Commit Graph

261 Commits

Author SHA1 Message Date
Christoph Hellwig
cb8e70901d Btrfs: Fix subvolume creation locking rules
Creating a subvolume is in many ways like a normal VFS ->mkdir, and we
really need to play with the VFS topology locking rules.  So instead of
just creating the snapshot on disk and then later getting rid of
confliting aliases do it correctly from the start.  This will become
especially important once we allow for subvolumes anywhere in the tree,
and not just below a hidden root.

Note that snapshots will need the same treatment, but do to the delay
in creating them we can't do it currently.  Chris promised to fix that
issue, so I'll wait on that.

Signed-off-by: Christoph Hellwig <hch@lst.de>
2008-10-09 13:39:39 -04:00
Chris Mason
833023e46c Btrfs: Rev the disk format for the new back reference format
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-10-09 11:55:03 -04:00
Yan Zheng
3bb1a1bc42 Btrfs: Remove offset field from struct btrfs_extent_ref
The offset field in struct btrfs_extent_ref records the position
inside file that file extent is referenced by. In the new back
reference system, tree leaves holding references to file extent
are recorded explicitly. We can scan these tree leaves very quickly, so the
offset field is not required.

This patch also makes the back reference system check the objectid
when extents are in deleting.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
2008-10-09 11:46:24 -04:00
Yan Zheng
a76a3cd40c Btrfs: Count space allocated to file in bytes
This patch makes btrfs count space allocated to file in bytes instead
of 512 byte sectors.

Everything else in btrfs uses a byte count instead of sector sizes or
blocks sizes, so this fits better.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
2008-10-09 11:46:29 -04:00
Chris Mason
30c43e2444 Btrfs: remove last_log_alloc allocator optimization
The tree logging code was trying to separate tree log allocations
from normal metadata allocations to improve writeback patterns during
an fsync.

But, the code was not effective and ended up just mixing tree log
blocks with regular metadata.  That seems to be working fairly well,
so the last_log_alloc code can be removed.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-10-03 12:24:01 -04:00
Chris Mason
323ac95bce Btrfs: don't read leaf blocks containing only checksums during truncate
Checksum items take up a significant portion of the metadata for large files.
It is possible to avoid reading them during truncates by checking the keys in
the higher level nodes.

If a given leaf is followed by another leaf where the lowest key is a checksum
item from the same file, we know we can safely delete the leaf without
reading it.

For a 32GB file on a 6 drive raid0 array, Btrfs needs 8s to delete
the file with a cold cache.  It is read bound during the run.

With this change, Btrfs is able to delete the file in 0.5s

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-10-01 19:05:46 -04:00
Chris Mason
d352ac6814 Btrfs: add and improve comments
This improves the comments at the top of many functions.  It didn't
dive into the guts of functions because I was trying to
avoid merging problems with the new allocator and back reference work.

extent-tree.c and volumes.c were both skipped, and there is definitely
more work todo in cleaning and commenting the code.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-29 15:18:18 -04:00
Chris Mason
8c8bee1d7c Btrfs: Wait for IO on the block device inodes of newly added devices
btrfs-vol -a /dev/xxx will zero the first and last two MB of the device.
The kernel code needs to wait for this IO to finish before it adds
the device.

btrfs metadata IO does not happen through the block device inode.  A
separate address space is used, allowing the zero filled buffer heads in
the block device inode to be written to disk after FS metadata starts
going down to the disk via the btrfs metadata inode.

The end result is zero filled metadata blocks after adding new devices
into the filesystem.

The fix is a simple filemap_write_and_wait on the block device inode
before actually inserting it into the pool of available devices.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-29 11:19:10 -04:00
Zheng Yan
1a40e23b95 Btrfs: update space balancing code
This patch updates the space balancing code to utilize the new
backref format.  Before, btrfs-vol -b would break any COW links
on data blocks or metadata.  This was slow and caused the amount
of space used to explode if a large number of snapshots were present.

The new code can keeps the sharing of all data extents and
most of the tree blocks.

To maintain the sharing of data extents, the space balance code uses
a seperate inode hold data extent pointers, then updates the references
to point to the new location.

To maintain the sharing of tree blocks, the space balance code uses
reloc trees to relocate tree blocks in reference counted roots.
There is one reloc tree for each subvol, and all reloc trees share
same root key objectid. Reloc trees are snapshots of the latest
committed roots of subvols (root->commit_root).

To relocate a tree block referenced by a subvol, there are two steps.
COW the block through subvol's reloc tree, then update block pointer in
the subvol to point to the new block. Since all reloc trees share
same root key objectid, doing special handing for tree blocks
owned by them is easy. Once a tree block has been COWed in one
reloc tree, we can use the resulting new block directly when the
same block is required to COW again through other reloc trees.
In this way, relocated tree blocks are shared between reloc trees,
so they are also shared between subvols.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-26 10:09:34 -04:00
Zheng Yan
5b21f2ed3f Btrfs: extent_map and data=ordered fixes for space balancing
* Add an EXTENT_BOUNDARY state bit to keep the writepage code
from merging data extents that are in the process of being
relocated.  This allows us to do accounting for them properly.

* The balancing code relocates data extents indepdent of the underlying
inode.  The extent_map code was modified to properly account for
things moving around (invalidating extent_map caches in the inode).

* Don't take the drop_mutex in the create_subvol ioctl.  It isn't
required.

* Fix walking of the ordered extent list to avoid races with sys_unlink

* Change the lock ordering rules.  Transaction start goes outside
the drop_mutex.  This allows btrfs_commit_transaction to directly
drop the relocation trees.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-26 10:05:38 -04:00
Zheng Yan
e465768938 Btrfs: Add shared reference cache
Btrfs has a cache of reference counts in leaves, allowing it to
avoid reading tree leaves while deleting snapshots.  To reduce
contention with multiple subvolumes, this cache is private to each
subvolume.

This patch adds shared reference cache support. The new space
balancing code plays with multiple subvols at the same time, So
the old per-subvol reference cache is not well suited.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-26 10:04:53 -04:00
Zheng Yan
e856981384 Btrfs: allocator fixes for space balancing update
* Reserved extent accounting:  reserved extents have been
allocated in the rbtrees that track free space but have not
been allocated on disk.  They were never properly accounted for
in the past, making it hard to know how much space was really free.

* btrfs_find_block_group used to return NULL for block groups that
had been removed by the space balancing code.  This made it hard
to account for space during the final stages of a balance run.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-26 10:05:48 -04:00
Chris Mason
2b1f55b0f0 Remove Btrfs compat code for older kernels
Btrfs had compatibility code for kernels back to 2.6.18.  These have
been removed, and will be maintained in a separate backport
git tree from now on.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 15:41:59 -04:00
Zheng Yan
31840ae1a6 Btrfs: Full back reference support
This patch makes the back reference system to explicit record the
location of parent node for all types of extents. The location of
parent node is placed into the offset field of backref key. Every
time a tree block is balanced, the back references for the affected
lower level extents are updated.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:07 -04:00
Josef Bacik
0f9dd46cda Btrfs: free space accounting redo
1) replace the per fs_info extent_io_tree that tracked free space with two
rb-trees per block group to track free space areas via offset and size.  The
reason to do this is because most allocations come with a hint byte where to
start, so we can usually find a chunk of free space at that hint byte to satisfy
the allocation and get good space packing.  If we cannot find free space at or
after the given offset we fall back on looking for a chunk of the given size as
close to that given offset as possible.  When we fall back on the size search we
also try to find a slot as close to the size we want as possible, to avoid
breaking small chunks off of huge areas if possible.

2) remove the extent_io_tree that tracked the block group cache from fs_info and
replaced it with an rb-tree thats tracks block group cache via offset.  also
added a per space_info list that tracks the block group cache for the particular
space so we can lookup related block groups easily.

3) cleaned up the allocation code to make it a little easier to read and a
little less complicated.  Basically there are 3 steps, first look from our
provided hint.  If we couldn't find from that given hint, start back at our
original search start and look for space from there.  If that fails try to
allocate space if we can and start looking again.  If not we're screwed and need
to start over again.

4) small fixes.  there were some issues in volumes.c where we wouldn't allocate
the rest of the disk.  fixed cow_file_range to actually pass the alloc_hint,
which has helped a good bit in making the fs_mark test I run have semi-normal
results as we run out of space.  Generally with data allocations we don't track
where we last allocated from, so everytime we did a data allocation we'd search
through every block group that we have looking for free space.  Now searching a
block group with no free space isn't terribly time consuming, it was causing a
slight degradation as we got more data block groups.  The alloc_hint has fixed
this slight degredation and made things semi-normal.

There is still one nagging problem I'm working on where we will get ENOSPC when
there is definitely plenty of space.  This only happens with metadata
allocations, and only when we are almost full.  So you generally hit the 85%
mark first, but sometimes you'll hit the BUG before you hit the 85% wall.  I'm
still tracking it down, but until then this seems to be pretty stable and make a
significant performance gain.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:07 -04:00
Chris Mason
d0c803c404 Btrfs: Record dirty pages tree-log pages in an extent_io tree
This is the same way the transaction code makes sure that all the
other tree blocks are safely on disk.  There's an extent_io tree
for each root, and any blocks allocated to the tree logs are
recorded in that tree.

At tree-log sync, the extent_io tree is walked to flush down the
dirty pages and wait for them.

The main benefit is less time spent walking the tree log and skipping
clean pages, and getting sequential IO down to the drive.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:07 -04:00
Zheng Yan
6527cdbe68 Btrfs: Update find free objectid function for orphan cleanup code
Orphan items use BTRFS_ORPHAN_OBJECTID (-5UUL) as key objectid. This
affects the find free objectid functions, inode objectid can easily
overflow after orphan file cleanup.

---

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:07 -04:00
Christoph Hellwig
a237d2a2bd remove unused function btrfs_ilookup
btrfs_ilookup is unused, which is good because a normal filesystem
should never have to use ilookup anyway.  Remove it.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:07 -04:00
Chris Mason
91c0827de2 Btrfs: Rev the disk format
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:07 -04:00
Chris Mason
e02119d5a7 Btrfs: Add a write ahead tree log to optimize synchronous operations
File syncs and directory syncs are optimized by copying their
items into a special (copy-on-write) log tree.  There is one log tree per
subvolume and the btrfs super block points to a tree of log tree roots.

After a crash, items are copied out of the log tree and back into the
subvolume.  See tree-log.c for all the details.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:07 -04:00
Chris Mason
f3f9931e3d Btrfs: Rev the disk format
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:06 -04:00
Balaji Rao
1a54ef8c11 Introduce btrfs_iget helper
Date: Mon, 21 Jul 2008 02:01:04 +0530
This patch introduces a btrfs_iget helper to be used in NFS support.

Signed-off-by: Balaji Rao <balajirrao@gmail.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:06 -04:00
Chris Mason
4854ddd0ed Btrfs: Wait for kernel threads to make progress during async submission
Before this change, btrfs would use a bdi congestion function to make
sure there weren't too many pending async checksum work items.

This change makes the process creating async work items wait instead,
leading to fewer congestion returns from the bdi.  This improves
pdflush background_writeout scanning.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:06 -04:00
Chris Mason
0986fe9eac Btrfs: Count async bios separately from async checksum work items
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:06 -04:00
Eric Sandeen
5036f53868 Btrfs: fix RHEL test for ClearPageFsMisc
Newer RHEL5 kernels define both ClearPageFSMisc and
ClearPageChecked, so test for both before redefining.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
---

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:06 -04:00
Yan Zheng
7ea394f119 Btrfs: Fix nodatacow for the new data=ordered mode
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:06 -04:00
Chris Mason
ea8c281947 Btrfs: Maintain a list of inodes that are delalloc and a way to wait on them
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:06 -04:00
Sage Weil
9ca9ee09c1 Btrfs: fix ioctl-initiated transactions vs wait_current_trans()
Commit 597:466b27332893 (btrfs_start_transaction: wait for commits in
progress) breaks the transaction start/stop ioctls by making
btrfs_start_transaction conditionally wait for the next transaction to
start.  If an application artificially is holding a transaction open,
things deadlock.

This workaround maintains a count of open ioctl-initiated transactions in
fs_info, and avoids wait_current_trans() if any are currently open (in
start_transaction() and btrfs_throttle()).  The start transaction ioctl
uses a new btrfs_start_ioctl_transaction() that _does_ call
wait_current_trans(), effectively pushing the join/wait decision to the
outer ioctl-initiated transaction.

This more or less neuters btrfs_throttle() when ioctl-initiated
transactions are in use, but that seems like a pretty fundamental
consequence of wrapping lots of write()'s in a transaction.  Btrfs has no
way to tell if the application considers a given operation as part of it's
transaction.

Obviously, if the transaction start/stop ioctls aren't being used, there
is no effect on current behavior.

Signed-off-by: Sage Weil <sage@newdream.net>
---
 ctree.h       |    1 +
 ioctl.c       |   12 +++++++++++-
 transaction.c |   18 +++++++++++++-----
 transaction.h |    2 ++
 4 files changed, 27 insertions(+), 6 deletions(-)

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:06 -04:00
Chris Mason
65b51a009e btrfs_search_slot: reduce lock contention by cowing in two stages
A btree block cow has two parts, the first is to allocate a destination
block and the second is to copy the old bock over.

The first part needs locks in the extent allocation tree, and may need to
do IO.  This changeset splits that into a separate function that can be
called without any tree locks held.

btrfs_search_slot is changed to drop its path and start over if it has
to COW a contended block.  This often means that many writers will
pre-alloc a new destination for a the same contended block, but they
cache their prealloc for later use on lower levels in the tree.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:06 -04:00
Chris Mason
61b4944018 Btrfs: Fix streaming read performance with checksumming on
Large streaming reads make for large bios, which means each entry on the
list async work queues represents a large amount of data.  IO
congestion throttling on the device was kicking in before the async
worker threads decided a single thread was busy and needed some help.

The end result was that a streaming read would result in a single CPU
running at 100% instead of balancing the work off to other CPUs.

This patch also changes the pre-IO checksum lookup done by reads to
work on a per-bio basis instead of a per-page.  This results in many
extra btree lookups on large streaming reads.  Doing the checksum lookup
right before bio submit allows us to reuse searches while processing
adjacent offsets.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:05 -04:00
Yan
bcc63abbf3 Btrfs: implement memory reclaim for leaf reference cache
The memory reclaiming issue happens when snapshot exists. In that
case, some cache entries may not be used during old snapshot dropping,
so they will remain in the cache until umount.

The patch adds a field to struct btrfs_leaf_ref to record create time. Besides,
the patch makes all dead roots of a given snapshot linked together in order of
create time. After a old snapshot was completely dropped, we check the dead
root list and remove all cache entries created before the oldest dead root in
the list.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:05 -04:00
Yan Zheng
f321e49103 Btrfs: Update and fix mount -o nodatacow
To check whether a given file extent is referenced by multiple snapshots, the
checker walks down the fs tree through dead root and checks all tree blocks in
the path.

We can easily detect whether a given tree block is directly referenced by other
snapshot. We can also detect any indirect reference from other snapshot by
checking reference's generation. The checker can always detect multiple
references, but can't reliably detect cases of single reference. So btrfs may
do file data cow even there is only one reference.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:05 -04:00
Chris Mason
ab78c84de1 Btrfs: Throttle operations if the reference cache gets too large
A large reference cache is directly related to a lot of work pending
for the cleaner thread.  This throttles back new operations based on
the size of the reference cache so the cleaner thread will be able to keep
up.

Overall, this actually makes the FS faster because the cleaner thread will
be more likely to find things in cache.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:05 -04:00
Chris Mason
017e5369eb Btrfs: Leaf reference cache update
This changes the reference cache to make a single cache per root
instead of one cache per transaction, and to key by the byte number
of the disk block instead of the keys inside.

This makes it much less likely to have cache misses if a snapshot
or something has an extra reference on a higher node or a leaf while
the first transaction that added the leaf into the cache is dropping.

Some throttling is added to functions that free blocks heavily so they
wait for old transactions to drop.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:05 -04:00
Yan Zheng
31153d8128 Btrfs: Add a leaf reference cache
Much of the IO done while dropping snapshots is done looking up
leaves in the filesystem trees to see if they point to any extents and
to drop the references on any extents found.

This creates a cache so that IO isn't required.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:05 -04:00
Chris Mason
3a115f520f Btrfs: Rev the disk format magic
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:05 -04:00
Josef Bacik
7b12876623 Btrfs: Create orphan inode records to prevent lost files after a crash
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:05 -04:00
Josef Bacik
33268eaf0b Btrfs: Add ACL support
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:05 -04:00
Josef Bacik
6099afe88f Btrfs: Remove unused xattr code
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:05 -04:00
Josef Bacik
aec7477b3b Btrfs: Implement new dir index format
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:05 -04:00
Chris Mason
3eaa288527 Btrfs: Fix the defragmention code and the block relocation code for data=ordered
Before setting an extent to delalloc, the code needs to wait for
pending ordered extents.

Also, the relocation code needs to wait for ordered IO before scanning
the block group again.  This is because the extents are not removed
until the IO for the new extents is finished

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:05 -04:00
Chris Mason
4881ee5a2e Btrfs: Fix some build problems on 2.6.18 based enterprise kernels
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:05 -04:00
Chris Mason
c286ac48ed Btrfs: alloc_mutex latency reduction
This releases the alloc_mutex in a few places that hold it for over long
operations.  btrfs_lookup_block_group is changed so that it doesn't need
the mutex at all.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:05 -04:00
Chris Mason
6dddcbeb28 Btrfs: Use mutex_lock_nested for tree locking
Lockdep has the notion of locking subclasses so that you can identify
locks you expect to be taken after other locks of the same class.  This
changes the per-extent buffer btree locking routines to use a subclass based
on the level in the tree.

Unfortunately, lockdep can only handle 8 total subclasses, and the btrfs
max level is also 8.  So when lockdep is on, use a lower max level.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:05 -04:00
Chris Mason
f421950f86 Btrfs: Fix some data=ordered related data corruptions
Stress testing was showing data checksum errors, most of which were caused
by a lookup bug in the extent_map tree.  The tree was caching the last
pointer returned, and searches would check the last pointer first.

But, search callers also expect the search to return the very first
matching extent in the range, which wasn't always true with the last
pointer usage.

For now, the code to cache the last return value is just removed.  It is
easy to fix, but I think lookups are rare enough that it isn't required anymore.

This commit also replaces do_sync_mapping_range with a local copy of the
related functions.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:05 -04:00
Chris Mason
3edf7d33f4 Btrfs: Handle data checksumming on bios that span multiple ordered extents
Data checksumming is done right before the bio is sent down the IO stack,
which means a single bio might span more than one ordered extent.  In
this case, the checksumming data is split between two ordered extents.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:05 -04:00
Chris Mason
f929574938 btrfs_start_transaction: wait for commits in progress to finish
btrfs_commit_transaction has to loop waiting for any writers in the
transaction to finish before it can proceed.  btrfs_start_transaction
should be polite and not join a transaction that is in the process
of being finished off.

There are a few places that can't wait, basically the ones doing IO that
might be needed to finish the transaction.  For them, btrfs_join_transaction
is added.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:04 -04:00
Chris Mason
247e743cbe Btrfs: Use async helpers to deal with pages that have been improperly dirtied
Higher layers sometimes call set_page_dirty without asking the filesystem
to help.  This causes many problems for the data=ordered and cow code.
This commit detects pages that haven't been properly setup for IO and
kicks off an async helper to deal with them.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:04 -04:00
Chris Mason
e6dcd2dc9c Btrfs: New data=ordered implementation
The old data=ordered code would force commit to wait until
all the data extents from the transaction were fully on disk.  This
introduced large latencies into the commit and stalled new writers
in the transaction for a long time.

The new code changes the way data allocations and extents work:

* When delayed allocation is filled, data extents are reserved, and
  the extent bit EXTENT_ORDERED is set on the entire range of the extent.
  A struct btrfs_ordered_extent is allocated an inserted into a per-inode
  rbtree to track the pending extents.

* As each page is written EXTENT_ORDERED is cleared on the bytes corresponding
  to that page.

* When all of the bytes corresponding to a single struct btrfs_ordered_extent
  are written, The previously reserved extent is inserted into the FS
  btree and into the extent allocation trees.  The checksums for the file
  data are also updated.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:04 -04:00
Chris Mason
7d9eb12c87 Btrfs: Add locking around volume management (device add/remove/balance)
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:04 -04:00