To re-offload the callback processing off of a CPU, it is necessary to
clear SEGCBLIST_SOFTIRQ_ONLY, set SEGCBLIST_OFFLOADED, and then notify
both the CB and GP kthreads so that they both set their own bit flag and
start processing the callbacks remotely. The re-offloading worker is
then notified that it can stop the RCU_SOFTIRQ handler (or rcuc kthread,
as the case may be) from processing the callbacks locally.
Ordering must be carefully enforced so that the callbacks that used to be
processed locally without locking will have the same ordering properties
when they are invoked by the nocb CB and GP kthreads.
This commit makes this change.
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Neeraj Upadhyay <neeraju@codeaurora.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Inspired-by: Paul E. McKenney <paulmck@kernel.org>
Tested-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
[ paulmck: Export rcu_nocb_cpu_offload(). ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
To de-offload callback processing back onto a CPU, it is necessary
to clear SEGCBLIST_OFFLOAD and notify the nocb GP kthread, which will
then clear its own bit flag and ignore this CPU until further notice.
Whichever of the nocb CB and nocb GP kthreads is last to clear its own
bit notifies the de-offloading worker kthread. Once notified, this
worker kthread can proceed safe in the knowledge that the nocb CB and
GP kthreads will no longer be manipulating this CPU's RCU callback list.
This commit makes this change.
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Neeraj Upadhyay <neeraju@codeaurora.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Inspired-by: Paul E. McKenney <paulmck@kernel.org>
Tested-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Offloaded CPUs do not migrate their callbacks, instead relying on
their rcuo kthread to invoke them. But if the CPU is offline, it
will be running neither its RCU_SOFTIRQ handler nor its rcuc kthread.
This means that de-offloading an offline CPU that still has pending
callbacks will strand those callbacks. This commit therefore refuses
to toggle offline CPUs having pending callbacks.
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Neeraj Upadhyay <neeraju@codeaurora.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Suggested-by: Paul E. McKenney <paulmck@kernel.org>
Tested-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
To de-offload callback processing back onto a CPU, it is necessary to
clear SEGCBLIST_OFFLOAD and notify the nocb CB kthread, which will then
clear its own bit flag and go to sleep to stop handling callbacks. This
commit makes that change. It will also be necessary to notify the nocb
GP kthread in this same way, which is the subject of a follow-on commit.
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Neeraj Upadhyay <neeraju@codeaurora.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Inspired-by: Paul E. McKenney <paulmck@kernel.org>
Tested-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
[ paulmck: Add export per kernel test robot feedback. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
An outgoing CPU is marked offline in a stop-machine handler and most
of that CPU's services stop at that point, including IRQ work queues.
However, that CPU must take another pass through the scheduler and through
a number of CPU-hotplug notifiers, many of which contain RCU readers.
In the past, these readers were not a problem because the outgoing CPU
has interrupts disabled, so that rcu_read_unlock_special() would not
be invoked, and thus RCU would never attempt to queue IRQ work on the
outgoing CPU.
This changed with the advent of the CONFIG_RCU_STRICT_GRACE_PERIOD
Kconfig option, in which rcu_read_unlock_special() is invoked upon exit
from almost all RCU read-side critical sections. Worse yet, because
interrupts are disabled, rcu_read_unlock_special() cannot immediately
report a quiescent state and will therefore attempt to defer this
reporting, for example, by queueing IRQ work. Which fails with a splat
because the CPU is already marked as being offline.
But it turns out that there is no need to report this quiescent state
because rcu_report_dead() will do this job shortly after the outgoing
CPU makes its final dive into the idle loop. This commit therefore
makes rcu_read_unlock_special() refrain from queuing IRQ work onto
outgoing CPUs.
Fixes: 44bad5b3cc ("rcu: Do full report for .need_qs for strict GPs")
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Jann Horn <jannh@google.com>
The "cpu" parameter to rcu_report_qs_rdp() is not used, with rdp->cpu
being used instead. Furtheremore, every call to rcu_report_qs_rdp()
invokes it on rdp->cpu. This commit therefore removes this unused "cpu"
parameter and converts a check of rdp->cpu against smp_processor_id()
to a WARN_ON_ONCE().
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The CONFIG_PREEMPT=n instance of rcu_read_unlock is even more
aggressively than that of CONFIG_PREEMPT=y in deferring reporting
quiescent states to the RCU core. This is just what is wanted in normal
use because it reduces overhead, but the resulting delay is not what
is wanted for kernels built with CONFIG_RCU_STRICT_GRACE_PERIOD=y.
This commit therefore adds an rcu_read_unlock_strict() function that
checks for exceptional conditions, and reports the newly started
quiescent state if it is safe to do so, also doing a spin-delay if
requested via rcutree.rcu_unlock_delay. This commit also adds a call
to rcu_read_unlock_strict() from the CONFIG_PREEMPT=n instance of
__rcu_read_unlock().
[ paulmck: Fixed bug located by kernel test robot <lkp@intel.com> ]
Reported-by Jann Horn <jannh@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The goal of this series is to increase the probability of tools like
KASAN detecting that an RCU-protected pointer was used outside of its
RCU read-side critical section. Thus far, the approach has been to make
grace periods and callback processing happen faster. Another approach
is to delay the pointer leaker. This commit therefore allows a delay
to be applied to exit from RCU read-side critical sections.
This slowdown is specified by a new rcutree.rcu_unlock_delay kernel boot
parameter that specifies this delay in microseconds, defaulting to zero.
Reported-by Jann Horn <jannh@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The rcu_preempt_deferred_qs_irqrestore() function is invoked at
the end of an RCU read-side critical section (for example, directly
from rcu_read_unlock()) and, if .need_qs is set, invokes rcu_qs() to
report the new quiescent state. This works, except that rcu_qs() only
updates per-CPU state, leaving reporting of the actual quiescent state
to a later call to rcu_report_qs_rdp(), for example from within a later
RCU_SOFTIRQ instance. Although this approach is exactly what you want if
you are more concerned about efficiency than about short grace periods,
in CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, short grace periods are
the name of the game.
This commit therefore makes rcu_preempt_deferred_qs_irqrestore() directly
invoke rcu_report_qs_rdp() in CONFIG_RCU_STRICT_GRACE_PERIOD=y, thus
shortening grace periods.
Historical note: To the best of my knowledge, causing rcu_read_unlock()
to directly report a quiescent state first appeared in Jim Houston's
and Joe Korty's JRCU. This is the second instance of a Linux-kernel RCU
feature being inspired by JRCU, the first being RCU callback offloading
(as in the RCU_NOCB_CPU Kconfig option).
Reported-by Jann Horn <jannh@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The ->rcu_read_unlock_special.b.need_qs field in the task_struct
structure indicates that the RCU core needs a quiscent state from the
corresponding task. The __rcu_read_unlock() function checks this (via
an eventual call to rcu_preempt_deferred_qs_irqrestore()), and if set
reports a quiscent state immediately upon exit from the outermost RCU
read-side critical section.
Currently, this flag is only set when the scheduling-clock interrupt
decides that the current RCU grace period is too old, as in about
one full second too old. But if the kernel has been built with
CONFIG_RCU_STRICT_GRACE_PERIOD=y, we clearly do not want to wait that
long. This commit therefore sets the .need_qs field immediately at the
start of the RCU read-side critical section from within __rcu_read_lock()
in order to unconditionally enlist help from __rcu_read_unlock().
But note the additional check for rcu_state.gp_kthread, which prevents
attempts to awaken RCU's grace-period kthread during early boot before
there is a scheduler. Leaving off this check results in early boot hangs.
So early that there is no console output. Thus, this additional check
fails until such time as RCU's grace-period kthread has been created,
avoiding these empty-console hangs.
Reported-by Jann Horn <jannh@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
People running automated tests have asked for a way to make RCU minimize
grace-period duration in order to increase the probability of KASAN
detecting a pointer being improperly leaked from an RCU read-side critical
section, for example, like this:
rcu_read_lock();
p = rcu_dereference(gp);
do_something_with(p); // OK
rcu_read_unlock();
do_something_else_with(p); // BUG!!!
The rcupdate.rcu_expedited boot parameter is a start in this direction,
given that it makes calls to synchronize_rcu() instead invoke the faster
(and more wasteful) synchronize_rcu_expedited(). However, this does
nothing to shorten RCU grace periods that are instead initiated by
call_rcu(), and RCU pointer-leak bugs can involve call_rcu() just as
surely as they can synchronize_rcu().
This commit therefore adds a RCU_STRICT_GRACE_PERIOD Kconfig option
that will be used to shorten normal (non-expedited) RCU grace periods.
This commit also dumps out a message when this option is in effect.
Later commits will actually shorten grace periods.
Reported-by Jann Horn <jannh@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit increases RCU's ability to defend itself by emitting a warning
if one of the nocb CB kthreads invokes the GP kthread's wait function.
This warning augments a similar check that is carried out at the end
of rcutorture testing and when RCU CPU stall warnings are emitted.
The problem with those checks is that the miscreants have long since
departed and disposed of any and all evidence.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The rcu_data structure's ->nocb_timer field is used to defer wakeups of
the corresponding no-CBs CPU's grace-period kthread ("rcuog*"), and that
structure's ->nocb_defer_wakeup field is used to track such deferral.
This means that the show_rcu_nocb_state() printing an error when those
fields are set for a CPU not corresponding to a no-CBs grace-period
kthread is erroneous.
This commit therefore switches the check from ->nocb_timer to
->nocb_bypass_timer and removes the check of ->nocb_defer_wakeup.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
A message of the form "rcu: !!! lDTs ." can be tracked down, but
doing so is not trivial. This commit therefore eases this process by
adding text so that this error message now reads as follows:
"rcu: nocb GP activity on CB-only CPU!!! lDTs ."
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit converts the schedule_timeout_interruptible() call used by
RCU's no-CBs grace-period kthreads to schedule_timeout_idle(). This
conversion avoids polluting the load-average with RCU-related sleeping.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit converts the long-standing schedule_timeout_interruptible()
call used by RCU's priority-boosting kthreads to schedule_timeout_idle().
This conversion avoids polluting the load-average with RCU-related
sleeping.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
These functions are invoked from context tracking and other places in the
low level entry code. Move them into the .noinstr.text section to exclude
them from instrumentation.
Mark the places which are safe to invoke traceable functions with
instrumentation_begin/end() so objtool won't complain.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lkml.kernel.org/r/20200505134100.575356107@linutronix.de
fixes.2020.04.27a: Miscellaneous fixes.
kfree_rcu.2020.04.27a: Changes related to kfree_rcu().
rcu-tasks.2020.04.27a: Addition of new RCU-tasks flavors.
stall.2020.04.27a: RCU CPU stall-warning updates.
torture.2020.05.07a: Torture-test updates.
Systems running CPU-bound real-time task do not want IPIs sent to CPUs
executing nohz_full userspace tasks. Battery-powered systems don't
want IPIs sent to idle CPUs in low-power mode. Unfortunately, RCU tasks
trace can and will send such IPIs in some cases.
Both of these situations occur only when the target CPU is in RCU
dyntick-idle mode, in other words, when RCU is not watching the
target CPU. This suggests that CPUs in dyntick-idle mode should use
memory barriers in outermost invocations of rcu_read_lock_trace()
and rcu_read_unlock_trace(), which would allow the RCU tasks trace
grace period to directly read out the target CPU's read-side state.
One challenge is that RCU tasks trace is not targeting a specific
CPU, but rather a task. And that task could switch from one CPU to
another at any time.
This commit therefore uses try_invoke_on_locked_down_task()
and checks for task_curr() in trc_inspect_reader_notrunning().
When this condition holds, the target task is running and cannot move.
If CONFIG_TASKS_TRACE_RCU_READ_MB=y, the new rcu_dynticks_zero_in_eqs()
function can be used to check if the specified integer (in this case,
t->trc_reader_nesting) is zero while the target CPU remains in that same
dyntick-idle sojourn. If so, the target task is in a quiescent state.
If not, trc_read_check_handler() must indicate failure so that the
grace-period kthread can take appropriate action or retry after an
appropriate delay, as the case may be.
With this change, given CONFIG_TASKS_TRACE_RCU_READ_MB=y, if a given
CPU remains idle or a given task continues executing in nohz_full mode,
the RCU tasks trace grace-period kthread will detect this without the
need to send an IPI.
Suggested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit makes the calls to rcu_tasks_qs() detect and report
quiescent states for RCU tasks trace. If the task is in a quiescent
state and if ->trc_reader_checked is not yet set, the task sets its own
->trc_reader_checked. This will cause the grace-period kthread to
remove it from the holdout list if it still remains there.
[ paulmck: Fix conditional compilation per kbuild test robot feedback. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Currently, the PREEMPT=y version of rcu_note_context_switch() does not
invoke rcu_tasks_qs(), and we need it to in order to keep RCU Tasks
Trace's IPIs down to a dull roar. This commit therefore enables this
hook.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Now that RCU flavors have been consolidated, an RCU-preempt
rcu_read_unlock() in an interrupt or softirq handler cannot possibly
end the RCU read-side critical section. Consider the old vulnerability
involving rcu_read_unlock() being invoked within such a handler that
interrupted an __rcu_read_unlock_special(), in which a wakeup might be
invoked with a scheduler lock held. Because rcu_read_unlock_special()
no longer does wakeups in such situations, it is no longer necessary
for __rcu_read_unlock() to set the nesting level negative.
This commit therefore removes this recursion-protection code from
__rcu_read_unlock().
[ paulmck: Let rcu_exp_handler() continue to call rcu_report_exp_rdp(). ]
[ paulmck: Adjust other checks given no more negative nesting. ]
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The ->rcu_read_unlock_special.b.deferred_qs field is set to true in
rcu_read_unlock_special() but never set to false. This is not
particularly useful, so this commit removes this field.
The only possible justification for this field is to ease debugging
of RCU deferred quiscent states, but the combination of the other
->rcu_read_unlock_special fields plus ->rcu_blocked_node and of course
->rcu_read_lock_nesting should cover debugging needs. And if this last
proves incorrect, this patch can always be reverted, along with the
required setting of ->rcu_read_unlock_special.b.deferred_qs to false
in rcu_preempt_deferred_qs_irqrestore().
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Now that RCU flavors have been consolidated, an RCU-preempt
rcu_read_unlock() in an interrupt or softirq handler cannot possibly
end the RCU read-side critical section. Consider the old vulnerability
involving rcu_preempt_deferred_qs() being invoked within such a handler
that interrupted an extended RCU read-side critical section, in which
a wakeup might be invoked with a scheduler lock held. Because
rcu_read_unlock_special() no longer does wakeups in such situations,
it is no longer necessary for rcu_preempt_deferred_qs() to set the
nesting level negative.
This commit therefore removes this recursion-protection code from
rcu_preempt_deferred_qs().
[ paulmck: Fix typo in commit log per Steve Rostedt. ]
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The scheduler is currently required to hold rq/pi locks across the entire
RCU read-side critical section or not at all. This is inconvenient and
leaves traps for the unwary, including the author of this commit.
But now that excessively long grace periods enable scheduling-clock
interrupts for holdout nohz_full CPUs, the nohz_full rescue logic in
rcu_read_unlock_special() can be dispensed with. In other words, the
rcu_read_unlock_special() function can refrain from doing wakeups unless
such wakeups are guaranteed safe.
This commit therefore avoids unsafe wakeups, freeing the scheduler to
hold rq/pi locks across rcu_read_unlock() even if the corresponding RCU
read-side critical section might have been preempted. This commit also
updates RCU's requirements documentation.
This commit is inspired by a patch from Lai Jiangshan:
https://lore.kernel.org/lkml/20191102124559.1135-2-laijs@linux.alibaba.com
This commit is further intended to be a step towards his goal of permitting
the inlining of RCU-preempt's rcu_read_lock() and rcu_read_unlock().
Cc: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit converts the ULONG_CMP_LT() in rcu_nohz_full_cpu() to
time_before() to reflect the fact that it is comparing a timestamp to
the jiffies counter.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit converts the ULONG_CMP_GE() in rcu_initiate_boost() to
time_after() to reflect the fact that it is comparing a timestamp to
the jiffies counter.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The rcu_node structure's ->boost_tasks field is read locklessly, so this
commit adds the WRITE_ONCE() to an update in order to provide proper
documentation and READ_ONCE()/WRITE_ONCE() pairing.
This data race was reported by KCSAN. Not appropriate for backporting
due to failure being unlikely.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The rcu_node structure's ->boost_tasks field is read locklessly, so this
commit adds the READ_ONCE() to one load in order to avoid destructive
compiler optimizations. The other load is from a diagnostic print,
so data_race() suffices.
This data race was reported by KCSAN. Not appropriate for backporting
due to failure being unlikely.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
There are lockless loads from the rcu_node structure's ->exp_tasks field,
so this commit causes all stores to use WRITE_ONCE() and all lockless
loads to use READ_ONCE() or data_race(), with the latter for debug
prints. This code also did a unprotected traversal of the linked list
pointed into by ->exp_tasks, so this commit also acquires the rcu_node
structure's ->lock to properly protect this traversal. This list was
traversed unprotected only when printing an RCU CPU stall warning for
an expedited grace period, so the odds of seeing this in production are
not all that high.
This data race was reported by KCSAN.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit fixes a spelling mistake in a pr_info() message.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
RCU priority boosting currently is not applied until the grace period
is at least 250 milliseconds old (or the number of milliseconds specified
by the CONFIG_RCU_BOOST_DELAY Kconfig option). Although this has worked
well, it can result in OOM under conditions of RCU callback flooding.
One can argue that the real-time systems using RCU priority boosting
should carefully avoid RCU callback flooding, but one can just as well
argue that an OOM is a rather obnoxious error message.
This commit therefore disables the RCU priority boosting delay when
there are excessive numbers of callbacks queued.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
In default configutions, RCU currently waits at least 100 milliseconds
before asking cond_resched() and/or resched_rcu() for help seeking
quiescent states to end a grace period. But 100 milliseconds can be
one good long time during an RCU callback flood, for example, as can
happen when user processes repeatedly open and close files in a tight
loop. These 100-millisecond gaps in successive grace periods during a
callback flood can result in excessive numbers of callbacks piling up,
unnecessarily increasing memory footprint.
This commit therefore asks cond_resched() and/or resched_rcu() for help
as early as the first FQS scan when at least one of the CPUs has more
than 20,000 callbacks queued, a number that can be changed using the new
rcutree.qovld kernel boot parameter. An auxiliary qovld_calc variable
is used to avoid acquisition of locks that have not yet been initialized.
Early tests indicate that this reduces the RCU-callback memory footprint
during rcutorture floods by from 50% to 4x, depending on configuration.
Reported-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Reported-by: Tejun Heo <tj@kernel.org>
[ paulmck: Fix bug located by Qian Cai. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Tested-by: Dexuan Cui <decui@microsoft.com>
Tested-by: Qian Cai <cai@lca.pw>
Currently, nocb_gp_wait() unconditionally complains if there is a
callback not already associated with a grace period. This assumes that
either there was no such callback initially on the one hand, or that
the rcu_advance_cbs() function assigned all such callbacks to a grace
period on the other. However, in theory there are some situations that
would prevent rcu_advance_cbs() from assigning all of the callbacks.
This commit therefore checks for unassociated callbacks immediately after
rcu_advance_cbs() returns, while the corresponding rcu_node structure's
->lock is still held. If there are unassociated callbacks at that point,
the subsequent WARN_ON_ONCE() is disabled.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The ->nocb_lock lockdep assertion is currently guarded by cpu_online(),
which is incorrect for no-CBs CPUs, whose callback lists must be
protected by ->nocb_lock regardless of whether or not the corresponding
CPU is online. This situation could result in failure to detect bugs
resulting from failing to hold ->nocb_lock for offline CPUs.
This commit therefore removes the cpu_online() guard.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Sparse reports warning at rcu_nocb_bypass_unlock()
warning: context imbalance in rcu_nocb_bypass_unlock() - unexpected unlock
The root cause is a missing annotation of rcu_nocb_bypass_unlock()
which causes the warning.
This commit therefore adds the missing __releases(&rdp->nocb_bypass_lock)
annotation.
Signed-off-by: Jules Irenge <jbi.octave@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Acked-by: Boqun Feng <boqun.feng@gmail.com>
Sparse reports warning at rcu_nocb_bypass_lock()
|warning: context imbalance in rcu_nocb_bypass_lock() - wrong count at exit
To fix this, this commit adds an __acquires(&rdp->nocb_bypass_lock).
Given that rcu_nocb_bypass_lock() does actually call raw_spin_lock()
when raw_spin_trylock() fails, this not only fixes the warning but also
improves on the readability of the code.
Signed-off-by: Jules Irenge <jbi.octave@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The rcu_node structure's ->boost_kthread_status field is accessed
locklessly, so this commit causes all updates to use WRITE_ONCE() and
all reads to use READ_ONCE().
This data race was reported by KCSAN. Not appropriate for backporting
due to failure being unlikely.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The various RCU structures' ->gp_seq, ->gp_seq_needed, ->gp_req_activity,
and ->gp_activity fields are read locklessly, so they must be updated with
WRITE_ONCE() and, when read locklessly, with READ_ONCE(). This commit makes
these changes.
This data race was reported by KCSAN. Not appropriate for backporting
due to failure being unlikely.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit provides wrapper functions for uses of ->rcu_read_lock_nesting
to improve readability and to ease future changes to support inlining
of __rcu_read_lock() and __rcu_read_unlock().
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The rcu_node structure's ->expmask field is updated only when holding the
->lock, but is also accessed locklessly. This means that all ->expmask
updates must use WRITE_ONCE() and all reads carried out without holding
->lock must use READ_ONCE(). This commit therefore changes the lockless
->expmask read in rcu_read_unlock_special() to use READ_ONCE().
Reported-by: syzbot+99f4ddade3c22ab0cf23@syzkaller.appspotmail.com
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Acked-by: Marco Elver <elver@google.com>
In rcu_preempt_deferred_qs_irqrestore(), ->rcu_read_unlock_special is
cleared one piece at a time. Given that the "if" statements in this
function use the copy in "special", this commit removes the clearing
of the individual pieces in favor of clearing ->rcu_read_unlock_special
in one go just after it has been determined to be non-zero.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Currently, the .exp_hint flag is cleared in rcu_read_unlock_special(),
which works, but which can also prevent subsequent rcu_read_unlock() calls
from helping expedite the quiescent state needed by an ongoing expedited
RCU grace period. This commit therefore defers clearing of .exp_hint
from rcu_read_unlock_special() to rcu_preempt_deferred_qs_irqrestore(),
thus ensuring that intervening calls to rcu_read_unlock() have a chance
to help end the expedited grace period.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit removes kfree_rcu() special-casing and the lazy-callback
handling from Tree RCU. It moves some of this special casing to Tiny RCU,
the removal of which will be the subject of later commits.
This results in a nice negative delta.
Suggested-by: Paul E. McKenney <paulmck@linux.ibm.com>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
[ paulmck: Add slab.h #include, thanks to kbuild test robot <lkp@intel.com>. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The config option `CONFIG_PREEMPT' is used for the preemption model
"Low-Latency Desktop". The config option `CONFIG_PREEMPTION' is enabled
when kernel preemption is enabled which is true for the preemption model
`CONFIG_PREEMPT' and `CONFIG_PREEMPT_RT'.
Use `CONFIG_PREEMPTION' if it applies to both preemption models and not
just to `CONFIG_PREEMPT'.
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: rcu@vger.kernel.org
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The rcu_preempt_check_blocked_tasks() function has a comment
that states that the rcu_node structure's ->lock must be held,
which might be informative, but which carries little weight if
not read. This commit therefore removes this comment in favor of
raw_lockdep_assert_held_rcu_node(), which will complain quite
visibly if the required lock is not held.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The rcu_gp_fqs_check_wake() function uses rcu_preempt_blocked_readers_cgp()
to read ->gp_tasks while other cpus might overwrite this field.
We need READ_ONCE()/WRITE_ONCE() pairs to avoid compiler
tricks and KCSAN splats like the following :
BUG: KCSAN: data-race in rcu_gp_fqs_check_wake / rcu_preempt_deferred_qs_irqrestore
write to 0xffffffff85a7f190 of 8 bytes by task 7317 on cpu 0:
rcu_preempt_deferred_qs_irqrestore+0x43d/0x580 kernel/rcu/tree_plugin.h:507
rcu_read_unlock_special+0xec/0x370 kernel/rcu/tree_plugin.h:659
__rcu_read_unlock+0xcf/0xe0 kernel/rcu/tree_plugin.h:394
rcu_read_unlock include/linux/rcupdate.h:645 [inline]
__ip_queue_xmit+0x3b0/0xa40 net/ipv4/ip_output.c:533
ip_queue_xmit+0x45/0x60 include/net/ip.h:236
__tcp_transmit_skb+0xdeb/0x1cd0 net/ipv4/tcp_output.c:1158
__tcp_send_ack+0x246/0x300 net/ipv4/tcp_output.c:3685
tcp_send_ack+0x34/0x40 net/ipv4/tcp_output.c:3691
tcp_cleanup_rbuf+0x130/0x360 net/ipv4/tcp.c:1575
tcp_recvmsg+0x633/0x1a30 net/ipv4/tcp.c:2179
inet_recvmsg+0xbb/0x250 net/ipv4/af_inet.c:838
sock_recvmsg_nosec net/socket.c:871 [inline]
sock_recvmsg net/socket.c:889 [inline]
sock_recvmsg+0x92/0xb0 net/socket.c:885
sock_read_iter+0x15f/0x1e0 net/socket.c:967
call_read_iter include/linux/fs.h:1864 [inline]
new_sync_read+0x389/0x4f0 fs/read_write.c:414
read to 0xffffffff85a7f190 of 8 bytes by task 10 on cpu 1:
rcu_gp_fqs_check_wake kernel/rcu/tree.c:1556 [inline]
rcu_gp_fqs_check_wake+0x93/0xd0 kernel/rcu/tree.c:1546
rcu_gp_fqs_loop+0x36c/0x580 kernel/rcu/tree.c:1611
rcu_gp_kthread+0x143/0x220 kernel/rcu/tree.c:1768
kthread+0x1d4/0x200 drivers/block/aoe/aoecmd.c:1253
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:352
Reported by Kernel Concurrency Sanitizer on:
CPU: 1 PID: 10 Comm: rcu_preempt Not tainted 5.3.0+ #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
[ paulmck: Added another READ_ONCE() for RCU CPU stall warnings. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>