mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-27 08:14:35 +08:00
224acec664
657 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Dave Chinner
|
d4d12c02bf |
xfs: collect errors from inodegc for unlinked inode recovery
Unlinked list recovery requires errors removing the inode the from the unlinked list get fed back to the main recovery loop. Now that we offload the unlinking to the inodegc work, we don't get errors being fed back when we trip over a corruption that prevents the inode from being removed from the unlinked list. This means we never clear the corrupt unlinked list bucket, resulting in runtime operations eventually tripping over it and shutting down. Fix this by collecting inodegc worker errors and feed them back to the flush caller. This is largely best effort - the only context that really cares is log recovery, and it only flushes a single inode at a time so we don't need complex synchronised handling. Essentially the inodegc workers will capture the first error that occurs and the next flush will gather them and clear them. The flush itself will only report the first gathered error. In the cases where callers can return errors, propagate the collected inodegc flush error up the error handling chain. In the case of inode unlinked list recovery, there are several superfluous calls to flush queued unlinked inodes - xlog_recover_iunlink_bucket() guarantees that it has flushed the inodegc and collected errors before it returns. Hence nothing in the calling path needs to run a flush, even when an error is returned. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Dave Chinner <david@fromorbit.com> |
||
Linus Torvalds
|
c0927a7a53 |
New code for 6.3-rc1, part 2:
* Fix a deadlock in the free space allocator due to the AG-walking algorithm forgetting to follow AG-order locking rules. * Make the inode allocator prefer existing free inodes instead of failing to allocate new inode chunks when free space is low. * Set minleft correctly when setting allocator parameters for bmap changes. * Fix uninitialized variable access in the getfsmap code. * Make a distinction between active and passive per-AG structure references. For now, active references are taken to perform some work in an AG on behalf of a high level operation; passive references are used by lower level code to finish operations started by other threads. Eventually this will become part of online shrink. * Split out all the different allocator strategies into separate functions to move us away from design antipattern of filling out a huge structure for various differentish things and issuing a single function multiplexing call. * Various cleanups in the filestreams allocator code, which we might very well want to deprecate instead of continuing. * Fix a bug with the agi rotor code that was introduced earlier in this series. Signed-off-by: Darrick J. Wong <djwong@kernel.org> -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCY/zgqgAKCRBKO3ySh0YR plIkAQDIscqdqXGH01gF19/ncqG2GUaXY+/zeOReuk1Iv3VEVgD+MVXf+QvHk7LD /LTWNl2K6NQmE/9RtaBt0aFNDzvIAgU= =k7r8 -----END PGP SIGNATURE----- Merge tag 'xfs-6.3-merge-4' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux Pull moar xfs updates from Darrick Wong: "This contains a fix for a deadlock in the allocator. It continues the slow march towards being able to offline AGs, and it refactors the interface to the xfs allocator to be less indirection happy. Summary: - Fix a deadlock in the free space allocator due to the AG-walking algorithm forgetting to follow AG-order locking rules - Make the inode allocator prefer existing free inodes instead of failing to allocate new inode chunks when free space is low - Set minleft correctly when setting allocator parameters for bmap changes - Fix uninitialized variable access in the getfsmap code - Make a distinction between active and passive per-AG structure references. For now, active references are taken to perform some work in an AG on behalf of a high level operation; passive references are used by lower level code to finish operations started by other threads. Eventually this will become part of online shrink - Split out all the different allocator strategies into separate functions to move us away from design antipattern of filling out a huge structure for various differentish things and issuing a single function multiplexing call - Various cleanups in the filestreams allocator code, which we might very well want to deprecate instead of continuing - Fix a bug with the agi rotor code that was introduced earlier in this series" * tag 'xfs-6.3-merge-4' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (44 commits) xfs: restore old agirotor behavior xfs: fix uninitialized variable access xfs: refactor the filestreams allocator pick functions xfs: return a referenced perag from filestreams allocator xfs: pass perag to filestreams tracing xfs: use for_each_perag_wrap in xfs_filestream_pick_ag xfs: track an active perag reference in filestreams xfs: factor out MRU hit case in xfs_filestream_select_ag xfs: remove xfs_filestream_select_ag() longest extent check xfs: merge new filestream AG selection into xfs_filestream_select_ag() xfs: merge filestream AG lookup into xfs_filestream_select_ag() xfs: move xfs_bmap_btalloc_filestreams() to xfs_filestreams.c xfs: use xfs_bmap_longest_free_extent() in filestreams xfs: get rid of notinit from xfs_bmap_longest_free_extent xfs: factor out filestreams from xfs_bmap_btalloc_nullfb xfs: convert trim to use for_each_perag_range xfs: convert xfs_alloc_vextent_iterate_ags() to use perag walker xfs: move the minimum agno checks into xfs_alloc_vextent_check_args xfs: fold xfs_alloc_ag_vextent() into callers xfs: move allocation accounting to xfs_alloc_vextent_set_fsbno() ... |
||
Dave Chinner
|
692b6cddeb |
xfs: t_firstblock is tracking AGs not blocks
The tp->t_firstblock field is now raelly tracking the highest AG we have locked, not the block number of the highest allocation we've made. It's purpose is to prevent AGF locking deadlocks, so rename it to "highest AG" and simplify the implementation to just track the agno rather than a fsbno. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> |
||
Christian Brauner
|
c14329d39f
|
fs: port fs{g,u}id helpers to mnt_idmap
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
|
||
Christian Brauner
|
e67fe63341
|
fs: port i_{g,u}id_into_vfs{g,u}id() to mnt_idmap
Convert to struct mnt_idmap.
Remove legacy file_mnt_user_ns() and mnt_user_ns().
Last cycle we merged the necessary infrastructure in
|
||
Christian Brauner
|
f2d40141d5
|
fs: port inode_init_owner() to mnt_idmap
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
|
||
Darrick J. Wong
|
2653d53345 |
xfs: fix incorrect error-out in xfs_remove
Clean up resources if resetting the dotdot entry doesn't succeed.
Observed through code inspection.
Fixes:
|
||
Allison Henderson
|
e07ee6fe21 |
xfs: increase rename inode reservation
xfs_rename can update up to 5 inodes: src_dp, target_dp, src_ip, target_ip and wip. So we need to increase the inode reservation to match. Signed-off-by: Allison Henderson <allison.henderson@oracle.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org> |
||
Christian Brauner
|
42b7cc1102 |
xfs: port to vfs{g,u}id_t and associated helpers
A while ago we introduced a dedicated vfs{g,u}id_t type in commit
|
||
Zeng Heng
|
78b0f58bdf |
xfs: clean up "%Ld/%Lu" which doesn't meet C standard
The "%Ld" specifier, which represents long long unsigned, doesn't meet C language standard, and even more, it makes people easily mistake with "%ld", which represent long unsigned. So replace "%Ld" with "lld". Do the same with "%Lu". Signed-off-by: Zeng Heng <zengheng4@huawei.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com> |
||
Linus Torvalds
|
6614a3c316 |
- The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe
Lin, Yang Shi, Anshuman Khandual and Mike Rapoport - Some kmemleak fixes from Patrick Wang and Waiman Long - DAMON updates from SeongJae Park - memcg debug/visibility work from Roman Gushchin - vmalloc speedup from Uladzislau Rezki - more folio conversion work from Matthew Wilcox - enhancements for coherent device memory mapping from Alex Sierra - addition of shared pages tracking and CoW support for fsdax, from Shiyang Ruan - hugetlb optimizations from Mike Kravetz - Mel Gorman has contributed some pagealloc changes to improve latency and realtime behaviour. - mprotect soft-dirty checking has been improved by Peter Xu - Many other singleton patches all over the place -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCYuravgAKCRDdBJ7gKXxA jpqSAQDrXSdII+ht9kSHlaCVYjqRFQz/rRvURQrWQV74f6aeiAD+NHHeDPwZn11/ SPktqEUrF1pxnGQxqLh1kUFUhsVZQgE= =w/UH -----END PGP SIGNATURE----- Merge tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Most of the MM queue. A few things are still pending. Liam's maple tree rework didn't make it. This has resulted in a few other minor patch series being held over for next time. Multi-gen LRU still isn't merged as we were waiting for mapletree to stabilize. The current plan is to merge MGLRU into -mm soon and to later reintroduce mapletree, with a view to hopefully getting both into 6.1-rc1. Summary: - The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe Lin, Yang Shi, Anshuman Khandual and Mike Rapoport - Some kmemleak fixes from Patrick Wang and Waiman Long - DAMON updates from SeongJae Park - memcg debug/visibility work from Roman Gushchin - vmalloc speedup from Uladzislau Rezki - more folio conversion work from Matthew Wilcox - enhancements for coherent device memory mapping from Alex Sierra - addition of shared pages tracking and CoW support for fsdax, from Shiyang Ruan - hugetlb optimizations from Mike Kravetz - Mel Gorman has contributed some pagealloc changes to improve latency and realtime behaviour. - mprotect soft-dirty checking has been improved by Peter Xu - Many other singleton patches all over the place" [ XFS merge from hell as per Darrick Wong in https://lore.kernel.org/all/YshKnxb4VwXycPO8@magnolia/ ] * tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (282 commits) tools/testing/selftests/vm/hmm-tests.c: fix build mm: Kconfig: fix typo mm: memory-failure: convert to pr_fmt() mm: use is_zone_movable_page() helper hugetlbfs: fix inaccurate comment in hugetlbfs_statfs() hugetlbfs: cleanup some comments in inode.c hugetlbfs: remove unneeded header file hugetlbfs: remove unneeded hugetlbfs_ops forward declaration hugetlbfs: use helper macro SZ_1{K,M} mm: cleanup is_highmem() mm/hmm: add a test for cross device private faults selftests: add soft-dirty into run_vmtests.sh selftests: soft-dirty: add test for mprotect mm/mprotect: fix soft-dirty check in can_change_pte_writable() mm: memcontrol: fix potential oom_lock recursion deadlock mm/gup.c: fix formatting in check_and_migrate_movable_page() xfs: fail dax mount if reflink is enabled on a partition mm/memcontrol.c: remove the redundant updating of stats_flush_threshold userfaultfd: don't fail on unrecognized features hugetlb_cgroup: fix wrong hugetlb cgroup numa stat ... |
||
Shiyang Ruan
|
13f9e267fd |
xfs: add dax dedupe support
Introduce xfs_mmaplock_two_inodes_and_break_dax_layout() for dax files who are going to be deduped. After that, call compare range function only when files are both DAX or not. Link: https://lkml.kernel.org/r/20220603053738.1218681-15-ruansy.fnst@fujitsu.com Signed-off-by: Shiyang Ruan <ruansy.fnst@fujitsu.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Dan Williams <dan.j.wiliams@intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Goldwyn Rodrigues <rgoldwyn@suse.com> Cc: Goldwyn Rodrigues <rgoldwyn@suse.de> Cc: Jane Chu <jane.chu@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Ritesh Harjani <riteshh@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Darrick J. Wong
|
6d200bdc01 |
xfs: make attr forks permanent
This series fixes a use-after-free bug that syzbot uncovered. The UAF itself is a result of a race condition between getxattr and removexattr because callers to getxattr do not necessarily take any sort of locks before calling into the filesystem. Although the race condition itself can be fixed through clever use of a memory barrier, further consideration of the use cases of extended attributes shows that most files always have at least one attribute, so we might as well make them permanent. v2: Minor tweaks suggested by Dave, and convert some more macros to helper functions. Signed-off-by: Darrick J. Wong <djwong@kernel.org> -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmLQRsAACgkQ+H93GTRK tOseOw/+JdSH2MU2xx+XoE5M/fStzGpw0UsoOqDo8kUPKDt3z12NwuczlL4OAiuw XFrN/1IAnxBsTD9YxFYbqoCPNi/VR81ajfWV7JqD2B1Joj0aATsxGDdNUYJnxCdU HMlMqP5o77XvArwkxFbgxYi7UGdAeNwXxqUJcJ8FopQo2lb8+SG6XzpLgGKnyrKT FRNKXNObplhtzOs/Bv8qYAxJulmmjkktFJXhK2OAUJlIDjFwFY9Wo2T4QuOVe9w+ NXFOYyu0BqWLpDZQkYKWoCnF0GNsUavS8DP6zZYW3qJ6mX/f1jmtfbOLAkHNhlh8 uHy/3k3SeQhKztTqM28sPioe6mdj2xocorDCCVBgGXgWxVF6aWeM/PS4tMTWN/Bg TWd1egERpeVC0Ymkm0LTCIDNuLqxsknK1G6sxXhwrQ8cw/70Gl08ePwgdyZ6hpD9 Q61iJQofcI7MJX189a2VSbbHRzFnZIA+uVK4oyhmdEkQVKTHgmzwHVP660oAv9bD Y5hqkWEoyKTaaCsOWRAPVXG3k03lq+TNcaGggZgwFx11Gw4oMEx5hMUztoP54xX4 aEXb1HWcCmMxy8llnFY/82baW98ucwl8FwWF1qhNIPT40mYx9IobDmvkCtNrAoOC 41U7O8CxxPlt7XKxoRhafQOAhzp0ZzuhCdbaFIUENV7pTAJtq5Q= =W3Ad -----END PGP SIGNATURE----- Merge tag 'make-attr-fork-permanent-5.20_2022-07-14' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into xfs-5.20-mergeB xfs: make attr forks permanent This series fixes a use-after-free bug that syzbot uncovered. The UAF itself is a result of a race condition between getxattr and removexattr because callers to getxattr do not necessarily take any sort of locks before calling into the filesystem. Although the race condition itself can be fixed through clever use of a memory barrier, further consideration of the use cases of extended attributes shows that most files always have at least one attribute, so we might as well make them permanent. v2: Minor tweaks suggested by Dave, and convert some more macros to helper functions. Signed-off-by: Darrick J. Wong <djwong@kernel.org> * tag 'make-attr-fork-permanent-5.20_2022-07-14' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux: xfs: replace inode fork size macros with functions xfs: replace XFS_IFORK_Q with a proper predicate function xfs: use XFS_IFORK_Q to determine the presence of an xattr fork xfs: make inode attribute forks a permanent part of struct xfs_inode xfs: convert XFS_IFORK_PTR to a static inline helper |
||
Darrick J. Wong
|
4613b17cc4 |
xfs: introduce in-memory inode unlink log items
To facilitate future improvements in inode logging and improving inode cluster buffer locking order consistency, we need a new mechanism for defering inode cluster buffer modifications during unlinked list modifications. The unlinked inode list buffer locking is complex. The unlinked list is unordered - we add to the tail, remove from where-ever the inode is in the list. Hence we might need to lock two inode buffers here (previous inode in list and the one being removed). While we can order the locking of these buffers correctly within the confines of the unlinked list, there may be other inodes that need buffer locking in the same transaction. e.g. O_TMPFILE being linked into a directory also modifies the directory inode. Hence we need a mechanism for defering unlinked inode list updates until a point where we know that all modifications have been made and all that remains is to lock and modify the cluster buffers. We can do this by first observing that we serialise unlinked list modifications by holding the AGI buffer lock. IOWs, the AGI is going to be locked until the transaction commits any time we modify the unlinked list. Hence it doesn't matter when in the unlink transactions that we actually load, lock and modify the inode cluster buffer. We add an in-memory unlinked inode log item to defer the inode cluster buffer update to transaction commit time where it can be ordered with all the other inode cluster operations that need to be done. Essentially all we need to do is record the inodes that need to have their unlinked list pointer updated in a new log item that we attached to the transaction. This log item exists purely for the purpose of delaying the update of the unlinked list pointer until the inode cluster buffer can be locked in the correct order around the other inode cluster buffers. It plays no part in the actual commit, and there's no change to anything that is written to the log. i.e. the inode cluster buffers still have to be fully logged here (not just ordered) as log recovery depedends on this to replay mods to the unlinked inode list. Hence if we add a "precommit" hook into xfs_trans_commit() to run a "precommit" operation on these iunlink log items, we can delay the locking, modification and logging of the inode cluster buffer until after all other modifications have been made. The precommit hook reuires us to sort the items that are going to be run so that we can lock precommit items in the correct order as we perform the modifications they describe. To make this unlinked inode list processing simpler and easier to implement as a log item, we need to change the way we track the unlinked list in memory. Starting from the observation that an inode on the unlinked list is pinned in memory by the VFS, we can use the xfs_inode itself to track the unlinked list. To do this efficiently, we want the unlinked list to be a double linked list. The problem here is that we need a list per AGI unlinked list, and there are 64 of these per AGI. The approach taken in this patchset is to shadow the AGI unlinked list heads in the perag, and link inodes by agino, hence requiring only 8 extra bytes per inode to track this state. We can then use the agino pointers for lockless inode cache lookups to retreive the inode. The aginos in the inode are modified only under the AGI lock, just like the cluster buffer pointers, so we don't need any extra locking here. The i_next_unlinked field tracks the on-disk value of the unlinked list, and the i_prev_unlinked is a purely in-memory pointer that enables us to efficiently remove inodes from the middle of the list. This results in moving a lot of the unlink modification work into the precommit operations on the unlink log item. Tracking all the unlinked inodes in the inodes themselves also gets rid of the unlinked list reference hash table that is used to track this back pointer relationship. This greatly simplifies the the unlinked list modification code, and removes memory allocations in this hot path to track back pointers. This, overall, slightly reduces the CPU overhead of the unlink path. The result of this log item means that we move all the actual manipulation of objects to be logged out of the iunlink path and into the iunlink item. This allows for future optimisation of this mechanism without needing changes to high level unlink path, as well as making the unlink lock ordering predictable and synchronised with other operations that may require inode cluster locking. Signed-off-by: Dave Chinner <dchinner@redhat.com> -----BEGIN PGP SIGNATURE----- iQJIBAABCgAyFiEEmJOoJ8GffZYWSjj/regpR/R1+h0FAmLPvZAUHGRhdmlkQGZy b21vcmJpdC5jb20ACgkQregpR/R1+h2CDBAAj9QH4/XIe8JIx/mKgAGzcNNwQxu8 geBqb5S2ri0oB22pRXKc/3zArw/8zPwcgZF83ChkFrQ6tLn4JGkEEuvIKr3b8k50 2AEghYf8dqCaXRpkdvIGjJtdK54MFZIHv9TYRwHVzBp3WLtrz7uHmKeRf2qeSBMI DLurzVIbcocMptvHxrZZCpf1ajuVdovXtuw8ExiORZZKLOeF+3xBGztenkfh2BTO 8Kh8qJVSNN41XQ8h87PWyQtmah6JouqURXXGERJcgLbr80pTSw2EBihJvmXUmn8y qnoT27TCPAMOEDTWe+SHzLOVRLvhN+at/lFWbvas6PwOvDGAwQQtZkv/QyLTSgqD 6Zg9xJeeSgHhHP2kCeLlKmvW1dRptcUzhCWOrQ9Ry+WZnKK5ZenevkaAXAva6ucS NXwIU1DnWfJ51SHIYQiQIci2g+vF+pnJRQq1DtYUuwtBSWfsmw1uquNZodgbA9Ue k6hfk4qVua63k+vXsd5gVdCHT+Liw+1ldTInl2GNhT/riNzewO0HY3zmc1aZQyMM mymHXKVcQJbLpJvwqB5SXq8a37fbpoQDYlycptSF/YxxBhiCKKWuc6q7Tl6Y9VSS qpSHvh+MkJcP8PYtPjNUcJ9yeXhYJgkv1KK47zkIKzOD9a+zh4SIrfiBUflZbpQq M9ubXGHVmFqS4Nk= =59M0 -----END PGP SIGNATURE----- Merge tag 'xfs-iunlink-item-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs into xfs-5.20-mergeB xfs: introduce in-memory inode unlink log items To facilitate future improvements in inode logging and improving inode cluster buffer locking order consistency, we need a new mechanism for defering inode cluster buffer modifications during unlinked list modifications. The unlinked inode list buffer locking is complex. The unlinked list is unordered - we add to the tail, remove from where-ever the inode is in the list. Hence we might need to lock two inode buffers here (previous inode in list and the one being removed). While we can order the locking of these buffers correctly within the confines of the unlinked list, there may be other inodes that need buffer locking in the same transaction. e.g. O_TMPFILE being linked into a directory also modifies the directory inode. Hence we need a mechanism for defering unlinked inode list updates until a point where we know that all modifications have been made and all that remains is to lock and modify the cluster buffers. We can do this by first observing that we serialise unlinked list modifications by holding the AGI buffer lock. IOWs, the AGI is going to be locked until the transaction commits any time we modify the unlinked list. Hence it doesn't matter when in the unlink transactions that we actually load, lock and modify the inode cluster buffer. We add an in-memory unlinked inode log item to defer the inode cluster buffer update to transaction commit time where it can be ordered with all the other inode cluster operations that need to be done. Essentially all we need to do is record the inodes that need to have their unlinked list pointer updated in a new log item that we attached to the transaction. This log item exists purely for the purpose of delaying the update of the unlinked list pointer until the inode cluster buffer can be locked in the correct order around the other inode cluster buffers. It plays no part in the actual commit, and there's no change to anything that is written to the log. i.e. the inode cluster buffers still have to be fully logged here (not just ordered) as log recovery depedends on this to replay mods to the unlinked inode list. Hence if we add a "precommit" hook into xfs_trans_commit() to run a "precommit" operation on these iunlink log items, we can delay the locking, modification and logging of the inode cluster buffer until after all other modifications have been made. The precommit hook reuires us to sort the items that are going to be run so that we can lock precommit items in the correct order as we perform the modifications they describe. To make this unlinked inode list processing simpler and easier to implement as a log item, we need to change the way we track the unlinked list in memory. Starting from the observation that an inode on the unlinked list is pinned in memory by the VFS, we can use the xfs_inode itself to track the unlinked list. To do this efficiently, we want the unlinked list to be a double linked list. The problem here is that we need a list per AGI unlinked list, and there are 64 of these per AGI. The approach taken in this patchset is to shadow the AGI unlinked list heads in the perag, and link inodes by agino, hence requiring only 8 extra bytes per inode to track this state. We can then use the agino pointers for lockless inode cache lookups to retreive the inode. The aginos in the inode are modified only under the AGI lock, just like the cluster buffer pointers, so we don't need any extra locking here. The i_next_unlinked field tracks the on-disk value of the unlinked list, and the i_prev_unlinked is a purely in-memory pointer that enables us to efficiently remove inodes from the middle of the list. This results in moving a lot of the unlink modification work into the precommit operations on the unlink log item. Tracking all the unlinked inodes in the inodes themselves also gets rid of the unlinked list reference hash table that is used to track this back pointer relationship. This greatly simplifies the the unlinked list modification code, and removes memory allocations in this hot path to track back pointers. This, overall, slightly reduces the CPU overhead of the unlink path. The result of this log item means that we move all the actual manipulation of objects to be logged out of the iunlink path and into the iunlink item. This allows for future optimisation of this mechanism without needing changes to high level unlink path, as well as making the unlink lock ordering predictable and synchronised with other operations that may require inode cluster locking. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Darrick J. Wong <djwong@kernel.org> * tag 'xfs-iunlink-item-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: xfs: add in-memory iunlink log item xfs: add log item precommit operation xfs: combine iunlink inode update functions xfs: clean up xfs_iunlink_update_inode() xfs: double link the unlinked inode list xfs: introduce xfs_iunlink_lookup xfs: refactor xlog_recover_process_iunlinks() xfs: track the iunlink list pointer in the xfs_inode xfs: factor the xfs_iunlink functions xfs: flush inode gc workqueue before clearing agi bucket |
||
Dave Chinner
|
784eb7d8dd |
xfs: add in-memory iunlink log item
Now that we have a clean operation to update the di_next_unlinked field of inode cluster buffers, we can easily defer this operation to transaction commit time so we can order the inode cluster buffer locking consistently. To do this, we introduce a new in-memory log item to track the unlinked list item modification that we are going to make. This follows the same observations as the in-memory double linked list used to track unlinked inodes in that the inodes on the list are pinned in memory and cannot go away, and hence we can simply reference them for the duration of the transaction without needing to take active references or pin them or look them up. This allows us to pass the xfs_inode to the transaction commit code along with the modification to be made, and then order the logged modifications via the ->iop_sort and ->iop_precommit operations for the new log item type. As this is an in-memory log item, it doesn't have formatting, CIL or AIL operational hooks - it exists purely to run the inode unlink modifications and is then removed from the transaction item list and freed once the precommit operation has run. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> |
||
Dave Chinner
|
062efdb080 |
xfs: combine iunlink inode update functions
Combine the logging of the inode unlink list update into the calling function that looks up the buffer we end up logging. These do not need to be separate functions as they are both short, simple operations and there's only a single call path through them. This new function will end up being the core of the iunlink log item processing... Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> |
||
Dave Chinner
|
5301f87013 |
xfs: clean up xfs_iunlink_update_inode()
We no longer need to have this function return the previous next agino value from the on-disk inode as we have it in the in-core inode now. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> |
||
Dave Chinner
|
2fd26cc07e |
xfs: double link the unlinked inode list
Now we have forwards traversal via the incore inode in place, we now need to add back pointers to the incore inode to entirely replace the back reference cache. We use the same lookup semantics and constraints as for the forwards pointer lookups during unlinks, and so we can look up any inode in the unlinked list directly and update the list pointers, forwards or backwards, at any time. The only wrinkle in converting the unlinked list manipulations to use in-core previous pointers is that log recovery doesn't have the incore inode state built up so it can't just read in an inode and release it to finish off the unlink. Hence we need to modify the traversal in recovery to read one inode ahead before we release the inode at the head of the list. This populates the next->prev relationship sufficient to be able to replay the unlinked list and hence greatly simplify the runtime code. This recovery algorithm also requires that we actually remove inodes from the unlinked list one at a time as background inode inactivation will result in unlinked list removal racing with the building of the in-memory unlinked list state. We could serialise this by holding the AGI buffer lock when constructing the in memory state, but all that does is lockstep background processing with list building. It is much simpler to flush the inodegc immediately after releasing the inode so that it is unlinked immediately and there is no races present at all. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> |
||
Dave Chinner
|
a83d5a8b1d |
xfs: introduce xfs_iunlink_lookup
When an inode is on an unlinked list during normal operation, it is guaranteed to be pinned in memory as it is either referenced by the current unlink operation or it has a open file descriptor that references it and has it pinned in memory. Hence to look up an inode on the unlinked list, we can do a direct inode cache lookup and always expect the lookup to succeed. Add a function to do this lookup based on the agino that we use to link the chain of unlinked inodes together so we can begin the conversion the unlinked list manipulations to use in-memory inodes rather than inode cluster buffers and remove the backref cache. Use this lookup function to replace the on-disk inode buffer walk when removing inodes from the unlinked list with an in-core inode unlinked list walk. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> |
||
Dave Chinner
|
4fcc94d653 |
xfs: track the iunlink list pointer in the xfs_inode
Having direct access to the i_next_unlinked pointer in unlinked inodes greatly simplifies the processing of inodes on the unlinked list. We no longer need to look up the inode buffer just to find next inode in the list if the xfs_inode is in memory. These improvements will be realised over upcoming patches as other dependencies on the inode buffer for unlinked list processing are removed. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> |
||
Dave Chinner
|
a4454cd69c |
xfs: factor the xfs_iunlink functions
Prep work that separates the locking that protects the unlinked list from the actual operations being performed. This also helps document the fact they are performing list insert and remove operations. No functional code change. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> |
||
Darrick J. Wong
|
932b42c66c |
xfs: replace XFS_IFORK_Q with a proper predicate function
Replace this shouty macro with a real C function that has a more descriptive name. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> |
||
Darrick J. Wong
|
e45d7cb235 |
xfs: use XFS_IFORK_Q to determine the presence of an xattr fork
Modify xfs_ifork_ptr to return a NULL pointer if the caller asks for the attribute fork but i_forkoff is zero. This eliminates the ambiguity between i_forkoff and i_af.if_present, which should make it easier to understand the lifetime of attr forks. While we're at it, remove the if_present checks around calls to xfs_idestroy_fork and xfs_ifork_zap_attr since they can both handle attr forks that have already been torn down. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> |
||
Darrick J. Wong
|
2ed5b09b3e |
xfs: make inode attribute forks a permanent part of struct xfs_inode
Syzkaller reported a UAF bug a while back: ================================================================== BUG: KASAN: use-after-free in xfs_ilock_attr_map_shared+0xe3/0xf6 fs/xfs/xfs_inode.c:127 Read of size 4 at addr ffff88802cec919c by task syz-executor262/2958 CPU: 2 PID: 2958 Comm: syz-executor262 Not tainted 5.15.0-0.30.3-20220406_1406 #3 Hardware name: Red Hat KVM, BIOS 1.13.0-2.module+el8.3.0+7860+a7792d29 04/01/2014 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x82/0xa9 lib/dump_stack.c:106 print_address_description.constprop.9+0x21/0x2d5 mm/kasan/report.c:256 __kasan_report mm/kasan/report.c:442 [inline] kasan_report.cold.14+0x7f/0x11b mm/kasan/report.c:459 xfs_ilock_attr_map_shared+0xe3/0xf6 fs/xfs/xfs_inode.c:127 xfs_attr_get+0x378/0x4c2 fs/xfs/libxfs/xfs_attr.c:159 xfs_xattr_get+0xe3/0x150 fs/xfs/xfs_xattr.c:36 __vfs_getxattr+0xdf/0x13d fs/xattr.c:399 cap_inode_need_killpriv+0x41/0x5d security/commoncap.c:300 security_inode_need_killpriv+0x4c/0x97 security/security.c:1408 dentry_needs_remove_privs.part.28+0x21/0x63 fs/inode.c:1912 dentry_needs_remove_privs+0x80/0x9e fs/inode.c:1908 do_truncate+0xc3/0x1e0 fs/open.c:56 handle_truncate fs/namei.c:3084 [inline] do_open fs/namei.c:3432 [inline] path_openat+0x30ab/0x396d fs/namei.c:3561 do_filp_open+0x1c4/0x290 fs/namei.c:3588 do_sys_openat2+0x60d/0x98c fs/open.c:1212 do_sys_open+0xcf/0x13c fs/open.c:1228 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0x0 RIP: 0033:0x7f7ef4bb753d Code: 00 c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 1b 79 2c 00 f7 d8 64 89 01 48 RSP: 002b:00007f7ef52c2ed8 EFLAGS: 00000246 ORIG_RAX: 0000000000000055 RAX: ffffffffffffffda RBX: 0000000000404148 RCX: 00007f7ef4bb753d RDX: 00007f7ef4bb753d RSI: 0000000000000000 RDI: 0000000020004fc0 RBP: 0000000000404140 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0030656c69662f2e R13: 00007ffd794db37f R14: 00007ffd794db470 R15: 00007f7ef52c2fc0 </TASK> Allocated by task 2953: kasan_save_stack+0x19/0x38 mm/kasan/common.c:38 kasan_set_track mm/kasan/common.c:46 [inline] set_alloc_info mm/kasan/common.c:434 [inline] __kasan_slab_alloc+0x68/0x7c mm/kasan/common.c:467 kasan_slab_alloc include/linux/kasan.h:254 [inline] slab_post_alloc_hook mm/slab.h:519 [inline] slab_alloc_node mm/slub.c:3213 [inline] slab_alloc mm/slub.c:3221 [inline] kmem_cache_alloc+0x11b/0x3eb mm/slub.c:3226 kmem_cache_zalloc include/linux/slab.h:711 [inline] xfs_ifork_alloc+0x25/0xa2 fs/xfs/libxfs/xfs_inode_fork.c:287 xfs_bmap_add_attrfork+0x3f2/0x9b1 fs/xfs/libxfs/xfs_bmap.c:1098 xfs_attr_set+0xe38/0x12a7 fs/xfs/libxfs/xfs_attr.c:746 xfs_xattr_set+0xeb/0x1a9 fs/xfs/xfs_xattr.c:59 __vfs_setxattr+0x11b/0x177 fs/xattr.c:180 __vfs_setxattr_noperm+0x128/0x5e0 fs/xattr.c:214 __vfs_setxattr_locked+0x1d4/0x258 fs/xattr.c:275 vfs_setxattr+0x154/0x33d fs/xattr.c:301 setxattr+0x216/0x29f fs/xattr.c:575 __do_sys_fsetxattr fs/xattr.c:632 [inline] __se_sys_fsetxattr fs/xattr.c:621 [inline] __x64_sys_fsetxattr+0x243/0x2fe fs/xattr.c:621 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0x0 Freed by task 2949: kasan_save_stack+0x19/0x38 mm/kasan/common.c:38 kasan_set_track+0x1c/0x21 mm/kasan/common.c:46 kasan_set_free_info+0x20/0x30 mm/kasan/generic.c:360 ____kasan_slab_free mm/kasan/common.c:366 [inline] ____kasan_slab_free mm/kasan/common.c:328 [inline] __kasan_slab_free+0xe2/0x10e mm/kasan/common.c:374 kasan_slab_free include/linux/kasan.h:230 [inline] slab_free_hook mm/slub.c:1700 [inline] slab_free_freelist_hook mm/slub.c:1726 [inline] slab_free mm/slub.c:3492 [inline] kmem_cache_free+0xdc/0x3ce mm/slub.c:3508 xfs_attr_fork_remove+0x8d/0x132 fs/xfs/libxfs/xfs_attr_leaf.c:773 xfs_attr_sf_removename+0x5dd/0x6cb fs/xfs/libxfs/xfs_attr_leaf.c:822 xfs_attr_remove_iter+0x68c/0x805 fs/xfs/libxfs/xfs_attr.c:1413 xfs_attr_remove_args+0xb1/0x10d fs/xfs/libxfs/xfs_attr.c:684 xfs_attr_set+0xf1e/0x12a7 fs/xfs/libxfs/xfs_attr.c:802 xfs_xattr_set+0xeb/0x1a9 fs/xfs/xfs_xattr.c:59 __vfs_removexattr+0x106/0x16a fs/xattr.c:468 cap_inode_killpriv+0x24/0x47 security/commoncap.c:324 security_inode_killpriv+0x54/0xa1 security/security.c:1414 setattr_prepare+0x1a6/0x897 fs/attr.c:146 xfs_vn_change_ok+0x111/0x15e fs/xfs/xfs_iops.c:682 xfs_vn_setattr_size+0x5f/0x15a fs/xfs/xfs_iops.c:1065 xfs_vn_setattr+0x125/0x2ad fs/xfs/xfs_iops.c:1093 notify_change+0xae5/0x10a1 fs/attr.c:410 do_truncate+0x134/0x1e0 fs/open.c:64 handle_truncate fs/namei.c:3084 [inline] do_open fs/namei.c:3432 [inline] path_openat+0x30ab/0x396d fs/namei.c:3561 do_filp_open+0x1c4/0x290 fs/namei.c:3588 do_sys_openat2+0x60d/0x98c fs/open.c:1212 do_sys_open+0xcf/0x13c fs/open.c:1228 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0x0 The buggy address belongs to the object at ffff88802cec9188 which belongs to the cache xfs_ifork of size 40 The buggy address is located 20 bytes inside of 40-byte region [ffff88802cec9188, ffff88802cec91b0) The buggy address belongs to the page: page:00000000c3af36a1 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x2cec9 flags: 0xfffffc0000200(slab|node=0|zone=1|lastcpupid=0x1fffff) raw: 000fffffc0000200 ffffea00009d2580 0000000600000006 ffff88801a9ffc80 raw: 0000000000000000 0000000080490049 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff88802cec9080: fb fb fb fc fc fa fb fb fb fb fc fc fb fb fb fb ffff88802cec9100: fb fc fc fb fb fb fb fb fc fc fb fb fb fb fb fc >ffff88802cec9180: fc fa fb fb fb fb fc fc fa fb fb fb fb fc fc fb ^ ffff88802cec9200: fb fb fb fb fc fc fb fb fb fb fb fc fc fb fb fb ffff88802cec9280: fb fb fc fc fa fb fb fb fb fc fc fa fb fb fb fb ================================================================== The root cause of this bug is the unlocked access to xfs_inode.i_afp from the getxattr code paths while trying to determine which ILOCK mode to use to stabilize the xattr data. Unfortunately, the VFS does not acquire i_rwsem when vfs_getxattr (or listxattr) call into the filesystem, which means that getxattr can race with a removexattr that's tearing down the attr fork and crash: xfs_attr_set: xfs_attr_get: xfs_attr_fork_remove: xfs_ilock_attr_map_shared: xfs_idestroy_fork(ip->i_afp); kmem_cache_free(xfs_ifork_cache, ip->i_afp); if (ip->i_afp && ip->i_afp = NULL; xfs_need_iread_extents(ip->i_afp)) <KABOOM> ip->i_forkoff = 0; Regrettably, the VFS is much more lax about i_rwsem and getxattr than is immediately obvious -- not only does it not guarantee that we hold i_rwsem, it actually doesn't guarantee that we *don't* hold it either. The getxattr system call won't acquire the lock before calling XFS, but the file capabilities code calls getxattr with and without i_rwsem held to determine if the "security.capabilities" xattr is set on the file. Fixing the VFS locking requires a treewide investigation into every code path that could touch an xattr and what i_rwsem state it expects or sets up. That could take years or even prove impossible; fortunately, we can fix this UAF problem inside XFS. An earlier version of this patch used smp_wmb in xfs_attr_fork_remove to ensure that i_forkoff is always zeroed before i_afp is set to null and changed the read paths to use smp_rmb before accessing i_forkoff and i_afp, which avoided these UAF problems. However, the patch author was too busy dealing with other problems in the meantime, and by the time he came back to this issue, the situation had changed a bit. On a modern system with selinux, each inode will always have at least one xattr for the selinux label, so it doesn't make much sense to keep incurring the extra pointer dereference. Furthermore, Allison's upcoming parent pointer patchset will also cause nearly every inode in the filesystem to have extended attributes. Therefore, make the inode attribute fork structure part of struct xfs_inode, at a cost of 40 more bytes. This patch adds a clunky if_present field where necessary to maintain the existing logic of xattr fork null pointer testing in the existing codebase. The next patch switches the logic over to XFS_IFORK_Q and it all goes away. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> |
||
Darrick J. Wong
|
732436ef91 |
xfs: convert XFS_IFORK_PTR to a static inline helper
We're about to make this logic do a bit more, so convert the macro to a static inline function for better typechecking and fewer shouty macros. No functional changes here. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> |
||
Eric Sandeen
|
70b589a37e |
xfs: add selinux labels to whiteout inodes
We got a report that "renameat2() with flags=RENAME_WHITEOUT doesn't apply an SELinux label on xfs" as it does on other filesystems (for example, ext4 and tmpfs.) While I'm not quite sure how labels may interact w/ whiteout files, leaving them as unlabeled seems inconsistent at best. Now that xfs_init_security is not static, rename it to xfs_inode_init_security per dchinner's suggestion. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org> |
||
Dave Chinner
|
2d6ca8321c |
xfs: Pre-calculate per-AG agino geometry
There is a lot of overhead in functions like xfs_verify_agino() that repeatedly calculate the geometry limits of an AG. These can be pre-calculated as they are static and the verification context has a per-ag context it can quickly reference. In the case of xfs_verify_agino(), we now always have a perag context handy, so we can store the minimum and maximum agino values in the AG in the perag. This means we don't have to calculate it on every call and it can be inlined in callers if we move it to xfs_ag.h. xfs_verify_agino_or_null() gets the same perag treatment. xfs_agino_range() is moved to xfs_ag.c as it's not really a type function, and it's use is largely restricted as the first and last aginos can be grabbed straight from the perag in most cases. Note that we leave the original xfs_verify_agino in place in xfs_types.c as a static function as other callers in that file do not have per-ag contexts so still need to go the long way. It's been renamed to xfs_verify_agno_agino() to indicate it takes both an agno and an agino to differentiate it from new function. $ size --totals fs/xfs/built-in.a text data bss dec hex filename before 1482185 329588 572 1812345 1ba779 (TOTALS) after 1481937 329588 572 1812097 1ba681 (TOTALS) Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> |
||
Dave Chinner
|
61021deb1f |
xfs: pass perag to xfs_read_agi
We have the perag in most palces we call xfs_read_agi, so pass the perag instead of a mount/agno pair. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> |
||
Kaixu Xia
|
82af880639 |
xfs: use invalidate_lock to check the state of mmap_lock
We should use invalidate_lock and XFS_MMAPLOCK_SHARED to check the state
of mmap_lock rw_semaphore in xfs_isilocked(), rather than i_rwsem and
XFS_IOLOCK_SHARED.
Fixes:
|
||
Kaixu Xia
|
ca76a761ea |
xfs: factor out the common lock flags assert
There are similar lock flags assert in xfs_ilock(), xfs_ilock_nowait(), xfs_iunlock(), thus we can factor it out into a helper that is clear. Signed-off-by: Kaixu Xia <kaixuxia@tencent.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org> |
||
Brian Foster
|
6f5097e336 |
xfs: fix xfs_ifree() error handling to not leak perag ref
For some reason commit |
||
Dave Chinner
|
a44a027a8b |
Merge tag 'large-extent-counters-v9' of https://github.com/chandanr/linux into xfs-5.19-for-next
xfs: Large extent counters
The commit xfs: fix inode fork extent count overflow
(
|
||
Dave Chinner
|
898a768f54 | Merge branch 'guilt/xfs-unsigned-flags-5.18' into xfs-5.19-for-next | ||
Dave Chinner
|
a103375307 |
xfs: convert inode lock flags to unsigned.
5.18 w/ std=gnu11 compiled with gcc-5 wants flags stored in unsigned fields to be unsigned. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Chandan Babu R <chandan.babu@oracle.com> Signed-off-by: Dave Chinner <david@fromorbit.com> |
||
Dave Chinner
|
9a5280b312 |
xfs: reorder iunlink remove operation in xfs_ifree
The O_TMPFILE creation implementation creates a specific order of
operations for inode allocation/freeing and unlinked list
modification. Currently both are serialised by the AGI, so the order
doesn't strictly matter as long as the are both in the same
transaction.
However, if we want to move the unlinked list insertions largely out
from under the AGI lock, then we have to be concerned about the
order in which we do unlinked list modification operations.
O_TMPFILE creation tells us this order is inode allocation/free,
then unlinked list modification.
Change xfs_ifree() to use this same ordering on unlinked list
removal. This way we always guarantee that when we enter the
iunlinked list removal code from this path, we already have the AGI
locked and we don't have to worry about lock nesting AGI reads
inside unlink list locks because it's already locked and attached to
the transaction.
We can do this safely as the inode freeing and unlinked list removal
are done in the same transaction and hence are atomic operations
with respect to log recovery.
Reported-by: Frank Hofmann <fhofmann@cloudflare.com>
Fixes:
|
||
Chandan Babu R
|
83a21c1844 |
xfs: Directory's data fork extent counter can never overflow
The maximum file size that can be represented by the data fork extent counter in the worst case occurs when all extents are 1 block in length and each block is 1KB in size. With XFS_MAX_EXTCNT_DATA_FORK_SMALL representing maximum extent count and with 1KB sized blocks, a file can reach upto, (2^31) * 1KB = 2TB This is much larger than the theoretical maximum size of a directory i.e. XFS_DIR2_SPACE_SIZE * 3 = ~96GB. Since a directory's inode can never overflow its data fork extent counter, this commit removes all the overflow checks associated with it. xfs_dinode_verify() now performs a rough check to verify if a diretory's data fork is larger than 96GB. Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Chandan Babu R <chandan.babu@oracle.com> |
||
Chandan Babu R
|
755c38ffe1 |
xfs: Promote xfs_extnum_t and xfs_aextnum_t to 64 and 32-bits respectively
A future commit will introduce a 64-bit on-disk data extent counter and a 32-bit on-disk attr extent counter. This commit promotes xfs_extnum_t and xfs_aextnum_t to 64 and 32-bits in order to correctly handle in-core versions of these quantities. Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Chandan Babu R <chandan.babu@oracle.com> |
||
Dave Chinner
|
d2d7c04735 |
xfs: aborting inodes on shutdown may need buffer lock
Most buffer io list operations are run with the bp->b_lock held, but xfs_iflush_abort() can be called without the buffer lock being held resulting in inodes being removed from the buffer list while other list operations are occurring. This causes problems with corrupted bp->b_io_list inode lists during filesystem shutdown, leading to traversals that never end, double removals from the AIL, etc. Fix this by passing the buffer to xfs_iflush_abort() if we have it locked. If the inode is attached to the buffer, we're going to have to remove it from the buffer list and we'd have to get the buffer off the inode log item to do that anyway. If we don't have a buffer passed in (e.g. from xfs_reclaim_inode()) then we can determine if the inode has a log item and if it is attached to a buffer before we do anything else. If it does have an attached buffer, we can lock it safely (because the inode has a reference to it) and then perform the inode abort. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org> |
||
Dave Chinner
|
01728b44ef |
xfs: xfs_is_shutdown vs xlog_is_shutdown cage fight
I've been chasing a recent resurgence in generic/388 recovery failure and/or corruption events. The events have largely been uninitialised inode chunks being tripped over in log recovery such as: XFS (pmem1): User initiated shutdown received. pmem1: writeback error on inode 12621949, offset 1019904, sector 12968096 XFS (pmem1): Log I/O Error (0x6) detected at xfs_fs_goingdown+0xa3/0xf0 (fs/xfs/xfs_fsops.c:500). Shutting down filesystem. XFS (pmem1): Please unmount the filesystem and rectify the problem(s) XFS (pmem1): Unmounting Filesystem XFS (pmem1): Mounting V5 Filesystem XFS (pmem1): Starting recovery (logdev: internal) XFS (pmem1): bad inode magic/vsn daddr 8723584 #0 (magic=1818) XFS (pmem1): Metadata corruption detected at xfs_inode_buf_verify+0x180/0x190, xfs_inode block 0x851c80 xfs_inode_buf_verify XFS (pmem1): Unmount and run xfs_repair XFS (pmem1): First 128 bytes of corrupted metadata buffer: 00000000: 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 ................ 00000010: 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 ................ 00000020: 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 ................ 00000030: 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 ................ 00000040: 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 ................ 00000050: 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 ................ 00000060: 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 ................ 00000070: 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 ................ XFS (pmem1): metadata I/O error in "xlog_recover_items_pass2+0x52/0xc0" at daddr 0x851c80 len 32 error 117 XFS (pmem1): log mount/recovery failed: error -117 XFS (pmem1): log mount failed There have been isolated random other issues, too - xfs_repair fails because it finds some corruption in symlink blocks, rmap inconsistencies, etc - but they are nowhere near as common as the uninitialised inode chunk failure. The problem has clearly happened at runtime before recovery has run; I can see the ICREATE log item in the log shortly before the actively recovered range of the log. This means the ICREATE was definitely created and written to the log, but for some reason the tail of the log has been moved past the ordered buffer log item that tracks INODE_ALLOC buffers and, supposedly, prevents the tail of the log moving past the ICREATE log item before the inode chunk buffer is written to disk. Tracing the fsstress processes that are running when the filesystem shut down immediately pin-pointed the problem: user shutdown marks xfs_mount as shutdown godown-213341 [008] 6398.022871: console: [ 6397.915392] XFS (pmem1): User initiated shutdown received. ..... aild tries to push ordered inode cluster buffer xfsaild/pmem1-213314 [001] 6398.022974: xfs_buf_trylock: dev 259:1 daddr 0x851c80 bbcount 0x20 hold 16 pincount 0 lock 0 flags DONE|INODES|PAGES caller xfs_inode_item_push+0x8e xfsaild/pmem1-213314 [001] 6398.022976: xfs_ilock_nowait: dev 259:1 ino 0x851c80 flags ILOCK_SHARED caller xfs_iflush_cluster+0xae xfs_iflush_cluster() checks xfs_is_shutdown(), returns true, calls xfs_iflush_abort() to kill writeback of the inode. Inode is removed from AIL, drops cluster buffer reference. xfsaild/pmem1-213314 [001] 6398.022977: xfs_ail_delete: dev 259:1 lip 0xffff88880247ed80 old lsn 7/20344 new lsn 7/21000 type XFS_LI_INODE flags IN_AIL xfsaild/pmem1-213314 [001] 6398.022978: xfs_buf_rele: dev 259:1 daddr 0x851c80 bbcount 0x20 hold 17 pincount 0 lock 0 flags DONE|INODES|PAGES caller xfs_iflush_abort+0xd7 ..... All inodes on cluster buffer are aborted, then the cluster buffer itself is aborted and removed from the AIL *without writeback*: xfsaild/pmem1-213314 [001] 6398.023011: xfs_buf_error_relse: dev 259:1 daddr 0x851c80 bbcount 0x20 hold 2 pincount 0 lock 0 flags ASYNC|DONE|STALE|INODES|PAGES caller xfs_buf_ioend_fail+0x33 xfsaild/pmem1-213314 [001] 6398.023012: xfs_ail_delete: dev 259:1 lip 0xffff8888053efde8 old lsn 7/20344 new lsn 7/20344 type XFS_LI_BUF flags IN_AIL The inode buffer was at 7/20344 when it was removed from the AIL. xfsaild/pmem1-213314 [001] 6398.023012: xfs_buf_item_relse: dev 259:1 daddr 0x851c80 bbcount 0x20 hold 2 pincount 0 lock 0 flags ASYNC|DONE|STALE|INODES|PAGES caller xfs_buf_item_done+0x31 xfsaild/pmem1-213314 [001] 6398.023012: xfs_buf_rele: dev 259:1 daddr 0x851c80 bbcount 0x20 hold 2 pincount 0 lock 0 flags ASYNC|DONE|STALE|INODES|PAGES caller xfs_buf_item_relse+0x39 ..... Userspace is still running, doing stuff. an fsstress process runs syncfs() or sync() and we end up in sync_fs_one_sb() which issues a log force. This pushes on the CIL: fsstress-213322 [001] 6398.024430: xfs_fs_sync_fs: dev 259:1 m_features 0x20000000019ff6e9 opstate (clean|shutdown|inodegc|blockgc) s_flags 0x70810000 caller sync_fs_one_sb+0x26 fsstress-213322 [001] 6398.024430: xfs_log_force: dev 259:1 lsn 0x0 caller xfs_fs_sync_fs+0x82 fsstress-213322 [001] 6398.024430: xfs_log_force: dev 259:1 lsn 0x5f caller xfs_log_force+0x7c <...>-194402 [001] 6398.024467: kmem_alloc: size 176 flags 0x14 caller xlog_cil_push_work+0x9f And the CIL fills up iclogs with pending changes. This picks up the current tail from the AIL: <...>-194402 [001] 6398.024497: xlog_iclog_get_space: dev 259:1 state XLOG_STATE_ACTIVE refcnt 1 offset 0 lsn 0x0 flags caller xlog_write+0x149 <...>-194402 [001] 6398.024498: xlog_iclog_switch: dev 259:1 state XLOG_STATE_ACTIVE refcnt 1 offset 0 lsn 0x700005408 flags caller xlog_state_get_iclog_space+0x37e <...>-194402 [001] 6398.024521: xlog_iclog_release: dev 259:1 state XLOG_STATE_WANT_SYNC refcnt 1 offset 32256 lsn 0x700005408 flags caller xlog_write+0x5f9 <...>-194402 [001] 6398.024522: xfs_log_assign_tail_lsn: dev 259:1 new tail lsn 7/21000, old lsn 7/20344, last sync 7/21448 And it moves the tail of the log to 7/21000 from 7/20344. This *moves the tail of the log beyond the ICREATE transaction* that was at 7/20344 and pinned by the inode cluster buffer that was cancelled above. .... godown-213341 [008] 6398.027005: xfs_force_shutdown: dev 259:1 tag logerror flags log_io|force_umount file fs/xfs/xfs_fsops.c line_num 500 godown-213341 [008] 6398.027022: console: [ 6397.915406] pmem1: writeback error on inode 12621949, offset 1019904, sector 12968096 godown-213341 [008] 6398.030551: console: [ 6397.919546] XFS (pmem1): Log I/O Error (0x6) detected at xfs_fs_goingdown+0xa3/0xf0 (fs/ And finally the log itself is now shutdown, stopping all further writes to the log. But this is too late to prevent the corruption that moving the tail of the log forwards after we start cancelling writeback causes. The fundamental problem here is that we are using the wrong shutdown checks for log items. We've long conflated mount shutdown with log shutdown state, and I started separating that recently with the atomic shutdown state changes in commit |
||
Darrick J. Wong
|
996b2329b2 |
xfs: constify the name argument to various directory functions
Various directory functions do not modify their @name parameter, so mark it const to make that clear. This will enable us to mark the global xfs_name_dotdot variable as const to prevent mischief. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> |
||
Darrick J. Wong
|
41667260bc |
xfs: reserve quota for target dir expansion when renaming files
XFS does not reserve quota for directory expansion when renaming children into a directory. This means that we don't reject the expansion with EDQUOT when we're at or near a hard limit, which means that unprivileged userspace can use rename() to exceed quota. Rename operations don't always expand the target directory, and we allow a rename to proceed with no space reservation if we don't need to add a block to the target directory to handle the addition. Moreover, the unlink operation on the source directory generally does not expand the directory (you'd have to free a block and then cause a btree split) and it's probably of little consequence to leave the corner case that renaming a file out of a directory can increase its size. As with link and unlink, there is a further bug in that we do not trigger the blockgc workers to try to clear space when we're out of quota. Because rename is its own special tricky animal, we'll patch xfs_rename directly to reserve quota to the rename transaction. We'll leave cleaning up the rest of xfs_rename for the metadata directory tree patchset. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> |
||
Darrick J. Wong
|
871b9316e7 |
xfs: reserve quota for dir expansion when linking/unlinking files
XFS does not reserve quota for directory expansion when linking or unlinking children from a directory. This means that we don't reject the expansion with EDQUOT when we're at or near a hard limit, which means that unprivileged userspace can use link()/unlink() to exceed quota. The fix for this is nuanced -- link operations don't always expand the directory, and we allow a link to proceed with no space reservation if we don't need to add a block to the directory to handle the addition. Unlink operations generally do not expand the directory (you'd have to free a block and then cause a btree split) and we can defer the directory block freeing if there is no space reservation. Moreover, there is a further bug in that we do not trigger the blockgc workers to try to clear space when we're out of quota. To fix both cases, create a new xfs_trans_alloc_dir function that allocates the transaction, locks and joins the inodes, and reserves quota for the directory. If there isn't sufficient space or quota, we'll switch the caller to reservationless mode. This should prevent quota usage overruns with the least restriction in functionality. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> |
||
Linus Torvalds
|
5dfbfe71e3 |
fs.idmapped.v5.17
-----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCYdRCkgAKCRCRxhvAZXjc olrvAQCdp8LWkT8TauJSl8wmUm3mZhNy+5+fXuCUSwe3PyUtTQEAq4fxm41JpG8u WCZTrrxVhaXwgUY3aWzzeQnLCZjtEQw= =woqV -----END PGP SIGNATURE----- Merge tag 'fs.idmapped.v5.17' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux Pull fs idmapping updates from Christian Brauner: "This contains the work to enable the idmapping infrastructure to support idmapped mounts of filesystems mounted with an idmapping. In addition this contains various cleanups that avoid repeated open-coding of the same functionality and simplify the code in quite a few places. We also finish the renaming of the mapping helpers we started a few kernel releases back and move them to a dedicated header to not continue polluting the fs header needlessly with low-level idmapping helpers. With this series the fs header only contains idmapping helpers that interact with fs objects. Currently we only support idmapped mounts for filesystems mounted without an idmapping themselves. This was a conscious decision mentioned in multiple places (cf. [1]). As explained at length in [3] it is perfectly fine to extend support for idmapped mounts to filesystem's mounted with an idmapping should the need arise. The need has been there for some time now (cf. [2]). Before we can port any filesystem that is mountable with an idmapping to support idmapped mounts in the coming cycles, we need to first extend the mapping helpers to account for the filesystem's idmapping. This again, is explained at length in our documentation at [3] and also in the individual commit messages so here's an overview. Currently, the low-level mapping helpers implement the remapping algorithms described in [3] in a simplified manner as we could rely on the fact that all filesystems supporting idmapped mounts are mounted without an idmapping. In contrast, filesystems mounted with an idmapping are very likely to not use an identity mapping and will instead use a non-identity mapping. So the translation step from or into the filesystem's idmapping in the remapping algorithm cannot be skipped for such filesystems. Non-idmapped filesystems and filesystems not supporting idmapped mounts are unaffected by this change as the remapping algorithms can take the same shortcut as before. If the low-level helpers detect that they are dealing with an idmapped mount but the underlying filesystem is mounted without an idmapping we can rely on the previous shortcut and can continue to skip the translation step from or into the filesystem's idmapping. And of course, if the low-level helpers detect that they are not dealing with an idmapped mount they can simply return the relevant id unchanged; no remapping needs to be performed at all. These checks guarantee that only the minimal amount of work is performed. As before, if idmapped mounts aren't used the low-level helpers are idempotent and no work is performed at all" Link: |
||
Christian Brauner
|
209188ce75
|
fs: port higher-level mapping helpers
Enable the mapped_fs{g,u}id() helpers to support filesystems mounted with an idmapping. Apart from core mapping helpers that use mapped_fs{g,u}id() to initialize struct inode's i_{g,u}id fields xfs is the only place that uses these low-level helpers directly. The patch only extends the helpers to be able to take the filesystem idmapping into account. Since we don't actually yet pass the filesystem's idmapping in no functional changes happen. This will happen in a final patch. Link: https://lore.kernel.org/r/20211123114227.3124056-9-brauner@kernel.org (v1) Link: https://lore.kernel.org/r/20211130121032.3753852-9-brauner@kernel.org (v2) Link: https://lore.kernel.org/r/20211203111707.3901969-9-brauner@kernel.org Cc: Seth Forshee <sforshee@digitalocean.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Al Viro <viro@zeniv.linux.org.uk> CC: linux-fsdevel@vger.kernel.org Reviewed-by: Amir Goldstein <amir73il@gmail.com> Reviewed-by: Seth Forshee <sforshee@digitalocean.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> |
||
Eric Sandeen
|
e445976537 |
xfs: remove incorrect ASSERT in xfs_rename
This ASSERT in xfs_rename is a) incorrect, because (RENAME_WHITEOUT|RENAME_NOREPLACE) is a valid combination, and b) unnecessary, because actual invalid flag combinations are already handled at the vfs level in do_renameat2() before we get called. So, remove it. Reported-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org> |
||
Changcheng Deng
|
2a09b57507 |
xfs: use swap() to make code cleaner
Use swap() in order to make code cleaner. Issue found by coccinelle. Reported-by: Zeal Robot <zealci@zte.com.cn> Signed-off-by: Changcheng Deng <deng.changcheng@zte.com.cn> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org> |
||
Darrick J. Wong
|
182696fb02 |
xfs: rename _zone variables to _cache
Now that we've gotten rid of the kmem_zone_t typedef, rename the variables to _cache since that's what they are. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Chandan Babu R <chandan.babu@oracle.com> |
||
Darrick J. Wong
|
e7720afad0 |
xfs: remove kmem_zone typedef
Remove these typedefs by referencing kmem_cache directly. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Chandan Babu R <chandan.babu@oracle.com> |
||
Linus Torvalds
|
90c90cda05 |
New code for 5.15:
- Fix a potential log livelock on busy filesystems when there's so much work going on that we can't finish a quotaoff before filling up the log by removing the ability to disable quota accounting. - Introduce the ability to use per-CPU data structures in XFS so that we can do a better job of maintaining CPU locality for certain operations. - Defer inode inactivation work to per-CPU lists, which will help us batch that processing. Deletions of large sparse files will *appear* to run faster, but all that means is that we've moved the work to the backend. - Drop the EXPERIMENTAL warnings from the y2038+ support and the inode btree counters, since it's been nearly a year and no complaints have come in. - Remove more of our bespoke kmem* variants in favor of using the standard Linux calls. - Prepare for the addition of log incompat features in upcoming cycles by actually adding code to support this. - Small cleanups of the xattr code in preparation for landing support for full logging of extended attribute updates in a future cycle. - Replace the various log shutdown state and flag code all over xfs with a single atomic bit flag. - Fix a serious log recovery bug where log item replay can be skipped based on the start lsn of a transaction even though the transaction commit lsn is the key data point for that by enforcing start lsns to appear in the log in the same order as commit lsns. - Enable pipelining in the code that pushes log items to disk. - Drop ->writepage. - Fix some bugs in GETFSMAP where the last fsmap record reported for a device could extend beyond the end of the device, and a separate bug where query keys for one device could be applied to another. - Don't let GETFSMAP query functions edit their input parameters. - Small cleanups to the scrub code's handling of perag structures. - Small cleanups to the incore inode tree walk code. - Constify btree function parameters that aren't changed, so that there will never again be confusion about range query functions changing their input parameters. - Standardize the format and names of tracepoint data attributes. - Clean up all the mount state and feature flags to use wrapped bitset functions instead of inconsistently open-coded flag checks. - Fix some confusion between xfs_buf hash table key variable vs. block number. - Fix a mis-interaction with iomap where we reported shared delalloc cow fork extents to iomap, which would cause the iomap unshare operation to return IO errors unnecessarily. - Fix DONTCACHE behavior. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmEnwqcACgkQ+H93GTRK tOtpZg/9G1RD9oDbVhKJy67bxkeLPX990dUtQFhcVjL3AMMyCJez2PBTqkQY3tL9 WDQveIF0UL5TjP5QUO2/6fncIXBmf5yXtinkfeQwkvkStb/yxs10zlpn2ZDEvJ7H EUWwkV3cBY6Q+ftJIfXJmNW6eCcaxYs6KFiBwodbcoBxy2dIx6KFBQuqwtxOA97s ZYfv1mPGOIg6AVJN9oxFWtF36qM8loFDNQeZj1ATfCsP25VNHbQf7YOFnJEnwLOB rzz2zKQ3lP0hWavA6M2lX+IGymDphngx7qe4lZYcjAsh2BzL0IZf0QmFrXGQKuY/ kD0dWeStM8OHQbqCdkYx4XxcjucvJ7qmIYCtrWdpFqrrrQHygaJW6nI8LgsNTdvb OPXpPPz58jdGY3ATaRYX/IFmpJExj655ZHUfpkeVGacBTa5KCVDykYKv1eYOfNsk Aj+bZ4g++bx3dlGFHGsPScRn+hwg5h/+UyQJpAYupuaUsq3rpBhH/bhAJNyPUsYu ej8LIeAWB3EPLozT4ewop8G0WWDBOe0MlYeO5gQho2AfFZzFInf15cSR62KZqx+v XTZgITnnp0ND4wzgqAhgdU4USS9z5MtHGvhSkuYejg85R/bKirrwRu2P0n681sHv UioiIVbXGWSAJqDQicfSjncafS3POIAUmMt4tgmDI33/3mTKwZQ= =HPJr -----END PGP SIGNATURE----- Merge tag 'xfs-5.15-merge-6' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux Pull xfs updates from Darrick Wong: "There's a lot in this cycle. Starting with bug fixes: To avoid livelocks between the logging code and the quota code, we've disabled the ability of quotaoff to turn off quota accounting. (Admins can still disable quota enforcement, but truly turning off accounting requires a remount.) We've tried to do this in a careful enough way that there shouldn't be any user visible effects aside from quotaoff no longer randomly hanging the system. We've also fixed some bugs in runtime log behavior that could trip up log recovery if (otherwise unrelated) transactions manage to start and commit concurrently; some bugs in the GETFSMAP ioctl where we would incorrectly restrict the range of records output if the two xfs devices are of different sizes; a bug that resulted in fallocate funshare failing unnecessarily; and broken behavior in the xfs inode cache when DONTCACHE is in play. As for new features: we now batch inode inactivations in percpu background threads, which sharply decreases frontend thread wait time when performing file deletions and should improve overall directory tree deletion times. This eliminates both the problem where closing an unlinked file (especially on a frozen fs) can stall for a long time, and should also ease complaints about direct reclaim bogging down on unlinked file cleanup. Starting with this release, we've enabled pipelining of the XFS log. On workloads with high rates of metadata updates to different shards of the filesystem, multiple threads can be used to format committed log updates into log checkpoints. Lastly, with this release, two new features have graduated to supported status: inode btree counters (for faster mounts), and support for dates beyond Y2038. Expect these to be enabled by default in a future release of xfsprogs. Summary: - Fix a potential log livelock on busy filesystems when there's so much work going on that we can't finish a quotaoff before filling up the log by removing the ability to disable quota accounting. - Introduce the ability to use per-CPU data structures in XFS so that we can do a better job of maintaining CPU locality for certain operations. - Defer inode inactivation work to per-CPU lists, which will help us batch that processing. Deletions of large sparse files will *appear* to run faster, but all that means is that we've moved the work to the backend. - Drop the EXPERIMENTAL warnings from the y2038+ support and the inode btree counters, since it's been nearly a year and no complaints have come in. - Remove more of our bespoke kmem* variants in favor of using the standard Linux calls. - Prepare for the addition of log incompat features in upcoming cycles by actually adding code to support this. - Small cleanups of the xattr code in preparation for landing support for full logging of extended attribute updates in a future cycle. - Replace the various log shutdown state and flag code all over xfs with a single atomic bit flag. - Fix a serious log recovery bug where log item replay can be skipped based on the start lsn of a transaction even though the transaction commit lsn is the key data point for that by enforcing start lsns to appear in the log in the same order as commit lsns. - Enable pipelining in the code that pushes log items to disk. - Drop ->writepage. - Fix some bugs in GETFSMAP where the last fsmap record reported for a device could extend beyond the end of the device, and a separate bug where query keys for one device could be applied to another. - Don't let GETFSMAP query functions edit their input parameters. - Small cleanups to the scrub code's handling of perag structures. - Small cleanups to the incore inode tree walk code. - Constify btree function parameters that aren't changed, so that there will never again be confusion about range query functions changing their input parameters. - Standardize the format and names of tracepoint data attributes. - Clean up all the mount state and feature flags to use wrapped bitset functions instead of inconsistently open-coded flag checks. - Fix some confusion between xfs_buf hash table key variable vs. block number. - Fix a mis-interaction with iomap where we reported shared delalloc cow fork extents to iomap, which would cause the iomap unshare operation to return IO errors unnecessarily. - Fix DONTCACHE behavior" * tag 'xfs-5.15-merge-6' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (103 commits) xfs: fix I_DONTCACHE xfs: only set IOMAP_F_SHARED when providing a srcmap to a write xfs: fix perag structure refcounting error when scrub fails xfs: rename buffer cache index variable b_bn xfs: convert bp->b_bn references to xfs_buf_daddr() xfs: introduce xfs_buf_daddr() xfs: kill xfs_sb_version_has_v3inode() xfs: introduce xfs_sb_is_v5 helper xfs: remove unused xfs_sb_version_has wrappers xfs: convert xfs_sb_version_has checks to use mount features xfs: convert scrub to use mount-based feature checks xfs: open code sb verifier feature checks xfs: convert xfs_fs_geometry to use mount feature checks xfs: replace XFS_FORCED_SHUTDOWN with xfs_is_shutdown xfs: convert remaining mount flags to state flags xfs: convert mount flags to features xfs: consolidate mount option features in m_features xfs: replace xfs_sb_version checks with feature flag checks xfs: reflect sb features in xfs_mount xfs: rework attr2 feature and mount options ... |
||
Linus Torvalds
|
aa99f3c2b9 |
\n
-----BEGIN PGP SIGNATURE----- iQEzBAABCAAdFiEEq1nRK9aeMoq1VSgcnJ2qBz9kQNkFAmEmTZcACgkQnJ2qBz9k QNkkmAgArW6XoF1CePds/ZaC9vfg/nk66/zVo0n+J8xXjMWAPxcKbWFfV0uWVixq yk4lcLV47a2Mu/B/1oLNd3vrSmhwU+srWqNwOFn1nv+lP/6wJqr8oztRHn/0L9Q3 ZSRrukSejbQ6AvTL/WzTNnCjjCc2ne3Kyko6W41aU6uyJuzhSM32wbx7qlV6t54Z iint9OrB4gM0avLohNafTUq6I+tEGzBMNwpCG/tqCmkcvDcv3rTDVAnPSCTm0Tx2 hdrYDcY/rLxo93pDBaW1rYA/fohR+mIVye6k2TjkPAL6T1x+rxeT5qnc+YijH5yF sFPDhlD+ZsfOLi8stWXLOJ+8+gLODg== =pDBR -----END PGP SIGNATURE----- Merge tag 'hole_punch_for_v5.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs Pull fs hole punching vs cache filling race fixes from Jan Kara: "Fix races leading to possible data corruption or stale data exposure in multiple filesystems when hole punching races with operations such as readahead. This is the series I was sending for the last merge window but with your objection fixed - now filemap_fault() has been modified to take invalidate_lock only when we need to create new page in the page cache and / or bring it uptodate" * tag 'hole_punch_for_v5.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs: filesystems/locking: fix Malformed table warning cifs: Fix race between hole punch and page fault ceph: Fix race between hole punch and page fault fuse: Convert to using invalidate_lock f2fs: Convert to using invalidate_lock zonefs: Convert to using invalidate_lock xfs: Convert double locking of MMAPLOCK to use VFS helpers xfs: Convert to use invalidate_lock xfs: Refactor xfs_isilocked() ext2: Convert to using invalidate_lock ext4: Convert to use mapping->invalidate_lock mm: Add functions to lock invalidate_lock for two mappings mm: Protect operations adding pages to page cache with invalidate_lock documentation: Sync file_operations members with reality mm: Fix comments mentioning i_mutex |