There's no need to use WARN() at btrfs_mark_buffer_dirty() to print an
error message, as we have the fs_info pointer we can use btrfs_crit()
which prints device information and makes the message have a more uniform
format. As we are already aborting the transaction we already have a stack
trace printed as well. So replace the use of WARN() with btrfs_crit().
Also slightly reword the message to use 'logical' instead of 'block' as
it's what is used in other error/warning messages.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When marking an extent buffer as dirty, at btrfs_mark_buffer_dirty(),
we check if its generation matches the running transaction and if not we
just print a warning. Such mismatch is an indicator that something really
went wrong and only printing a warning message (and stack trace) is not
enough to prevent a corruption. Allowing a transaction to commit with such
an extent buffer will trigger an error if we ever try to read it from disk
due to a generation mismatch with its parent generation.
So abort the current transaction with -EUCLEAN if we notice a generation
mismatch. For this we need to pass a transaction handle to
btrfs_mark_buffer_dirty() which is always available except in test code,
in which case we can pass NULL since it operates on dummy extent buffers
and all test roots have a single node/leaf (root node at level 0).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently when reserving space for deleting the csum items for a data
extent, when adding or updating a delayed ref head, we determine how
many leaves of csum items we can have and then pass that number to the
helper btrfs_calc_delayed_ref_bytes(). This helper is used for calculating
space for all tree modifications we need when running delayed references,
however the amount of space it computes is excessive for deleting csum
items because:
1) It uses btrfs_calc_insert_metadata_size() which is excessive because
we only need to delete csum items from the csum tree, we don't need
to insert any items, so btrfs_calc_metadata_size() is all we need (as
it computes space needed to delete an item);
2) If the free space tree is enabled, it doubles the amount of space,
which is pointless for csum deletion since we don't need to touch the
free space tree or any other tree other than the csum tree.
So improve on this by tracking how many csum deletions we have and using
a new helper to calculate space for csum deletions (just a wrapper around
btrfs_calc_metadata_size() with a comment). This reduces the amount of
space we need to reserve for csum deletions by a factor of 4, and it helps
reduce the number of times we have to block space reservations and have
the reclaim task enter the space flushing algorithm (flush delayed items,
flush delayed refs, etc) in order to satisfy tickets.
For example this results in a total time decrease when unlinking (or
truncating) files with many extents, as we end up having to block on space
metadata reservations less often. Example test:
$ cat test.sh
#!/bin/bash
DEV=/dev/nullb0
MNT=/mnt/test
umount $DEV &> /dev/null
mkfs.btrfs -f $DEV
# Use compression to quickly create files with a lot of extents
# (each with a size of 128K).
mount -o compress=lzo $DEV $MNT
# 100G gives at least 983040 extents with a size of 128K.
xfs_io -f -c "pwrite -S 0xab -b 1M 0 120G" $MNT/foobar
# Flush all delalloc and clear all metadata from memory.
umount $MNT
mount -o compress=lzo $DEV $MNT
start=$(date +%s%N)
rm -f $MNT/foobar
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo "rm took $dur milliseconds"
umount $MNT
Before this change rm took: 7504 milliseconds
After this change rm took: 6574 milliseconds (-12.4%)
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently when reserving space for delayed refs we do it on a per ref head
basis. This is generally enough because most back refs for an extent end
up being inlined in the extent item - with the default leaf size of 16K we
can have at most 33 inline back refs (this is calculated by the macro
BTRFS_MAX_EXTENT_ITEM_SIZE()). The amount of bytes reserved for each ref
head is given by btrfs_calc_delayed_ref_bytes(), which basically
corresponds to a single path for insertion into the extent tree plus
another path for insertion into the free space tree if it's enabled.
However if we have reached the limit of inline refs or we have a mix of
inline and non-inline refs, then we will need to insert a non-inline ref
and update the existing extent item to update the total number of
references for the extent. This implies we need reserved space for two
insertion paths in the extent tree, but we only reserved for one path.
The extent item and the non-inline ref item may be located in different
leaves, or even if they are located in the same leaf, after updating the
extent item and before inserting the non-inline ref item, the extent
buffers in the btree path may have been written (due to memory pressure
for e.g.), in which case we need to COW the entire path again. In this
case since we have not reserved enough space for the delayed refs block
reserve, we will use the global block reserve.
If we are in a situation where the fs has no more unallocated space enough
to allocate a new metadata block group and available space in the existing
metadata block groups is close to the maximum size of the global block
reserve (512M), we may end up consuming too much of the free metadata
space to the point where we can't commit any future transaction because it
will fail, with -ENOSPC, during its commit when trying to allocate an
extent for some COW operation (running delayed refs generated by running
delayed refs or COWing the root tree's root node at commit_cowonly_roots()
for example). Such dramatic scenario can happen if we have many delayed
refs that require the insertion of non-inline ref items, due to too many
reflinks or snapshots. We also have situations where we use the global
block reserve because we could not in advance know that we will need
space to update some trees (block group creation for example), so this
all adds up to increase the chances of exhausting the global block reserve
and making any future transaction commit to fail with -ENOSPC and turn
the fs into RO mode, or fail the mount operation in case the mount needs
to start and commit a transaction, such as when we have orphans to cleanup
for example - such case was reported and hit by someone running a SLE
(SUSE Linux Enterprise) distribution for example - where the fs had no
more unallocated space that could be used to allocate a new metadata block
group, and the available metadata space was about 1.5M, not enough to
commit a transaction to cleanup an orphan inode (or do relocation of data
block groups that were far from being full).
So reserve space for delayed refs by individual refs and not by ref heads,
as we may need to COW multiple extent tree paths due to non-inline ref
items.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since all check-integrity entry points have been removed, let's also
remove the config and all related code relying on that.
And since we have removed the mount option for check-integrity, we also
need to re-number all the BTRFS_MOUNT_* enums.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function btrfsic_mount() is part of the deprecated check-integrity
functionality.
Now let's remove the main entry point of check-integrity, and thankfully
most of the check-integrity code is self-contained inside
check-integrity.c, we can safely remove the function without huge
changes to btrfs code base.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function btrfsic_mount() is part of the deprecated check-integrity
functionality.
Now let's remove the main entry point of check-integrity, and thankfully
most of the check-integrity code is self-contained inside
check-integrity.c, we can safely remove the function without huge
changes to btrfs code base.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function btrfsic_check_bio() is part of the deprecated
check-integrity functionality.
Now let's remove the main entry point of check-integrity, and thankfully
most of the check-integrity code is self-contained inside
check-integrity.c, we can safely remove the function without huge
changes to btrfs code base.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Function name in the comment does not bring much value to code not
exposed as API and we don't stick to the kdoc format anymore. Update
formatting of parameter descriptions.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Among all the callers, only the device_list_add() function uses the
second argument of alloc_fs_devices(). It passes metadata_uuid when
available, otherwise, it passes NULL. And in turn, alloc_fs_devices()
is designed to copy either metadata_uuid or fsid into
fs_devices::metadata_uuid.
So remove the second argument in alloc_fs_devices(), and always copy the
fsid. In the caller device_list_add() function, we will overwrite it
with metadata_uuid when it is available.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
After commit 72a69cd030 ("btrfs: subpage: pack all subpage bitmaps
into a larger bitmap"), the DEBUG section of btree_dirty_folio() would
no longer compile.
[CAUSE]
If DEBUG is defined, we would do extra checks for btree_dirty_folio(),
mostly to make sure the range we marked dirty has an extent buffer and
that extent buffer is dirty.
For subpage, we need to iterate through all the extent buffers covered
by that page range, and make sure they all matches the criteria.
However commit 72a69cd030 ("btrfs: subpage: pack all subpage bitmaps
into a larger bitmap") changes how we store the bitmap, we pack all the
16 bits bitmaps into a larger bitmap, which would save some space.
This means we no longer have btrfs_subpage::dirty_bitmap, instead the
dirty bitmap is starting at btrfs_subpage_info::dirty_offset, and has a
length of btrfs_subpage_info::bitmap_nr_bits.
[FIX]
Although I'm not sure if it still makes sense to maintain such code, at
least let it compile.
This patch would let us test the bits one by one through the bitmaps.
CC: stable@vger.kernel.org # 6.1+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Internally I got a report of very long stalls on normal operations like
creating a new file when auto relocation was running. The reporter used
the 'bpf offcputime' tracer to show that we would get stuck in
start_transaction for 5 to 30 seconds, and were always being woken up by
the transaction commit.
Using my timing-everything script, which times how long a function takes
and what percentage of that total time is taken up by its children, I
saw several traces like this
1083 took 32812902424 ns
29929002926 ns 91.2110% wait_for_commit_duration
25568 ns 7.7920e-05% commit_fs_roots_duration
1007751 ns 0.00307% commit_cowonly_roots_duration
446855602 ns 1.36182% btrfs_run_delayed_refs_duration
271980 ns 0.00082% btrfs_run_delayed_items_duration
2008 ns 6.1195e-06% btrfs_apply_pending_changes_duration
9656 ns 2.9427e-05% switch_commit_roots_duration
1598 ns 4.8700e-06% btrfs_commit_device_sizes_duration
4314 ns 1.3147e-05% btrfs_free_log_root_tree_duration
Here I was only tracing functions that happen where we are between
START_COMMIT and UNBLOCKED in order to see what would be keeping us
blocked for so long. The wait_for_commit() we do is where we wait for a
previous transaction that hasn't completed it's commit. This can
include all of the unpin work and other cleanups, which tends to be the
longest part of our transaction commit.
There is no reason we should be blocking new things from entering the
transaction at this point, it just adds to random latency spikes for no
reason.
Fix this by adding a PREP stage. This allows us to properly deal with
multiple committers coming in at the same time, we retain the behavior
that the winner waits on the previous transaction and the losers all
wait for this transaction commit to occur. Nothing else is blocked
during the PREP stage, and then once the wait is complete we switch to
COMMIT_START and all of the same behavior as before is maintained.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
fs_devices::metadata_uuid value is already updated based on the
super_block::METADATA_UUID flag for either fsid or metadata_uuid as
appropriate. So, fs_devices::metadata_uuid can be used directly.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function btrfs_validate_super() should verify the metadata_uuid in
the provided superblock argument. Because, all its callers expect it to
do that.
Such as in the following stacks:
write_all_supers()
sb = fs_info->super_for_commit;
btrfs_validate_write_super(.., sb)
btrfs_validate_super(.., sb, ..)
scrub_one_super()
btrfs_validate_super(.., sb, ..)
And
check_dev_super()
btrfs_validate_super(.., sb, ..)
However, it currently verifies the fs_info::super_copy::metadata_uuid
instead. Fix this using the correct metadata_uuid in the superblock
argument.
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function btrfs_validate_super() should verify the fsid in the provided
superblock argument. Because, all its callers expect it to do that.
Such as in the following stack:
write_all_supers()
sb = fs_info->super_for_commit;
btrfs_validate_write_super(.., sb)
btrfs_validate_super(.., sb, ..)
scrub_one_super()
btrfs_validate_super(.., sb, ..)
And
check_dev_super()
btrfs_validate_super(.., sb, ..)
However, it currently verifies the fs_info::super_copy::fsid instead,
which is not correct. Fix this using the correct fsid in the superblock
argument.
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use LIST_HEAD() to initialize the list_head instead of open-coding it.
Signed-off-by: Ruan Jinjie <ruanjinjie@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Ensure a metadata and system block group can be activated on write time, by
leaving a certain number of active zones when trying to activate a data
block group.
Zones for two metadata block groups (normal and tree-log) and one system
block group are reserved, according to the profile type: two zones per
block group on the DUP profile and one zone per block group otherwise.
The reservation must be freed once a non-data block group is allocated. If
not, we over-reserve the active zones and data block group activation will
suffer. For the dynamic reservation count, we need to manage the
reservation count per device.
The reservation count variable is protected by
fs_info->zone_active_bgs_lock.
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_cleanup_fs_roots() is not used outside disk-io.c, so make it static,
remove its prototype from disk-io.h and move its definition above the
where it's used in disk-io.c
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently when we turn the fs into an error state, typically after a
transaction abort, we don't store the error anywhere, we just set a bit
(BTRFS_FS_STATE_ERROR) at struct btrfs_fs_info::fs_state to signal the
error state.
There are cases where it would be useful to have access to the specific
error in order to provide a more meaningful error to users/applications.
This change adds a member to struct btrfs_fs_info to store the error and
removes the BTRFS_FS_STATE_ERROR bit. When there's no error, the new
member (fs_error) has a value of 0, otherwise its value is a negative
errno value.
Followup changes will make use of this new member.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently find_first_extent_bit() returns a 0 if it found a range in the
given io tree and 1 if it didn't find any. There's no need to return any
errors, so make the return value a boolean and invert the logic to make
more sense: return true if it found a range and false if it didn't find
any range.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs_destroy_pinned_extent() is always returning 0 no matter
what and its caller ignores its return value (as well everything up in
the call chain). This is because this is called in the transaction abort
path, where we can't even deal with any errors since we are in a critical
situation already and cleanup of resources is done in a best effort
fashion.
So make btrfs_destroy_pinned_extent() return void.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs_destroy_marked_extents() is returning the value of the
last call to find_first_extent_bit(), which returns a value of 1 meaning
no more ranges found the dirty pages io tree. This value is useless to the
single caller of btrfs_destroy_marked_extents(), which ignores any return
value from btrfs_destroy_marked_extents(). This is because it's only used
in the transaction abort path, where we can't even deal with any errors
since we are in a critical situation already and cleanup of resources is
done in a best effort fashion.
So make btrfs_destroy_marked_extents() return void.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
Syzbot reported a crash that an ASSERT() got triggered inside
prepare_to_merge().
That ASSERT() makes sure the reloc tree is properly pointed back by its
subvolume tree.
[CAUSE]
After more debugging output, it turns out we had an invalid reloc tree:
BTRFS error (device loop1): reloc tree mismatch, root 8 has no reloc root, expect reloc root key (-8, 132, 8) gen 17
Note the above root key is (TREE_RELOC_OBJECTID, ROOT_ITEM,
QUOTA_TREE_OBJECTID), meaning it's a reloc tree for quota tree.
But reloc trees can only exist for subvolumes, as for non-subvolume
trees, we just COW the involved tree block, no need to create a reloc
tree since those tree blocks won't be shared with other trees.
Only subvolumes tree can share tree blocks with other trees (thus they
have BTRFS_ROOT_SHAREABLE flag).
Thus this new debug output proves my previous assumption that corrupted
on-disk data can trigger that ASSERT().
[FIX]
Besides the dedicated fix and the graceful exit, also let tree-checker to
check such root keys, to make sure reloc trees can only exist for subvolumes.
CC: stable@vger.kernel.org # 5.15+
Reported-by: syzbot+ae97a827ae1c3336bbb4@syzkaller.appspotmail.com
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
Syzbot reported a weird ASSERT() triggered inside prepare_to_merge().
assertion failed: root->reloc_root == reloc_root, in fs/btrfs/relocation.c:1919
------------[ cut here ]------------
kernel BUG at fs/btrfs/relocation.c:1919!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 0 PID: 9904 Comm: syz-executor.3 Not tainted
6.4.0-syzkaller-08881-g533925cb7604 #0
Hardware name: Google Google Compute Engine/Google Compute Engine,
BIOS Google 05/27/2023
RIP: 0010:prepare_to_merge+0xbb2/0xc40 fs/btrfs/relocation.c:1919
Code: fe e9 f5 (...)
RSP: 0018:ffffc9000325f760 EFLAGS: 00010246
RAX: 000000000000004f RBX: ffff888075644030 RCX: 1481ccc522da5800
RDX: ffffc90005c09000 RSI: 00000000000364ca RDI: 00000000000364cb
RBP: ffffc9000325f870 R08: ffffffff816f33ac R09: 1ffff9200064bea0
R10: dffffc0000000000 R11: fffff5200064bea1 R12: ffff888075644000
R13: ffff88803b166000 R14: ffff88803b166560 R15: ffff88803b166558
FS: 00007f4e305fd700(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000056080679c000 CR3: 00000000193ad000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
relocate_block_group+0xa5d/0xcd0 fs/btrfs/relocation.c:3749
btrfs_relocate_block_group+0x7ab/0xd70 fs/btrfs/relocation.c:4087
btrfs_relocate_chunk+0x12c/0x3b0 fs/btrfs/volumes.c:3283
__btrfs_balance+0x1b06/0x2690 fs/btrfs/volumes.c:4018
btrfs_balance+0xbdb/0x1120 fs/btrfs/volumes.c:4402
btrfs_ioctl_balance+0x496/0x7c0 fs/btrfs/ioctl.c:3604
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:870 [inline]
__se_sys_ioctl+0xf8/0x170 fs/ioctl.c:856
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f4e2f88c389
[CAUSE]
With extra debugging, the offending reloc_root is for quota tree (rootid 8).
Normally we should not use the reloc tree for quota root at all, as reloc
trees are only for subvolume trees.
But there is a race between quota enabling and relocation, this happens
after commit 85724171b3 ("btrfs: fix the btrfs_get_global_root return value").
Before that commit, for quota and free space tree, we exit immediately
if we cannot grab it from fs_info.
But now we would try to read it from disk, just as if they are fs trees,
this sets ROOT_SHAREABLE flags in such race:
Thread A | Thread B
---------------------------------+------------------------------
btrfs_quota_enable() |
| | btrfs_get_root_ref()
| | |- btrfs_get_global_root()
| | | Returned NULL
| | |- btrfs_lookup_fs_root()
| | | Returned NULL
|- btrfs_create_tree() | |
| Now quota root item is | |
| inserted | |- btrfs_read_tree_root()
| | | Got the newly inserted quota root
| | |- btrfs_init_fs_root()
| | | Set ROOT_SHAREABLE flag
[FIX]
Get back to the old behavior by returning PTR_ERR(-ENOENT) if the target
objectid is not a subvolume tree or data reloc tree.
Reported-and-tested-by: syzbot+ae97a827ae1c3336bbb4@syzkaller.appspotmail.com
Fixes: 85724171b3 ("btrfs: fix the btrfs_get_global_root return value")
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The zoned mode need to reset a zone before using it. We rely on btrfs's
original discard functionality (discarding unused block group range) to do
the resetting.
While the commit 63a7cb1307 ("btrfs: auto enable discard=async when
possible") made the discard done in an async manner, a zoned reset do not
need to be async, as it is fast enough.
Even worth, delaying zone rests prevents using those zones again. So, let's
disable async discard on the zoned mode.
Fixes: 63a7cb1307 ("btrfs: auto enable discard=async when possible")
CC: stable@vger.kernel.org # 6.3+
Reviewed-by: Damien Le Moal <dlemoal@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update message text ]
Signed-off-by: David Sterba <dsterba@suse.com>
The implementation of XXHASH is now CPU only but still fast enough to be
considered for the synchronous checksumming, like non-generic crc32c.
A userspace benchmark comparing it to various implementations (patched
hash-speedtest from btrfs-progs):
Block size: 4096
Iterations: 1000000
Implementation: builtin
Units: CPU cycles
NULL-NOP: cycles: 73384294, cycles/i 73
NULL-MEMCPY: cycles: 228033868, cycles/i 228, 61664.320 MiB/s
CRC32C-ref: cycles: 24758559416, cycles/i 24758, 567.950 MiB/s
CRC32C-NI: cycles: 1194350470, cycles/i 1194, 11773.433 MiB/s
CRC32C-ADLERSW: cycles: 6150186216, cycles/i 6150, 2286.372 MiB/s
CRC32C-ADLERHW: cycles: 626979180, cycles/i 626, 22427.453 MiB/s
CRC32C-PCL: cycles: 466746732, cycles/i 466, 30126.699 MiB/s
XXHASH: cycles: 860656400, cycles/i 860, 16338.188 MiB/s
Comparing purely software implementation (ref), current outdated
accelerated using crc32q instruction (NI), optimized implementations by
M. Adler (https://stackoverflow.com/questions/17645167/implementing-sse-4-2s-crc32c-in-software/17646775#17646775)
and the best one that was taken from kernel using the PCLMULQDQ
instruction (PCL).
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_destroy_delayed_refs() always returns 0 and its single caller does
not check its return value, as it also returns void, and so does the
callers' caller and so on. This is because we are in the transaction abort
path, where we have no way to deal with errors (we are in a critical
situation) and all cleanup of resources works in a best effort fashion.
So make btrfs_destroy_delayed_refs() return void.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a few static functions at disk-io.c for which we have a forward
declaration of their prototype, but it's not needed because all those
functions are defined before they are called, so remove them.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The 'in_tree' field is really not needed in struct btrfs_delayed_ref_node,
as we can check whether a reference is in the tree or not simply by
checking its red black tree node member with RB_EMPTY_NODE(), as when we
remove it from the tree we always call RB_CLEAR_NODE(). So remove that
field and use RB_EMPTY_NODE().
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
BACKGROUND
==========
When multiple work items are queued to a workqueue, their execution order
doesn't match the queueing order. They may get executed in any order and
simultaneously. When fully serialized execution - one by one in the queueing
order - is needed, an ordered workqueue should be used which can be created
with alloc_ordered_workqueue().
However, alloc_ordered_workqueue() was a later addition. Before it, an
ordered workqueue could be obtained by creating an UNBOUND workqueue with
@max_active==1. This originally was an implementation side-effect which was
broken by 4c16bd327c ("workqueue: restore WQ_UNBOUND/max_active==1 to be
ordered"). Because there were users that depended on the ordered execution,
5c0338c687 ("workqueue: restore WQ_UNBOUND/max_active==1 to be ordered")
made workqueue allocation path to implicitly promote UNBOUND workqueues w/
@max_active==1 to ordered workqueues.
While this has worked okay, overloading the UNBOUND allocation interface
this way creates other issues. It's difficult to tell whether a given
workqueue actually needs to be ordered and users that legitimately want a
min concurrency level wq unexpectedly gets an ordered one instead. With
planned UNBOUND workqueue updates to improve execution locality and more
prevalence of chiplet designs which can benefit from such improvements, this
isn't a state we wanna be in forever.
This patch series audits all call sites that create an UNBOUND workqueue w/
@max_active==1 and converts them to alloc_ordered_workqueue() as necessary.
BTRFS
=====
* fs_info->scrub_workers initialized in scrub_workers_get() was setting
@max_active to 1 when @is_dev_replace is set and it seems that the
workqueue actually needs to be ordered if @is_dev_replace. Update the code
so that alloc_ordered_workqueue() is used if @is_dev_replace.
* fs_info->discard_ctl.discard_workers initialized in
btrfs_init_workqueues() was directly using alloc_workqueue() w/
@max_active==1. Converted to alloc_ordered_workqueue().
* fs_info->fixup_workers and fs_info->qgroup_rescan_workers initialized in
btrfs_queue_work() use the btrfs's workqueue wrapper, btrfs_workqueue,
which are allocated with btrfs_alloc_workqueue().
btrfs_workqueue implements automatic @max_active adjustment which is
disabled when the specified max limit is below a certain threshold, so
calling btrfs_alloc_workqueue() with @limit_active==1 yields an ordered
workqueue whose @max_active won't be changed as the auto-tuning is
disabled.
This is rather brittle in that nothing clearly indicates that the two
workqueues should be ordered or btrfs_alloc_workqueue() must disable
auto-tuning when @limit_active==1.
This patch factors out the common btrfs_workqueue init code into
btrfs_init_workqueue() and add explicit btrfs_alloc_ordered_workqueue().
The two workqueues are converted to use the new ordered allocation
interface.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_grab_root already checks for a NULL root itself.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use a switch statement instead of an endless chain of if statements
to make the code a little cleaner.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_grab_root returns either the root or NULL, and the callers of
btrfs_get_global_root expect it to return the same. But all the more
recently added roots instead return an ERR_PTR, so fix this.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are three ways the fsid is validated in btrfs_validate_super():
- verify that super_copy::fsid is the same as fs_devices::fsid
- if the metadata_uuid flag is set, verify if super_copy::metadata_uuid
and fs_devices::metadata_uuid are the same.
- a few lines below, often missed out, verify if dev_item::fsid is the
same as fs_devices::metadata_uuid.
The function btrfs_validate_super() contains multiple if-statements with
memcmp() to check UUIDs. This patch consolidates them into a single
location.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Simplify the return type of check_tree_block_fsid() from int (1 or 0) to
bool. Its only user is interested in knowing the success or failure.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The only other place that locks extents on the btree inode is
read_extent_buffer_subpage while reading in the partial page for a
buffer. This means locking the extent in btrfs_buffer_uptodate does not
synchronize with anything on non-subpage file systems, and on subpage
file systems it only waits for a parallel read(-ahead) to finish,
which seems to be counter to what the callers actually expect.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The checksumming of btree blocks always operates on the entire
extent_buffer, and because btree blocks are always allocated contiguously
on disk they are never split by btrfs_submit_bio.
Simplify the checksumming code by finding the extent_buffer in the
btrfs_bio private data instead of trying to search through the bio_vec.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we always use a single bio to read an extent_buffer, the buffer
can be passed to the end_io handler as private data. This allows
implementing a much simplified dedicated end I/O handler for metadata
reads.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
verify_parent_transid is only called by btrfs_buffer_uptodate, which
confusingly inverts the return value. Merge the two functions and
reflow the parent_transid so that error handling is in a branch.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Setting the buffer uptodate in a function that is named as a validation
helper is a it confusing. Move the call from validate_extent_buffer to
the one of its two callers that didn't already have a duplicate call
to set_extent_buffer_uptodate.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When btrfs_redirty_list_add redirties a buffer, it also acquires
an extra reference that is released on transaction commit. But
this is not required as buffers that are dirty or under writeback
are never freed (look for calls to extent_buffer_under_io())).
Remove the extra reference and the infrastructure used to drop it
again.
History behind redirty logic:
In the first place, it used releasing_list to hold all the
to-be-released extent buffers, and decided which buffers to re-dirty at
the commit time. Then, in a later version, the behaviour got changed to
re-dirty a necessary buffer and add re-dirtied one to the list in
btrfs_free_tree_block(). In short, the list was there mostly for the
patch series' historical reason.
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
[ add Naohiro's comment regarding history ]
Signed-off-by: David Sterba <dsterba@suse.com>
dirty_metadata_bytes is decremented in both places that clear the dirty
bit in a buffer, but only incremented in btrfs_mark_buffer_dirty, which
means that a buffer that is redirtied using btrfs_redirty_list_add won't
be added to dirty_metadata_bytes, but it will be subtracted when written
out, leading an inconsistency in the counter.
Move the dirty_metadata_bytes from btrfs_mark_buffer_dirty into
set_extent_buffer_dirty to also account for the redirty case, and remove
the now unused set_extent_buffer_dirty return value.
Fixes: d3575156f6 ("btrfs: zoned: redirty released extent buffers")
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
This is more a buffer validation helper, move it into the tree-checker
files where it makes more sense.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have two helpers for checking leaves, because we have an extra check
for debugging in btrfs_mark_buffer_dirty(), and at that stage we may
have item data that isn't consistent yet. However we can handle this
case internally in the helper, if BTRFS_HEADER_FLAG_WRITTEN is set we
know the buffer should be internally consistent, otherwise we need to
skip checking the item data.
Simplify this helper down a single helper and handle the item data
checking logic internally to the helper.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that btrfs_wq_submit_bio is never called for synchronous I/O,
the hipri_workers workqueue is not used anymore and can be removed.
Reviewed-by: Chris Mason <clm@fb.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
Syzbot reports a reproducible ASSERT() when using rescue=usebackuproot
mount option on a corrupted fs.
The full report can be found here:
https://syzkaller.appspot.com/bug?extid=c4614eae20a166c25bf0
BTRFS error (device loop0: state C): failed to load root csum
assertion failed: !tmp, in fs/btrfs/disk-io.c:1103
------------[ cut here ]------------
kernel BUG at fs/btrfs/ctree.h:3664!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 3608 Comm: syz-executor356 Not tainted 6.0.0-rc7-syzkaller-00029-g3800a713b607 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/26/2022
RIP: 0010:assertfail+0x1a/0x1c fs/btrfs/ctree.h:3663
RSP: 0018:ffffc90003aaf250 EFLAGS: 00010246
RAX: 0000000000000032 RBX: 0000000000000000 RCX: f21c13f886638400
RDX: 0000000000000000 RSI: 0000000080000000 RDI: 0000000000000000
RBP: ffff888021c640a0 R08: ffffffff816bd38d R09: ffffed10173667f1
R10: ffffed10173667f1 R11: 1ffff110173667f0 R12: dffffc0000000000
R13: ffff8880229c21f7 R14: ffff888021c64060 R15: ffff8880226c0000
FS: 0000555556a73300(0000) GS:ffff8880b9b00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055a2637d7a00 CR3: 00000000709c4000 CR4: 00000000003506e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
btrfs_global_root_insert+0x1a7/0x1b0 fs/btrfs/disk-io.c:1103
load_global_roots_objectid+0x482/0x8c0 fs/btrfs/disk-io.c:2467
load_global_roots fs/btrfs/disk-io.c:2501 [inline]
btrfs_read_roots fs/btrfs/disk-io.c:2528 [inline]
init_tree_roots+0xccb/0x203c fs/btrfs/disk-io.c:2939
open_ctree+0x1e53/0x33df fs/btrfs/disk-io.c:3574
btrfs_fill_super+0x1c6/0x2d0 fs/btrfs/super.c:1456
btrfs_mount_root+0x885/0x9a0 fs/btrfs/super.c:1824
legacy_get_tree+0xea/0x180 fs/fs_context.c:610
vfs_get_tree+0x88/0x270 fs/super.c:1530
fc_mount fs/namespace.c:1043 [inline]
vfs_kern_mount+0xc9/0x160 fs/namespace.c:1073
btrfs_mount+0x3d3/0xbb0 fs/btrfs/super.c:1884
[CAUSE]
Since the introduction of global roots, we handle
csum/extent/free-space-tree roots as global roots, even if no
extent-tree-v2 feature is enabled.
So for regular csum/extent/fst roots, we load them into
fs_info::global_root_tree rb tree.
And we should not expect any conflicts in that rb tree, thus we have an
ASSERT() inside btrfs_global_root_insert().
But rescue=usebackuproot can break the assumption, as we will try to
load those trees again and again as long as we have bad roots and have
backup roots slot remaining.
So in that case we can have conflicting roots in the rb tree, and
triggering the ASSERT() crash.
[FIX]
We can safely remove that ASSERT(), as the caller will properly put the
offending root.
To make further debugging easier, also add two explicit error messages:
- Error message for conflicting global roots
- Error message when using backup roots slot
Reported-by: syzbot+a694851c6ab28cbcfb9c@syzkaller.appspotmail.com
Fixes: abed4aaae4 ("btrfs: track the csum, extent, and free space trees in a rb tree")
CC: stable@vger.kernel.org # 6.1+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
Test case btrfs/027 would crash with subpage (64K page size, 4K
sectorsize) with the following dying messages:
debug: map_length=16384 length=65536 type=metadata|raid6(0x104)
assertion failed: map_length >= length, in fs/btrfs/volumes.c:8093
------------[ cut here ]------------
kernel BUG at fs/btrfs/messages.c:259!
Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015
Call trace:
btrfs_assertfail+0x28/0x2c [btrfs]
btrfs_map_repair_block+0x150/0x2b8 [btrfs]
btrfs_repair_io_failure+0xd4/0x31c [btrfs]
btrfs_read_extent_buffer+0x150/0x16c [btrfs]
read_tree_block+0x38/0xbc [btrfs]
read_tree_root_path+0xfc/0x1bc [btrfs]
btrfs_get_root_ref.part.0+0xd4/0x3a8 [btrfs]
open_ctree+0xa30/0x172c [btrfs]
btrfs_mount_root+0x3c4/0x4a4 [btrfs]
legacy_get_tree+0x30/0x60
vfs_get_tree+0x28/0xec
vfs_kern_mount.part.0+0x90/0xd4
vfs_kern_mount+0x14/0x28
btrfs_mount+0x114/0x418 [btrfs]
legacy_get_tree+0x30/0x60
vfs_get_tree+0x28/0xec
path_mount+0x3e0/0xb64
__arm64_sys_mount+0x200/0x2d8
invoke_syscall+0x48/0x114
el0_svc_common.constprop.0+0x60/0x11c
do_el0_svc+0x38/0x98
el0_svc+0x40/0xa8
el0t_64_sync_handler+0xf4/0x120
el0t_64_sync+0x190/0x194
Code: aa0403e2 b0fff060 91010000 959c2024 (d4210000)
[CAUSE]
In btrfs/027 we test RAID6 with missing devices, in this particular
case, we're repairing a metadata at the end of a data stripe.
But at btrfs_repair_io_failure(), we always pass a full PAGE for repair,
and for subpage case this can cross stripe boundary and lead to the
above BUG_ON().
This metadata repair code is always there, since the introduction of
subpage support, but this can trigger BUG_ON() after the bio split
ability at btrfs_map_bio().
[FIX]
Instead of passing the old PAGE_SIZE, we calculate the correct length
based on the eb size and page size for both regular and subpage cases.
CC: stable@vger.kernel.org # 6.3+
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When compiling on a MIPS 64-bit machine we get these warnings:
In file included from ./arch/mips/include/asm/cacheflush.h:13,
from ./include/linux/cacheflush.h:5,
from ./include/linux/highmem.h:8,
from ./include/linux/bvec.h:10,
from ./include/linux/blk_types.h:10,
from ./include/linux/blkdev.h:9,
from fs/btrfs/disk-io.c:7:
fs/btrfs/disk-io.c: In function ‘csum_tree_block’:
fs/btrfs/disk-io.c💯34: error: array subscript 1 is above array bounds of ‘struct page *[1]’ [-Werror=array-bounds]
100 | kaddr = page_address(buf->pages[i]);
| ~~~~~~~~~~^~~
./include/linux/mm.h:2135:48: note: in definition of macro ‘page_address’
2135 | #define page_address(page) lowmem_page_address(page)
| ^~~~
cc1: all warnings being treated as errors
We can check if i overflows to solve the problem. However, this doesn't make
much sense, since i == 1 and num_pages == 1 doesn't execute the body of the loop.
In addition, i < num_pages can also ensure that buf->pages[i] will not cross
the boundary. Unfortunately, this doesn't help with the problem observed here:
gcc still complains.
To fix this add a compile-time condition for the extent buffer page
array size limit, which would eventually lead to eliminating the whole
for loop.
CC: stable@vger.kernel.org # 5.10+
Signed-off-by: pengfuyuan <pengfuyuan@kylinos.cn>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Our CI system caught a lockdep splat:
======================================================
WARNING: possible circular locking dependency detected
6.3.0-rc7+ #1167 Not tainted
------------------------------------------------------
kswapd0/46 is trying to acquire lock:
ffff8c6543abd650 (sb_internal#2){++++}-{0:0}, at: btrfs_commit_inode_delayed_inode+0x5f/0x120
but task is already holding lock:
ffffffffabe61b40 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat+0x4aa/0x7a0
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (fs_reclaim){+.+.}-{0:0}:
fs_reclaim_acquire+0xa5/0xe0
kmem_cache_alloc+0x31/0x2c0
alloc_extent_state+0x1d/0xd0
__clear_extent_bit+0x2e0/0x4f0
try_release_extent_mapping+0x216/0x280
btrfs_release_folio+0x2e/0x90
invalidate_inode_pages2_range+0x397/0x470
btrfs_cleanup_dirty_bgs+0x9e/0x210
btrfs_cleanup_one_transaction+0x22/0x760
btrfs_commit_transaction+0x3b7/0x13a0
create_subvol+0x59b/0x970
btrfs_mksubvol+0x435/0x4f0
__btrfs_ioctl_snap_create+0x11e/0x1b0
btrfs_ioctl_snap_create_v2+0xbf/0x140
btrfs_ioctl+0xa45/0x28f0
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x72/0xdc
-> #0 (sb_internal#2){++++}-{0:0}:
__lock_acquire+0x1435/0x21a0
lock_acquire+0xc2/0x2b0
start_transaction+0x401/0x730
btrfs_commit_inode_delayed_inode+0x5f/0x120
btrfs_evict_inode+0x292/0x3d0
evict+0xcc/0x1d0
inode_lru_isolate+0x14d/0x1e0
__list_lru_walk_one+0xbe/0x1c0
list_lru_walk_one+0x58/0x80
prune_icache_sb+0x39/0x60
super_cache_scan+0x161/0x1f0
do_shrink_slab+0x163/0x340
shrink_slab+0x1d3/0x290
shrink_node+0x300/0x720
balance_pgdat+0x35c/0x7a0
kswapd+0x205/0x410
kthread+0xf0/0x120
ret_from_fork+0x29/0x50
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(fs_reclaim);
lock(sb_internal#2);
lock(fs_reclaim);
lock(sb_internal#2);
*** DEADLOCK ***
3 locks held by kswapd0/46:
#0: ffffffffabe61b40 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat+0x4aa/0x7a0
#1: ffffffffabe50270 (shrinker_rwsem){++++}-{3:3}, at: shrink_slab+0x113/0x290
#2: ffff8c6543abd0e0 (&type->s_umount_key#44){++++}-{3:3}, at: super_cache_scan+0x38/0x1f0
stack backtrace:
CPU: 0 PID: 46 Comm: kswapd0 Not tainted 6.3.0-rc7+ #1167
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x58/0x90
check_noncircular+0xd6/0x100
? save_trace+0x3f/0x310
? add_lock_to_list+0x97/0x120
__lock_acquire+0x1435/0x21a0
lock_acquire+0xc2/0x2b0
? btrfs_commit_inode_delayed_inode+0x5f/0x120
start_transaction+0x401/0x730
? btrfs_commit_inode_delayed_inode+0x5f/0x120
btrfs_commit_inode_delayed_inode+0x5f/0x120
btrfs_evict_inode+0x292/0x3d0
? lock_release+0x134/0x270
? __pfx_wake_bit_function+0x10/0x10
evict+0xcc/0x1d0
inode_lru_isolate+0x14d/0x1e0
__list_lru_walk_one+0xbe/0x1c0
? __pfx_inode_lru_isolate+0x10/0x10
? __pfx_inode_lru_isolate+0x10/0x10
list_lru_walk_one+0x58/0x80
prune_icache_sb+0x39/0x60
super_cache_scan+0x161/0x1f0
do_shrink_slab+0x163/0x340
shrink_slab+0x1d3/0x290
shrink_node+0x300/0x720
balance_pgdat+0x35c/0x7a0
kswapd+0x205/0x410
? __pfx_autoremove_wake_function+0x10/0x10
? __pfx_kswapd+0x10/0x10
kthread+0xf0/0x120
? __pfx_kthread+0x10/0x10
ret_from_fork+0x29/0x50
</TASK>
This happens because when we abort the transaction in the transaction
commit path we call invalidate_inode_pages2_range on our block group
cache inodes (if we have space cache v1) and any delalloc inodes we may
have. The plain invalidate_inode_pages2_range() call passes through
GFP_KERNEL, which makes sense in most cases, but not here. Wrap these
two invalidate callees with memalloc_nofs_save/memalloc_nofs_restore to
make sure we don't end up with the fs reclaim dependency under the
transaction dependency.
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Previously clear_cache mount option would simply disable free-space-tree
feature temporarily then re-enable it to rebuild the whole free space
tree.
But this is problematic for block-group-tree feature, as we have an
artificial dependency on free-space-tree feature.
If we go the existing method, after clearing the free-space-tree
feature, we would flip the filesystem to read-only mode, as we detect a
super block write with block-group-tree but no free-space-tree feature.
This patch would change the behavior by properly rebuilding the free
space tree without disabling this feature, thus allowing clear_cache
mount option to work with block group tree.
Now we can mount a filesystem with block-group-tree feature and
clear_mount option:
$ mkfs.btrfs -O block-group-tree /dev/test/scratch1 -f
$ sudo mount /dev/test/scratch1 /mnt/btrfs -o clear_cache
$ sudo dmesg -t | head -n 5
BTRFS info (device dm-1): force clearing of disk cache
BTRFS info (device dm-1): using free space tree
BTRFS info (device dm-1): auto enabling async discard
BTRFS info (device dm-1): rebuilding free space tree
BTRFS info (device dm-1): checking UUID tree
CC: stable@vger.kernel.org # 6.1+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>