Using asm goto in __WARN_FLAGS() and WARN_ON() allows more
flexibility to GCC.
For that add an entry to the exception table so that
program_check_exception() knowns where to resume execution
after a WARNING.
Here are two exemples. The first one is done on PPC32 (which
benefits from the previous patch), the second is on PPC64.
unsigned long test(struct pt_regs *regs)
{
int ret;
WARN_ON(regs->msr & MSR_PR);
return regs->gpr[3];
}
unsigned long test9w(unsigned long a, unsigned long b)
{
if (WARN_ON(!b))
return 0;
return a / b;
}
Before the patch:
000003a8 <test>:
3a8: 81 23 00 84 lwz r9,132(r3)
3ac: 71 29 40 00 andi. r9,r9,16384
3b0: 40 82 00 0c bne 3bc <test+0x14>
3b4: 80 63 00 0c lwz r3,12(r3)
3b8: 4e 80 00 20 blr
3bc: 0f e0 00 00 twui r0,0
3c0: 80 63 00 0c lwz r3,12(r3)
3c4: 4e 80 00 20 blr
0000000000000bf0 <.test9w>:
bf0: 7c 89 00 74 cntlzd r9,r4
bf4: 79 29 d1 82 rldicl r9,r9,58,6
bf8: 0b 09 00 00 tdnei r9,0
bfc: 2c 24 00 00 cmpdi r4,0
c00: 41 82 00 0c beq c0c <.test9w+0x1c>
c04: 7c 63 23 92 divdu r3,r3,r4
c08: 4e 80 00 20 blr
c0c: 38 60 00 00 li r3,0
c10: 4e 80 00 20 blr
After the patch:
000003a8 <test>:
3a8: 81 23 00 84 lwz r9,132(r3)
3ac: 71 29 40 00 andi. r9,r9,16384
3b0: 40 82 00 0c bne 3bc <test+0x14>
3b4: 80 63 00 0c lwz r3,12(r3)
3b8: 4e 80 00 20 blr
3bc: 0f e0 00 00 twui r0,0
0000000000000c50 <.test9w>:
c50: 7c 89 00 74 cntlzd r9,r4
c54: 79 29 d1 82 rldicl r9,r9,58,6
c58: 0b 09 00 00 tdnei r9,0
c5c: 7c 63 23 92 divdu r3,r3,r4
c60: 4e 80 00 20 blr
c70: 38 60 00 00 li r3,0
c74: 4e 80 00 20 blr
In the first exemple, we see GCC doesn't need to duplicate what
happens after the trap.
In the second exemple, we see that GCC doesn't need to emit a test
and a branch in the likely path in addition to the trap.
We've got some WARN_ON() in .softirqentry.text section so it needs
to be added in the OTHER_TEXT_SECTIONS in modpost.c
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/389962b1b702e3c78d169e59bcfac56282889173.1618331882.git.christophe.leroy@csgroup.eu
powerpc BUG_ON() and WARN_ON() are based on using twnei instruction.
For catching simple conditions like a variable having value 0, this
is efficient because it does the test and the trap at the same time.
But most conditions used with BUG_ON or WARN_ON are more complex and
forces GCC to format the condition into a 0 or 1 value in a register.
This will usually require 2 to 3 instructions.
The most efficient solution would be to use __builtin_trap() because
GCC is able to optimise the use of the different trap instructions
based on the requested condition, but this is complex if not
impossible for the following reasons:
- __builtin_trap() is a non-recoverable instruction, so it can't be
used for WARN_ON
- Knowing which line of code generated the trap would require the
analysis of DWARF information. This is not a feature we have today.
As mentioned in commit 8d4fbcfbe0 ("Fix WARN_ON() on bitfield ops")
the way WARN_ON() is implemented is suboptimal. That commit also
mentions an issue with 'long long' condition. It fixed it for
WARN_ON() but the same problem still exists today with BUG_ON() on
PPC32. It will be fixed by using the generic implementation.
By using the generic implementation, gcc will naturally generate a
branch to the unconditional trap generated by BUG().
As modern powerpc implement zero-cycle branch,
that's even more efficient.
And for the functions using WARN_ON() and its return, the test
on return from WARN_ON() is now also used for the WARN_ON() itself.
On PPC64 we don't want it because we want to be able to use CFAR
register to track how we entered the code that trapped. The CFAR
register would be clobbered by the branch.
A simple test function:
unsigned long test9w(unsigned long a, unsigned long b)
{
if (WARN_ON(!b))
return 0;
return a / b;
}
Before the patch:
0000046c <test9w>:
46c: 7c 89 00 34 cntlzw r9,r4
470: 55 29 d9 7e rlwinm r9,r9,27,5,31
474: 0f 09 00 00 twnei r9,0
478: 2c 04 00 00 cmpwi r4,0
47c: 41 82 00 0c beq 488 <test9w+0x1c>
480: 7c 63 23 96 divwu r3,r3,r4
484: 4e 80 00 20 blr
488: 38 60 00 00 li r3,0
48c: 4e 80 00 20 blr
After the patch:
00000468 <test9w>:
468: 2c 04 00 00 cmpwi r4,0
46c: 41 82 00 0c beq 478 <test9w+0x10>
470: 7c 63 23 96 divwu r3,r3,r4
474: 4e 80 00 20 blr
478: 0f e0 00 00 twui r0,0
47c: 38 60 00 00 li r3,0
480: 4e 80 00 20 blr
So we see before the patch we need 3 instructions on the likely path
to handle the WARN_ON(). With the patch the trap goes on the unlikely
path.
See below the difference at the entry of system_call_exception where
we have several BUG_ON(), allthough less impressing.
With the patch:
00000000 <system_call_exception>:
0: 81 6a 00 84 lwz r11,132(r10)
4: 90 6a 00 88 stw r3,136(r10)
8: 71 60 00 02 andi. r0,r11,2
c: 41 82 00 70 beq 7c <system_call_exception+0x7c>
10: 71 60 40 00 andi. r0,r11,16384
14: 41 82 00 6c beq 80 <system_call_exception+0x80>
18: 71 6b 80 00 andi. r11,r11,32768
1c: 41 82 00 68 beq 84 <system_call_exception+0x84>
20: 94 21 ff e0 stwu r1,-32(r1)
24: 93 e1 00 1c stw r31,28(r1)
28: 7d 8c 42 e6 mftb r12
...
7c: 0f e0 00 00 twui r0,0
80: 0f e0 00 00 twui r0,0
84: 0f e0 00 00 twui r0,0
Without the patch:
00000000 <system_call_exception>:
0: 94 21 ff e0 stwu r1,-32(r1)
4: 93 e1 00 1c stw r31,28(r1)
8: 90 6a 00 88 stw r3,136(r10)
c: 81 6a 00 84 lwz r11,132(r10)
10: 69 60 00 02 xori r0,r11,2
14: 54 00 ff fe rlwinm r0,r0,31,31,31
18: 0f 00 00 00 twnei r0,0
1c: 69 60 40 00 xori r0,r11,16384
20: 54 00 97 fe rlwinm r0,r0,18,31,31
24: 0f 00 00 00 twnei r0,0
28: 69 6b 80 00 xori r11,r11,32768
2c: 55 6b 8f fe rlwinm r11,r11,17,31,31
30: 0f 0b 00 00 twnei r11,0
34: 7d 8c 42 e6 mftb r12
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/b286e07fb771a664b631cd07a40b09c06f26e64b.1618331881.git.christophe.leroy@csgroup.eu
PAPR interface currently supports two different ways of communicating resource
grouping details to the OS. These are referred to as Form 0 and Form 1
associativity grouping. Form 0 is the older format and is now considered
deprecated. This patch adds another resource grouping named FORM2.
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210812132223.225214-6-aneesh.kumar@linux.ibm.com
This helper is only used with the dispatch trace log collection.
A later patch will add Form2 affinity support and this change helps
in keeping that simpler. Also add a comment explaining we don't expect
the code to be called with FORM0
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210812132223.225214-5-aneesh.kumar@linux.ibm.com
The associativity details of the newly added resourced are collected from
the hypervisor via "ibm,configure-connector" rtas call. Update the numa
distance details of the newly added numa node after the above call.
Instead of updating NUMA distance every time we lookup a node id
from the associativity property, add helpers that can be used
during boot which does this only once. Also remove the distance
update from node id lookup helpers.
Currently, we duplicate parsing code for ibm,associativity and
ibm,associativity-lookup-arrays in the kernel. The associativity array provided
by these device tree properties are very similar and hence can use
a helper to parse the node id and numa distance details.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210812132223.225214-4-aneesh.kumar@linux.ibm.com
Also make related code cleanup that will allow adding FORM2_AFFINITY in
later patches. No functional change in this patch.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210812132223.225214-3-aneesh.kumar@linux.ibm.com
No functional change in this patch. arch_debugfs_dir is the generic kernel
name declared in linux/debugfs.h for arch-specific debugfs directory.
Architectures like x86/s390 already use the name. Rename powerpc
specific powerpc_debugfs_root to arch_debugfs_dir.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210812132831.233794-2-aneesh.kumar@linux.ibm.com
Similar to x86/s390 add a debugfs file to tune tlb_single_page_flush_ceiling.
Also add a debugfs entry for tlb_local_single_page_flush_ceiling.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210812132831.233794-1-aneesh.kumar@linux.ibm.com
In the numa=off kernel command-line configuration init_chip_info() loops
around the number of chips and attempts to copy the cpumask of that node
which is NULL for all iterations after the first chip.
Hence, store the cpu mask for each chip instead of derving cpumask from
node while populating the "chips" struct array and copy that to the
chips[i].mask
Fixes: 053819e0bf ("cpufreq: powernv: Handle throttling due to Pmax capping at chip level")
Cc: stable@vger.kernel.org # v4.3+
Reported-by: Shirisha Ganta <shirisha.ganta1@ibm.com>
Signed-off-by: Pratik R. Sampat <psampat@linux.ibm.com>
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
[mpe: Rename goto label to out_free_chip_cpu_mask]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210728120500.87549-2-psampat@linux.ibm.com
This is wrong, but needed in order to avoid overlapping ranges with the
OTP area added in the next commit. A refactor of this part of the
device tree is needed: according to Wiibrew[1], this area starts at
0x0d800000 and spans 0x400 bytes (that is, 0x100 32-bit registers),
encompassing PIC and GPIO registers, amongst the ones already exposed in
this device tree, which should become children of the control@d800000
node.
[1] https://wiibrew.org/wiki/Hardware/Hollywood_Registers
Signed-off-by: Emmanuel Gil Peyrot <linkmauve@linkmauve.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210801073822.12452-4-linkmauve@linkmauve.fr
Wherever possible, replace constructs that match either
generic_handle_irq(irq_find_mapping()) or
generic_handle_irq(irq_linear_revmap()) to a single call to
generic_handle_domain_irq().
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210802162630.2219813-13-maz@kernel.org
On P10, the feature doing an automatic "save & restore" of a VCPU
interrupt context is set by default in OPAL. When a VP context is
pulled out, the state of the interrupt registers are saved by the XIVE
interrupt controller under the internal NVP structure representing the
VP. This saves a costly store/load in guest entries and exits.
If OPAL advertises the "save & restore" feature in the device tree,
it should also have set the 'H' bit in the CAM line. Check that when
vCPUs are connected to their ICP in KVM before going any further.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210720134209.256133-3-clg@kaod.org
Use it to hold platform specific features. P9 DD2 introduced
single-escalation support. P10 will add others.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210720134209.256133-2-clg@kaod.org
There is no need to use the lockup detector ("noirqdebug") for IPIs.
The ipistorm benchmark measures a ~10% improvement on high systems
when this flag is set.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210719130614.195886-1-clg@kaod.org
The default domain of the PCI/MSIs is not the XIVE domain anymore. To
list the IRQ mappings under XMON and debugfs, query the IRQ data from
the low level XIVE domain.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210701132750.1475580-32-clg@kaod.org
PCI MSIs now live in an MSI domain but the underlying calls, which
will EOI the interrupt in real mode, need an HW IRQ number mapped in
the XICS IRQ domain. Grab it there.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210701132750.1475580-31-clg@kaod.org
pnv_opal_pci_msi_eoi() is called from KVM to EOI passthrough interrupts
when in real mode. Adding MSI domain broke the hack using the
'ioda.irq_chip' field to deduce the owning PHB. Fix that by using the
IRQ chip data in the MSI domain.
The 'ioda.irq_chip' field is now unused and could be removed from the
pnv_phb struct.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210701132750.1475580-30-clg@kaod.org
Before MSI domains, the default IRQ chip of PHB3 MSIs was patched by
pnv_set_msi_irq_chip() with the custom EOI handler pnv_ioda2_msi_eoi()
and the owning PHB was deduced from the 'ioda.irq_chip' field. This
path has been deprecated by the MSI domains but it is still in use by
the P8 CAPI 'cxl' driver.
Rewriting this driver to support MSI would be a waste of time.
Nevertheless, we can still remove the IRQ chip patch and set the IRQ
chip data instead. This is cleaner.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210701132750.1475580-29-clg@kaod.org
desc->irq_data points to the top level IRQ data descriptor which is
not necessarily in the XICS IRQ domain. MSIs are in another domain for
instance. Fix that by looking for a mapping on the low level XICS IRQ
domain.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210701132750.1475580-28-clg@kaod.org
The pnv_ioda2_msi_eoi() chip handler is not used anymore for MSIs.
Simply use the check on the PSI-MSI chip.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210701132750.1475580-27-clg@kaod.org
That was a workaround in the XICS domain because of the lack of MSI
domain. This is now handled.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210701132750.1475580-24-clg@kaod.org
The PowerNV and pSeries platforms now have support for both the XICS
and XIVE IRQ domains.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210701132750.1475580-23-clg@kaod.org
PHB3s need an extra OPAL call to EOI the interrupt. The call takes an
OPAL HW IRQ number but it is translated into a vector number in OPAL.
Here, we directly use the vector number of the in-the-middle "PNV-MSI"
domain instead of grabbing the OPAL HW IRQ number in the XICS parent
domain.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210701132750.1475580-22-clg@kaod.org
XICS doesn't have any state associated with the IRQ. The support is
straightforward and simpler than for XIVE.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210701132750.1475580-21-clg@kaod.org
This moves the IRQ initialization done under the different ICS backends
in the common part of XICS. The 'map' handler becomes a simple 'check'
on the HW IRQ at the FW level.
As we don't need an ICS anymore in xics_migrate_irqs_away(), the XICS
domain does not set a chip data for the IRQ.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210701132750.1475580-18-clg@kaod.org
We always had only one ICS per machine. Simplify the XICS driver by
removing the ICS list.
The ICS stored in the chip data of the XICS domain becomes useless and
we don't need it anymore to migrate away IRQs from a CPU. This will be
removed in a subsequent patch.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210701132750.1475580-17-clg@kaod.org
PCI MSI interrupt numbers are now mapped in a PCI-MSI domain but the
underlying calls handling the passthrough of the interrupt in the
guest need a number in the XIVE IRQ domain.
Use the IRQ data mapped in the XIVE IRQ domain and not the one in the
PCI-MSI domain.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210701132750.1475580-16-clg@kaod.org
The routine kvmppc_set_passthru_irq() calls kvmppc_xive_set_mapped()
and kvmppc_xive_clr_mapped() with an IRQ descriptor. Use directly the
host IRQ number to remove a useless conversion.
Add some debug.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210701132750.1475580-15-clg@kaod.org
Passthrough PCI MSI interrupts are detected in KVM with a check on a
specific EOI handler (P8) or on XIVE (P9). We can now check the
PCI-MSI IRQ chip which is cleaner.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210701132750.1475580-14-clg@kaod.org
This is very similar to the MSI domains of the pSeries platform. The
MSI allocator is directly handled under the Linux PHB in the
in-the-middle "PNV-MSI" domain.
Only the XIVE (P9/P10) parent domain is supported for now. Support for
XICS will come later.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210701132750.1475580-13-clg@kaod.org
Simply allocate or release the MSI domains when a PHB is inserted in
or removed from the machine.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210701132750.1475580-11-clg@kaod.org
The MSI domain clears the IRQ with msi_domain_free(), which calls
irq_domain_free_irqs_top(), which clears the handler data. This is a
problem for the XIVE controller since we need to unmap MMIO pages and
free a specific XIVE structure.
The 'msi_free()' handler is called before irq_domain_free_irqs_top()
when the handler data is still available. Use that to clear the XIVE
controller data.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210701132750.1475580-10-clg@kaod.org
The RTAS firmware can not disable one MSI at a time. It's all or
nothing. We need a custom free IRQ handler for that.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210701132750.1475580-9-clg@kaod.org
In the early days of XIVE support, commit cffb717ceb ("powerpc/xive:
Ensure active irqd when setting affinity") tried to fix an issue
related to interrupt migration. If the root cause was related to CPU
unplug, it should have been fixed and there is no reason to keep the
irqd_is_started() check. This test is also breaking affinity setting
of MSIs which can set before starting the associated IRQ.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210701132750.1475580-8-clg@kaod.org
That was a workaround in the XIVE domain because of the lack of MSI
domain. This is now handled.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210701132750.1475580-7-clg@kaod.org
Two IRQ domains are added on top of default machine IRQ domain.
First, the top level "pSeries-PCI-MSI" domain deals with the MSI
specificities. In this domain, the HW IRQ numbers are generated by the
PCI MSI layer, they compose a unique ID for an MSI source with the PCI
device identifier and the MSI vector number.
These numbers can be quite large on a pSeries machine running under
the IBM Hypervisor and /sys/kernel/irq/ and /proc/interrupts will
require small fixes to show them correctly.
Second domain is the in-the-middle "pSeries-MSI" domain which acts as
a proxy between the PCI MSI subsystem and the machine IRQ subsystem.
It usually allocate the MSI vector numbers but, on pSeries machines,
this is done by the RTAS FW and RTAS returns IRQ numbers in the IRQ
number space of the machine. This is why the in-the-middle "pSeries-MSI"
domain has the same HW IRQ numbers as its parent domain.
Only the XIVE (P9/P10) parent domain is supported for now. We still
need to add support for IRQ domain hierarchy under XICS.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210701132750.1475580-6-clg@kaod.org
pr_debug() is easier to activate and it helps to know how the kernel
configures the HW when tweaking the IRQ subsystem.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210701132750.1475580-5-clg@kaod.org
This adds handlers to allocate/free IRQs in a domain hierarchy. We
could try to use xive_irq_domain_map() in xive_irq_domain_alloc() but
we rely on xive_irq_alloc_data() to set the IRQ handler data and
duplicating the code is simpler.
xive_irq_free_data() needs to be called when IRQ are freed to clear
the MMIO mappings and free the XIVE handler data, xive_irq_data
structure. This is going to be a problem with MSI domains which we
will address later.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210701132750.1475580-4-clg@kaod.org
This splits the routine setting the MSIs in two parts: allocation of
MSIs for the PCI device at the FW level (RTAS) and the actual mapping
and activation of the IRQs.
rtas_prepare_msi_irqs() will serve as a handler for the PCI MSI domain.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210701132750.1475580-3-clg@kaod.org
The powernv_get_random_long() does not work in nested KVM (which is
pseries) and produces a crash when accessing in_be64(rng->regs) in
powernv_get_random_long().
This replaces powernv_get_random_long with the ppc_md machine hook
wrapper.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210805075649.2086567-1-aik@ozlabs.ru
We shouldn't need legacy ptys, and disabling the option improves boot
time by about 0.5 seconds.
Signed-off-by: Anton Blanchard <anton@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210805112005.3cb1f412@kryten.localdomain