* 'llseek' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/bkl:
vfs: make no_llseek the default
vfs: don't use BKL in default_llseek
llseek: automatically add .llseek fop
libfs: use generic_file_llseek for simple_attr
mac80211: disallow seeks in minstrel debug code
lirc: make chardev nonseekable
viotape: use noop_llseek
raw: use explicit llseek file operations
ibmasmfs: use generic_file_llseek
spufs: use llseek in all file operations
arm/omap: use generic_file_llseek in iommu_debug
lkdtm: use generic_file_llseek in debugfs
net/wireless: use generic_file_llseek in debugfs
drm: use noop_llseek
All file_operations should get a .llseek operation so we can make
nonseekable_open the default for future file operations without a
.llseek pointer.
The three cases that we can automatically detect are no_llseek, seq_lseek
and default_llseek. For cases where we can we can automatically prove that
the file offset is always ignored, we use noop_llseek, which maintains
the current behavior of not returning an error from a seek.
New drivers should normally not use noop_llseek but instead use no_llseek
and call nonseekable_open at open time. Existing drivers can be converted
to do the same when the maintainer knows for certain that no user code
relies on calling seek on the device file.
The generated code is often incorrectly indented and right now contains
comments that clarify for each added line why a specific variant was
chosen. In the version that gets submitted upstream, the comments will
be gone and I will manually fix the indentation, because there does not
seem to be a way to do that using coccinelle.
Some amount of new code is currently sitting in linux-next that should get
the same modifications, which I will do at the end of the merge window.
Many thanks to Julia Lawall for helping me learn to write a semantic
patch that does all this.
===== begin semantic patch =====
// This adds an llseek= method to all file operations,
// as a preparation for making no_llseek the default.
//
// The rules are
// - use no_llseek explicitly if we do nonseekable_open
// - use seq_lseek for sequential files
// - use default_llseek if we know we access f_pos
// - use noop_llseek if we know we don't access f_pos,
// but we still want to allow users to call lseek
//
@ open1 exists @
identifier nested_open;
@@
nested_open(...)
{
<+...
nonseekable_open(...)
...+>
}
@ open exists@
identifier open_f;
identifier i, f;
identifier open1.nested_open;
@@
int open_f(struct inode *i, struct file *f)
{
<+...
(
nonseekable_open(...)
|
nested_open(...)
)
...+>
}
@ read disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ read_no_fpos disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
... when != off
}
@ write @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ write_no_fpos @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
... when != off
}
@ fops0 @
identifier fops;
@@
struct file_operations fops = {
...
};
@ has_llseek depends on fops0 @
identifier fops0.fops;
identifier llseek_f;
@@
struct file_operations fops = {
...
.llseek = llseek_f,
...
};
@ has_read depends on fops0 @
identifier fops0.fops;
identifier read_f;
@@
struct file_operations fops = {
...
.read = read_f,
...
};
@ has_write depends on fops0 @
identifier fops0.fops;
identifier write_f;
@@
struct file_operations fops = {
...
.write = write_f,
...
};
@ has_open depends on fops0 @
identifier fops0.fops;
identifier open_f;
@@
struct file_operations fops = {
...
.open = open_f,
...
};
// use no_llseek if we call nonseekable_open
////////////////////////////////////////////
@ nonseekable1 depends on !has_llseek && has_open @
identifier fops0.fops;
identifier nso ~= "nonseekable_open";
@@
struct file_operations fops = {
... .open = nso, ...
+.llseek = no_llseek, /* nonseekable */
};
@ nonseekable2 depends on !has_llseek @
identifier fops0.fops;
identifier open.open_f;
@@
struct file_operations fops = {
... .open = open_f, ...
+.llseek = no_llseek, /* open uses nonseekable */
};
// use seq_lseek for sequential files
/////////////////////////////////////
@ seq depends on !has_llseek @
identifier fops0.fops;
identifier sr ~= "seq_read";
@@
struct file_operations fops = {
... .read = sr, ...
+.llseek = seq_lseek, /* we have seq_read */
};
// use default_llseek if there is a readdir
///////////////////////////////////////////
@ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier readdir_e;
@@
// any other fop is used that changes pos
struct file_operations fops = {
... .readdir = readdir_e, ...
+.llseek = default_llseek, /* readdir is present */
};
// use default_llseek if at least one of read/write touches f_pos
/////////////////////////////////////////////////////////////////
@ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read.read_f;
@@
// read fops use offset
struct file_operations fops = {
... .read = read_f, ...
+.llseek = default_llseek, /* read accesses f_pos */
};
@ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write.write_f;
@@
// write fops use offset
struct file_operations fops = {
... .write = write_f, ...
+ .llseek = default_llseek, /* write accesses f_pos */
};
// Use noop_llseek if neither read nor write accesses f_pos
///////////////////////////////////////////////////////////
@ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
identifier write_no_fpos.write_f;
@@
// write fops use offset
struct file_operations fops = {
...
.write = write_f,
.read = read_f,
...
+.llseek = noop_llseek, /* read and write both use no f_pos */
};
@ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write_no_fpos.write_f;
@@
struct file_operations fops = {
... .write = write_f, ...
+.llseek = noop_llseek, /* write uses no f_pos */
};
@ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
@@
struct file_operations fops = {
... .read = read_f, ...
+.llseek = noop_llseek, /* read uses no f_pos */
};
@ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
@@
struct file_operations fops = {
...
+.llseek = noop_llseek, /* no read or write fn */
};
===== End semantic patch =====
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Julia Lawall <julia@diku.dk>
Cc: Christoph Hellwig <hch@infradead.org>
The enums for FTRACE_ENABLE_MCOUNT and FTRACE_DISABLE_MCOUNT were
used as commands to ftrace_run_update_code(). But these commands
were used by the old nasty ftrace daemon that has long been slain.
This is a clean up patch to remove the references to these enums
and simplify the code a little.
Reported-by: Wu Zhangjin <wuzhangjin@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
If we do:
# cd /sys/kernel/debug
# echo 'do_IRQ:traceon schedule:traceon sys_write:traceon' > \
set_ftrace_filter
# cat set_ftrace_filter
We get the following output:
#### all functions enabled ####
sys_write:traceon:unlimited
schedule:traceon:unlimited
do_IRQ:traceon:unlimited
This outputs two lists. One is the fact that all functions are
currently enabled for function tracing, the other has three probed
functions, which happen to have 'traceon' as their commands.
Currently, when reading the first list (functions enabled) the
seq_file code will receive a "NULL" from the t_next() function
causing it to exit early. This makes "read()" from userspace stop
reading the code at this boarder. Although read is allowed to do this,
some (broken) applications might consider this an end of file and
stop early.
This patch adds the start of the second list to t_next() when it
finishes the first list. It is a simple change and gives the
set_ftrace_filter file nicer reading ability.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
This patch keeps track of the index within the elements of
set_ftrace_filter and if the position goes backwards, it nicely
resets and starts from the beginning again.
This allows for lseek and pread to work properly now.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The set_ftrace_filter uses seq_file and reads from two lists. The
pointer returned by t_next() can either be of type struct dyn_ftrace
or struct ftrace_func_probe. If there is a bug (there was one)
the wrong pointer may be used and the reference can cause an oops.
This patch makes t_next() and friends only return the iterator structure
which now has a pointer of type struct dyn_ftrace and struct
ftrace_func_probe. The t_show() can now test if the pointer is NULL or
not and if the pointer exists, it is guaranteed to be of the correct type.
Now if there's a bug, only wrong data will be shown but not an oops.
Cc: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
After the filtered functions are read, the probed functions are read
from the hash in set_ftrace_filter. When the hashed probed functions
are read, the *pos passed in is reset. Instead of modifying the pos
given to the read function, just record the pos where the filtered
functions ended and subtract from that.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Be sure to avoid entering t_show() with FTRACE_ITER_HASH set without
having properly started the iterator to iterate the hash. This case is
degenerate and, as discovered by Robert Swiecki, can cause t_hash_show()
to misuse a pointer. This causes a NULL ptr deref with possible security
implications. Tracked as CVE-2010-3079.
Cc: Robert Swiecki <swiecki@google.com>
Cc: Eugene Teo <eugene@redhat.com>
Cc: <stable@kernel.org>
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Reading the file set_ftrace_filter does three things.
1) shows whether or not filters are set for the function tracer
2) shows what functions are set for the function tracer
3) shows what triggers are set on any functions
3 is independent from 1 and 2.
The way this file currently works is that it is a state machine,
and as you read it, it may change state. But this assumption breaks
when you use lseek() on the file. The state machine gets out of sync
and the t_show() may use the wrong pointer and cause a kernel oops.
Luckily, this will only kill the app that does the lseek, but the app
dies while holding a mutex. This prevents anyone else from using the
set_ftrace_filter file (or any other function tracing file for that matter).
A real fix for this is to rewrite the code, but that is too much for
a -rc release or stable. This patch simply disables llseek on the
set_ftrace_filter() file for now, and we can do the proper fix for the
next major release.
Reported-by: Robert Swiecki <swiecki@google.com>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Tavis Ormandy <taviso@google.com>
Cc: Eugene Teo <eugene@redhat.com>
Cc: vendor-sec@lst.de
Cc: <stable@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
While we are reading trace_stat/functionX and someone just
disabled function_profile at that time, we can trigger this:
divide error: 0000 [#1] PREEMPT SMP
...
EIP is at function_stat_show+0x90/0x230
...
This fix just takes the ftrace_profile_lock and checks if
rec->counter is 0. If it's 0, we know the profile buffer
has been reset.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: stable@kernel.org
LKML-Reference: <4C723644.4040708@cn.fujitsu.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The ftrace_preempt_disable/enable functions were to address a
recursive race caused by the function tracer. The function tracer
traces all functions which makes it easily susceptible to recursion.
One area was preempt_enable(). This would call the scheduler and
the schedulre would call the function tracer and loop.
(So was it thought).
The ftrace_preempt_disable/enable was made to protect against recursion
inside the scheduler by storing the NEED_RESCHED flag. If it was
set before the ftrace_preempt_disable() it would not call schedule
on ftrace_preempt_enable(), thinking that if it was set before then
it would have already scheduled unless it was already in the scheduler.
This worked fine except in the case of SMP, where another task would set
the NEED_RESCHED flag for a task on another CPU, and then kick off an
IPI to trigger it. This could cause the NEED_RESCHED to be saved at
ftrace_preempt_disable() but the IPI to arrive in the the preempt
disabled section. The ftrace_preempt_enable() would not call the scheduler
because the flag was already set before entring the section.
This bug would cause a missed preemption check and cause lower latencies.
Investigating further, I found that the recusion caused by the function
tracer was not due to schedule(), but due to preempt_schedule(). Now
that preempt_schedule is completely annotated with notrace, the recusion
no longer is an issue.
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
This patch adds data to be passed to tracepoint callbacks.
The created functions from DECLARE_TRACE() now need a mandatory data
parameter. For example:
DECLARE_TRACE(mytracepoint, int value, value)
Will create the register function:
int register_trace_mytracepoint((void(*)(void *data, int value))probe,
void *data);
As the first argument, all callbacks (probes) must take a (void *data)
parameter. So a callback for the above tracepoint will look like:
void myprobe(void *data, int value)
{
}
The callback may choose to ignore the data parameter.
This change allows callbacks to register a private data pointer along
with the function probe.
void mycallback(void *data, int value);
register_trace_mytracepoint(mycallback, mydata);
Then the mycallback() will receive the "mydata" as the first parameter
before the args.
A more detailed example:
DECLARE_TRACE(mytracepoint, TP_PROTO(int status), TP_ARGS(status));
/* In the C file */
DEFINE_TRACE(mytracepoint, TP_PROTO(int status), TP_ARGS(status));
[...]
trace_mytracepoint(status);
/* In a file registering this tracepoint */
int my_callback(void *data, int status)
{
struct my_struct my_data = data;
[...]
}
[...]
my_data = kmalloc(sizeof(*my_data), GFP_KERNEL);
init_my_data(my_data);
register_trace_mytracepoint(my_callback, my_data);
The same callback can also be registered to the same tracepoint as long
as the data registered is different. Note, the data must also be used
to unregister the callback:
unregister_trace_mytracepoint(my_callback, my_data);
Because of the data parameter, tracepoints declared this way can not have
no args. That is:
DECLARE_TRACE(mytracepoint, TP_PROTO(void), TP_ARGS());
will cause an error.
If no arguments are needed, a new macro can be used instead:
DECLARE_TRACE_NOARGS(mytracepoint);
Since there are no arguments, the proto and args fields are left out.
This is part of a series to make the tracepoint footprint smaller:
text data bss dec hex filename
4913961 1088356 861512 6863829 68bbd5 vmlinux.orig
4914025 1088868 861512 6864405 68be15 vmlinux.class
4918492 1084612 861512 6864616 68bee8 vmlinux.tracepoint
Again, this patch also increases the size of the kernel, but
lays the ground work for decreasing it.
v5: Fixed net/core/drop_monitor.c to handle these updates.
v4: Moved the DECLARE_TRACE() DECLARE_TRACE_NOARGS out of the
#ifdef CONFIG_TRACE_POINTS, since the two are the same in both
cases. The __DECLARE_TRACE() is what changes.
Thanks to Frederic Weisbecker for pointing this out.
v3: Made all register_* functions require data to be passed and
all callbacks to take a void * parameter as its first argument.
This makes the calling functions comply with C standards.
Also added more comments to the modifications of DECLARE_TRACE().
v2: Made the DECLARE_TRACE() have the ability to pass arguments
and added a new DECLARE_TRACE_NOARGS() for tracepoints that
do not need any arguments.
Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Masami Hiramatsu <mhiramat@redhat.com>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Neil Horman <nhorman@tuxdriver.com>
Cc: David S. Miller <davem@davemloft.net>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
struct rq isn't visible outside of sched.o so its near useless to
expose the pointer, also there are no users of it, so remove it.
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1272997616.1642.207.camel@laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When sleep_time is off the function profiler ignores the time that a task
is scheduled out. When the task is scheduled out a timestamp is taken.
When the task is scheduled back in, the timestamp is compared to the
current time and the saved calltimes are adjusted accordingly.
But when stopping the function profiler, the sched switch hook that
does this adjustment was stopped before shutting down the tracer.
This allowed some tasks to not get their timestamps set when they
scheduled out. When the function profiler started again, this would
skew the times of the scheduler functions.
This patch moves the stopping of the sched switch to after the function
profiler is stopped. It also ignores zero set calltimes, which may
happen on start up.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
When combined with function graph tracing the ftrace function profiler
also prints the average run time of functions. While this gives us some
good information, it doesn't tell us anything about the variance of the
run times of the function. This change prints out the s^2 sample
standard deviation alongside the average.
This change adds one entry to the profile record structure. This
increases the memory footprint of the function profiler by 1/3 on a
32-bit system, and by 1/5 on a 64-bit system when function graphing is
enabled, though the memory is only allocated when the profiler is turned
on. During the profiling, one extra line of code adds the squared
calltime to the new record entry, so this should not adversly affect
performance.
Note that the square of the sample standard deviation is printed because
there is no sqrt implementation for unsigned long long in the kernel.
Signed-off-by: Chase Douglas <chase.douglas@canonical.com>
LKML-Reference: <1272304925-2436-1-git-send-email-chase.douglas@canonical.com>
[ fixed comment about ns^2 -> us^2 conversion ]
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
* 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
locking: Make sparse work with inline spinlocks and rwlocks
x86/mce: Fix RCU lockdep splats
rcu: Increase RCU CPU stall timeouts if PROVE_RCU
ftrace: Replace read_barrier_depends() with rcu_dereference_raw()
rcu: Suppress RCU lockdep warnings during early boot
rcu, ftrace: Fix RCU lockdep splat in ftrace_perf_buf_prepare()
rcu: Suppress __mpol_dup() false positive from RCU lockdep
rcu: Make rcu_read_lock_sched_held() handle !PREEMPT
rcu: Add control variables to lockdep_rcu_dereference() diagnostics
rcu, cgroup: Relax the check in task_subsys_state() as early boot is now handled by lockdep-RCU
rcu: Use wrapper function instead of exporting tasklist_lock
sched, rcu: Fix rcu_dereference() for RCU-lockdep
rcu: Make task_subsys_state() RCU-lockdep checks handle boot-time use
rcu: Fix holdoff for accelerated GPs for last non-dynticked CPU
x86/gart: Unexport gart_iommu_aperture
Fix trivial conflicts in kernel/trace/ftrace.c
If the graph tracer is active, and a task is forked but the allocating of
the processes graph stack fails, it can cause crash later on.
This is due to the temporary stack being NULL, but the curr_ret_stack
variable is copied from the parent. If it is not -1, then in
ftrace_graph_probe_sched_switch() the following:
for (index = next->curr_ret_stack; index >= 0; index--)
next->ret_stack[index].calltime += timestamp;
Will cause a kernel OOPS.
Found with Li Zefan's ftrace_stress_test.
Cc: stable@kernel.org
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Replace the calls to read_barrier_depends() in
ftrace_list_func() with rcu_dereference_raw() to improve
readability. The reason that we use rcu_dereference_raw() here
is that removed entries are never freed, instead they are simply
leaked. This is one of a very few cases where use of
rcu_dereference_raw() is the long-term right answer. And I
don't yet know of any others. ;-)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1267830207-9474-1-git-send-email-paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The declaration of ftrace_set_func() is at the start of the ftrace.c file
and wrapped with a #ifdef CONFIG_FUNCTION_GRAPH condition. If function
graph tracing is enabled but CONFIG_DYNAMIC_FTRACE is not, a warning
about that function being declared static and unused is given.
This really should have been placed within the CONFIG_FUNCTION_GRAPH
condition that uses ftrace_set_func().
Moving the declaration down fixes the warning and makes the code cleaner.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
I don't see why we can only clear all functions from the filter.
After patching:
# echo sys_open > set_graph_function
# echo sys_close >> set_graph_function
# cat set_graph_function
sys_open
sys_close
# echo '!sys_close' >> set_graph_function
# cat set_graph_function
sys_open
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
LKML-Reference: <4B726388.2000408@cn.fujitsu.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Remove record freezing. Because kprobes never puts probe on
ftrace's mcount call anymore, it doesn't need ftrace to check
whether kprobes on it.
Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com>
Cc: systemtap <systemtap@sources.redhat.com>
Cc: DLE <dle-develop@lists.sourceforge.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: przemyslaw@pawelczyk.it
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <20100202214925.4694.73469.stgit@dhcp-100-2-132.bos.redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Introducing *_text_reserved functions for checking the text
address range is partially reserved or not. This patch provides
checking routines for x86 smp alternatives and dynamic ftrace.
Since both functions modify fixed pieces of kernel text, they
should reserve and protect those from other dynamic text
modifier, like kprobes.
This will also be extended when introducing other subsystems
which modify fixed pieces of kernel text. Dynamic text modifiers
should avoid those.
Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com>
Cc: systemtap <systemtap@sources.redhat.com>
Cc: DLE <dle-develop@lists.sourceforge.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: przemyslaw@pawelczyk.it
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Jim Keniston <jkenisto@us.ibm.com>
Cc: Mathieu Desnoyers <compudj@krystal.dyndns.org>
Cc: Jason Baron <jbaron@redhat.com>
LKML-Reference: <20100202214911.4694.16587.stgit@dhcp-100-2-132.bos.redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
# echo 'do_open' > set_graph_function
# echo 'do_open' >> set_graph_function
bash: echo: write error: Invalid argument
Make it valid to write the same value to set_graph_function,
which is consistent with set_ftrace_filter interface.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
LKML-reference: <4B1DC4E1.1060303@cn.fujitsu.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
I found a weird behavior:
# echo 'fuse:*' > set_ftrace_filter
bash: echo: write error: Invalid argument
# cat set_ftrace_filter
fuse_dev_fasync
fuse_dev_poll
fuse_copy_do
We should call trace_parser_clear() no matter ftrace_process_regex()
returns 0 or -errno, otherwise we will actually take the unaccepted
records from ftrace_regex_release().
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
LKML-Reference: <4B1DC4D2.3000406@cn.fujitsu.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Currently it doesn't warn user on invald value:
# echo nonexist_symbol > set_ftrace_filter
or:
# echo 'nonexist_symbol:mod:fuse' > set_ftrace_filter
Better make it return failure.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
LKML-Reference: <4B1DC4BF.2070003@cn.fujitsu.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
* 'tracing-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (40 commits)
tracing: Separate raw syscall from syscall tracer
ring-buffer-benchmark: Add parameters to set produce/consumer priorities
tracing, function tracer: Clean up strstrip() usage
ring-buffer benchmark: Run producer/consumer threads at nice +19
tracing: Remove the stale include/trace/power.h
tracing: Only print objcopy version warning once from recordmcount
tracing: Prevent build warning: 'ftrace_graph_buf' defined but not used
ring-buffer: Move access to commit_page up into function used
tracing: do not disable interrupts for trace_clock_local
ring-buffer: Add multiple iterations between benchmark timestamps
kprobes: Sanitize struct kretprobe_instance allocations
tracing: Fix to use __always_unused attribute
compiler: Introduce __always_unused
tracing: Exit with error if a weak function is used in recordmcount.pl
tracing: Move conditional into update_funcs() in recordmcount.pl
tracing: Add regex for weak functions in recordmcount.pl
tracing: Move mcount section search to front of loop in recordmcount.pl
tracing: Fix objcopy revision check in recordmcount.pl
tracing: Check absolute path of input file in recordmcount.pl
tracing: Correct the check for number of arguments in recordmcount.pl
...
Clean up strstrip() usage - which also addresses this build warning:
kernel/trace/ftrace.c: In function 'ftrace_pid_write':
kernel/trace/ftrace.c:3004: warning: ignoring return value of 'strstrip', declared with attribute warn_unused_result
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Prevent build warning when CONFIG_FUNCTION_GRAPH_TRACER is not set.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
LKML-Reference: <4AF24381.5060307@cn.fujitsu.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
When a command is passed to the set_ftrace_filter, then
the ftrace_regex_lock is still held going back to user space.
# echo 'do_open : foo' > set_ftrace_filter
(still holding ftrace_regex_lock when returning to user space!)
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
LKML-Reference: <4AEF7F8A.3080300@cn.fujitsu.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Instead of directly updating filp->f_pos we should update the *ppos
argument. The filp->f_pos gets updated within the file_pos_write()
function called from sys_write().
Signed-off-by: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <20091023233646.399670810@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We are using strncpy in the wrong way to copy the ftrace_graph_filter
boot param because we pass the buffer size instead of the max string
size it can contain (buffer size - 1). The end result might not be
NULL terminated as we are abusing the max string size.
Lets use strlcpy() instead.
Reported-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
I was debuging some module using "function" and "function_graph"
tracers and noticed, that if you load module after you enabled
tracing, the module's hooks will convert only to NOP instructions.
The attached patch enables modules' hooks if there's function trace
allready on, thus allowing to trace module functions.
Signed-off-by: Jiri Olsa <jolsa@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
LKML-Reference: <20091013203425.896285120@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Add a command line parameter to allow limiting the function graphs
that are traced on boot up from the given top-level callers , when
ftrace=function_graph is specified.
This patch adds the following command line option:
ftrace_graph_filter=function-list
Where function-list is a comma separated list of functions to filter.
[fweisbec@gmail.com: picked the documentation changes from the v2 patch]
Signed-off-by: Stefan Assmann <sassmann@redhat.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
LKML-Reference: <4AD2DEB9.2@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
* 'tracing-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
tracing: user local buffer variable for trace branch tracer
tracing: fix warning on kernel/trace/trace_branch.c andtrace_hw_branches.c
ftrace: check for failure for all conversions
tracing: correct module boundaries for ftrace_release
tracing: fix transposed numbers of lock_depth and preempt_count
trace: Fix missing assignment in trace_ctxwake_*
tracing: Use free_percpu instead of kfree
tracing: Check total refcount before releasing bufs in profile_enable failure
Due to legacy code from back when the dynamic tracer used a daemon,
only core kernel code was checking for failures. This is no longer
the case. We must check for failures any time we perform text modifications.
Cc: stable@kernel.org
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
When the module is about the unload we release its call records.
The ftrace_release function was given wrong values representing
the module core boundaries, thus not releasing its call records.
Plus making ftrace_release function module specific.
Signed-off-by: Jiri Olsa <jolsa@redhat.com>
LKML-Reference: <1254934835-363-3-git-send-email-jolsa@redhat.com>
Cc: stable@kernel.org
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
When CONFIG_HAVE_FUNCTION_TRACE_MCOUNT_TEST is enabled
__ftrace_trace_function contains the current trace function, not
ftrace_trace_function.
In ftrace_update_pid_func() we currently incorrectly assign the
value of ftrace_trace_function to __ftrace_trace_funcion before
returning.
Without this patch it is possible to execute an infinite recursion
whereby ftrace_test_stop_func() calls __ftrace_trace_function,
which was assigned ftrace_test_stop_func() in
ftrace_update_pid_func().
Signed-off-by: Matt Fleming <matthew.fleming@imgtec.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <1254152581-18347-1-git-send-email-matt@console-pimps.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>