Due to problems at cam.org, my nico@cam.org email address is no longer
valid. FRom now on, nico@fluxnic.net should be used instead.
Signed-off-by: Nicolas Pitre <nico@fluxnic.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Inflate requires some dynamic memory allocation very early in the boot
process and this is provided with a set of four functions:
malloc/free/gzip_mark/gzip_release.
The old inflate code used a mark/release strategy rather than implement
free. This new version instead keeps a count on the number of outstanding
allocations and when it hits zero, it resets the malloc arena.
This allows removing all the mark and release implementations and unifying
all the malloc/free implementations.
The architecture-dependent code must define two addresses:
- free_mem_ptr, the address of the beginning of the area in which
allocations should be made
- free_mem_end_ptr, the address of the end of the area in which
allocations should be made. If set to 0, then no check is made on
the number of allocations, it just grows as much as needed
The architecture-dependent code can also provide an arch_decomp_wdog()
function call. This function will be called several times during the
decompression process, and allow to notify the watchdog that the system is
still running. If an architecture provides such a call, then it must
define ARCH_HAS_DECOMP_WDOG so that the generic inflate code calls
arch_decomp_wdog().
Work initially done by Matt Mackall, updated to a recent version of the
kernel and improved by me.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Mikael Starvik <mikael.starvik@axis.com>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Haavard Skinnemoen <hskinnemoen@atmel.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Acked-by: Paul Mundt <lethal@linux-sh.org>
Acked-by: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
inflate_dynamic() has piggy stack usage too, so heap allocate it too.
I'm not sure it actually gets used, but it shows up large in "make
checkstack".
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
inflate_fixed and huft_build together use around 2.7k of stack. When
using 4k stacks, I saw stack overflows from interrupts arriving while
unpacking the root initrd:
do_IRQ: stack overflow: 384
[<c0106b64>] show_trace_log_lvl+0x1a/0x30
[<c01075e6>] show_trace+0x12/0x14
[<c010763f>] dump_stack+0x16/0x18
[<c0107ca4>] do_IRQ+0x6d/0xd9
[<c010202b>] xen_evtchn_do_upcall+0x6e/0xa2
[<c0106781>] xen_hypervisor_callback+0x25/0x2c
[<c010116c>] xen_restore_fl+0x27/0x29
[<c0330f63>] _spin_unlock_irqrestore+0x4a/0x50
[<c0117aab>] change_page_attr+0x577/0x584
[<c0117b45>] kernel_map_pages+0x8d/0xb4
[<c016a314>] cache_alloc_refill+0x53f/0x632
[<c016a6c2>] __kmalloc+0xc1/0x10d
[<c0463d34>] malloc+0x10/0x12
[<c04641c1>] huft_build+0x2a7/0x5fa
[<c04645a5>] inflate_fixed+0x91/0x136
[<c04657e2>] unpack_to_rootfs+0x5f2/0x8c1
[<c0465acf>] populate_rootfs+0x1e/0xe4
(This was under Xen, but there's no reason it couldn't happen on bare
hardware.)
This patch mallocs the local variables, thereby reducing the stack
usage to sane levels.
Also, up the heap size for the kernel decompressor to deal with the
extra allocation.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Tim Yamin <plasmaroo@gentoo.org>
Cc: Andi Kleen <ak@suse.de>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ian Molton <spyro@f2s.com>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!