mremap move on a VM_MERGEABLE area; except
that prohibiting it would make trouble for schemes in which we try making
everything VM_MERGEABLE e.g. for testing: an mremap which normally works
would then fail mysteriously.
There's no need to go to any trouble, such as re-sorting KSM's list of
rmap_items to match the new layout: simply unmerge the area to COW all its
KSM pages before moving, but leave VM_MERGEABLE on so that they're
remerged later.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Chris Wright <chrisw@redhat.com>
Signed-off-by: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Convert all system calls to return a long. This should be a NOP since all
converted types should have the same size anyway.
With the exception of sys_exit_group which returned void. But that doesn't
matter since the system call doesn't return.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Originally by Nick Piggin <npiggin@suse.de>
Remove mlocked pages from the LRU using "unevictable infrastructure"
during mmap(), munmap(), mremap() and truncate(). Try to move back to
normal LRU lists on munmap() when last mlocked mapping removed. Remove
PageMlocked() status when page truncated from file.
[akpm@linux-foundation.org: cleanup]
[kamezawa.hiroyu@jp.fujitsu.com: fix double unlock_page()]
[kosaki.motohiro@jp.fujitsu.com: split LRU: munlock rework]
[lee.schermerhorn@hp.com: mlock: fix __mlock_vma_pages_range comment block]
[akpm@linux-foundation.org: remove bogus kerneldoc token]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamewzawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Get rid of sparse related warnings from places that use integer as NULL
pointer.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org>
Cc: Andi Kleen <ak@suse.de>
Cc: Jeff Garzik <jeff@garzik.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Ian Kent <raven@themaw.net>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Davide Libenzi <davidel@xmailserver.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove the arg+env limit of MAX_ARG_PAGES by copying the strings directly from
the old mm into the new mm.
We create the new mm before the binfmt code runs, and place the new stack at
the very top of the address space. Once the binfmt code runs and figures out
where the stack should be, we move it downwards.
It is a bit peculiar in that we have one task with two mm's, one of which is
inactive.
[a.p.zijlstra@chello.nl: limit stack size]
Signed-off-by: Ollie Wild <aaw@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: <linux-arch@vger.kernel.org>
Cc: Hugh Dickins <hugh@veritas.com>
[bunk@stusta.de: unexport bprm_mm_init]
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a new security check on mmap operations to see if the user is attempting
to mmap to low area of the address space. The amount of space protected is
indicated by the new proc tunable /proc/sys/vm/mmap_min_addr and defaults to
0, preserving existing behavior.
This patch uses a new SELinux security class "memprotect." Policy already
contains a number of allow rules like a_t self:process * (unconfined_t being
one of them) which mean that putting this check in the process class (its
best current fit) would make it useless as all user processes, which we also
want to protect against, would be allowed. By taking the memprotect name of
the new class it will also make it possible for us to move some of the other
memory protect permissions out of 'process' and into the new class next time
we bump the policy version number (which I also think is a good future idea)
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Acked-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
Nick Piggin points out that page accounting on MIPS multiple ZERO_PAGEs
is not maintained by its move_pte, and could lead to freeing a ZERO_PAGE.
Instead of complicating that move_pte, just forget the minor optimization
when mremapping, and change the one thing which needed it for correctness
- filemap_xip use ZERO_PAGE(0) throughout instead of according to address.
[ "There is no block device driver one could use for XIP on mips
platforms" - Carsten Otte ]
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Andrew Morton <akpm@osdl.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Implement lazy MMU update hooks which are SMP safe for both direct and shadow
page tables. The idea is that PTE updates and page invalidations while in
lazy mode can be batched into a single hypercall. We use this in VMI for
shadow page table synchronization, and it is a win. It also can be used by
PPC and for direct page tables on Xen.
For SMP, the enter / leave must happen under protection of the page table
locks for page tables which are being modified. This is because otherwise,
you end up with stale state in the batched hypercall, which other CPUs can
race ahead of. Doing this under the protection of the locks guarantees the
synchronization is correct, and also means that spurious faults which are
generated during this window by remote CPUs are properly handled, as the page
fault handler must re-check the PTE under protection of the same lock.
Signed-off-by: Zachary Amsden <zach@vmware.com>
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Teach special (recursive) locking code to the lock validator. Has no effect
on non-lockdep kernels.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
- Move capable() from sched.h to capability.h;
- Use <linux/capability.h> where capable() is used
(in include/, block/, ipc/, kernel/, a few drivers/,
mm/, security/, & sound/;
many more drivers/ to go)
Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The logic that decides that a fork() might be able to avoid copying a VM
area when it can be re-created by page faults didn't know about the new
vm_insert_page() case.
Also make some things a bit more anal wrt VM_PFNMAP.
Pointed out by Hugh Dickins <hugh@veritas.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with
a many-threaded application which concurrently initializes different parts of
a large anonymous area.
This patch corrects that, by using a separate spinlock per page table page, to
guard the page table entries in that page, instead of using the mm's single
page_table_lock. (But even then, page_table_lock is still used to guard page
table allocation, and anon_vma allocation.)
In this implementation, the spinlock is tucked inside the struct page of the
page table page: with a BUILD_BUG_ON in case it overflows - which it would in
the case of 32-bit PA-RISC with spinlock debugging enabled.
Splitting the lock is not quite for free: another cacheline access. Ideally,
I suppose we would use split ptlock only for multi-threaded processes on
multi-cpu machines; but deciding that dynamically would have its own costs.
So for now enable it by config, at some number of cpus - since the Kconfig
language doesn't support inequalities, let preprocessor compare that with
NR_CPUS. But I don't think it's worth being user-configurable: for good
testing of both split and unsplit configs, split now at 4 cpus, and perhaps
change that to 8 later.
There is a benefit even for singly threaded processes: kswapd can be attacking
one part of the mm while another part is busy faulting.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Second step in pushing down the page_table_lock. Remove the temporary
bridging hack from __pud_alloc, __pmd_alloc, __pte_alloc: expect callers not
to hold page_table_lock, whether it's on init_mm or a user mm; take
page_table_lock internally to check if a racing task already allocated.
Convert their callers from common code. But avoid coming back to change them
again later: instead of moving the spin_lock(&mm->page_table_lock) down,
switch over to new macros pte_alloc_map_lock and pte_unmap_unlock, which
encapsulate the mapping+locking and unlocking+unmapping together, and in the
end may use alternatives to the mm page_table_lock itself.
These callers all hold mmap_sem (some exclusively, some not), so at no level
can a page table be whipped away from beneath them; and pte_alloc uses the
"atomic" pmd_present to test whether it needs to allocate. It appears that on
all arches we can safely descend without page_table_lock.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
It seems odd to me that, whereas pud_alloc and pmd_alloc test inline, only
calling out-of-line __pud_alloc __pmd_alloc if allocation needed,
pte_alloc_map and pte_alloc_kernel are entirely out-of-line. Though it does
add a little to kernel size, change them to macros testing inline, calling
__pte_alloc or __pte_alloc_kernel to allocate out-of-line. Mark none of them
as fastcalls, leave that to CONFIG_REGPARM or not.
It also seems more natural for the out-of-line functions to leave the offset
calculation and map to the inline, which has to do it anyway for the common
case. At least mremap move wants __pte_alloc without _map.
Macros rather than inline functions, certainly to avoid the header file issues
which arise from CONFIG_HIGHPTE needing kmap_types.h, but also in case any
architectures I haven't built would have other such problems.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
update_mem_hiwater has attracted various criticisms, in particular from those
concerned with mm scalability. Originally it was called whenever rss or
total_vm got raised. Then many of those callsites were replaced by a timer
tick call from account_system_time. Now Frank van Maarseveen reports that to
be found inadequate. How about this? Works for Frank.
Replace update_mem_hiwater, a poor combination of two unrelated ops, by macros
update_hiwater_rss and update_hiwater_vm. Don't attempt to keep
mm->hiwater_rss up to date at timer tick, nor every time we raise rss (usually
by 1): those are hot paths. Do the opposite, update only when about to lower
rss (usually by many), or just before final accounting in do_exit. Handle
mm->hiwater_vm in the same way, though it's much less of an issue. Demand
that whoever collects these hiwater statistics do the work of taking the
maximum with rss or total_vm.
And there has been no collector of these hiwater statistics in the tree. The
new convention needs an example, so match Frank's usage by adding a VmPeak
line above VmSize to /proc/<pid>/status, and also a VmHWM line above VmRSS
(High-Water-Mark or High-Water-Memory).
There was a particular anomaly during mremap move, that hiwater_vm might be
captured too high. A fleeting such anomaly remains, but it's quickly
corrected now, whereas before it would stick.
What locking? None: if the app is racy then these statistics will be racy,
it's not worth any overhead to make them exact. But whenever it suits,
hiwater_vm is updated under exclusive mmap_sem, and hiwater_rss under
page_table_lock (for now) or with preemption disabled (later on): without
going to any trouble, minimize the time between reading current values and
updating, to minimize those occasions when a racing thread bumps a count up
and back down in between.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Cleanup: relieve do_mremap from its surfeit of current->mms.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Speeding up mremap's moving of ptes has never been a priority, but the locking
will get more complicated shortly, and is already too baroque.
Scrap the current one-by-one moving, do an extent at a time: curtailed by end
of src and dst pmds (have to use PMD_SIZE: the way pmd_addr_end gets elided
doesn't match this usage), and by latency considerations.
One nice property of the old method is lost: it never allocated a page table
unless absolutely necessary, so you could free empty page tables by mremapping
to and fro. Whereas this way, it allocates a dst table wherever there was a
src table. I keep diving in to reinstate the old behaviour, then come out
preferring not to clutter how it now is.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>