Commit Graph

16 Commits

Author SHA1 Message Date
Randy Dunlap
6140ae41ef zram: fix Kconfig dependency warning
ZSMALLOC depends on MMU so ZRAM should also depend on MMU since 'select'
does not follow any dependency chains.

Fixes this Kconfig warning:

WARNING: unmet direct dependencies detected for ZSMALLOC
  Depends on [n]: MMU [=n]
  Selected by [y]:
  - ZRAM [=y] && BLK_DEV [=y] && BLOCK [=y] && SYSFS [=y] && (CRYPTO_LZO [=y] || CRYPTO_ZSTD [=m] || CRYPTO_LZ4 [=m] || CRYPTO_LZ4HC [=n] || CRYPTO_842 [=n])

Link: https://lkml.kernel.org/r/20220522204027.22964-1-rdunlap@infradead.org
Fixes: b3fbd58fcb ("mm: Kconfig: simplify zswap configuration")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-25 10:47:47 -07:00
Johannes Weiner
b3fbd58fcb mm: Kconfig: simplify zswap configuration
- CONFIG_ZRAM: Zram is a user-facing feature, whereas zsmalloc is
  not. Don't make the user chase down a technical dependency like
  that, just select it in automatically when zram is requested. The
  CONFIG_CRYPTO dependency is redundant due to more specific deps.

- CONFIG_ZPOOL: This is not a user-facing feature. Hide the symbol and
  have it selected in as needed.

- CONFIG_ZSWAP: Select CRYPTO instead of depend. Common pattern.

- Make the ZSWAP suboptions and their descriptions (compression,
  allocation backend) a bit more straight-forward for the user.

Link: https://lkml.kernel.org/r/20220510152847.230957-5-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-19 14:08:53 -07:00
Rui Salvaterra
3d711a3827 zram: break the strict dependency from lzo
From the beginning, the zram block device always enabled CRYPTO_LZO,
since lzo-rle is hardcoded as the fallback compression algorithm.  As a
consequence, on systems where another compression algorithm is chosen
(e.g.  CRYPTO_ZSTD), the lzo kernel module becomes unused, while still
having to be built/loaded.

This patch removes the hardcoded lzo-rle dependency and allows the user
to select the default compression algorithm for zram at build time.  The
previous behaviour is kept, as the default algorithm is still lzo-rle.

Link: https://lkml.kernel.org/r/20201207121245.50529-1-rsalvaterra@gmail.com
Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
Suggested-by: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Suggested-by: Minchan Kim <minchan@kernel.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 12:13:47 -08:00
Mauro Carvalho Chehab
e7751617dd docs: blockdev: add it to the admin-guide
The blockdev book basically contains user-faced documentation.

Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
2019-07-15 11:03:01 -03:00
Mauro Carvalho Chehab
39443104c7 docs: blockdev: convert to ReST
Rename the blockdev documentation files to ReST, add an
index for them and adjust in order to produce a nice html
output via the Sphinx build system.

The drbd sub-directory contains some graphs and data flows.
Add those too to the documentation.

At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.

Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
2019-07-15 09:20:26 -03:00
Minchan Kim
a939888ec3 zram: support idle/huge page writeback
Add a new feature "zram idle/huge page writeback".  In the zram-swap use
case, zram usually has many idle/huge swap pages.  It's pointless to keep
them in memory (ie, zram).

To solve this problem, this feature introduces idle/huge page writeback to
the backing device so the goal is to save more memory space on embedded
systems.

Normal sequence to use idle/huge page writeback feature is as follows,

while (1) {
        # mark allocated zram slot to idle
        echo all > /sys/block/zram0/idle
        # leave system working for several hours
        # Unless there is no access for some blocks on zram,
	# they are still IDLE marked pages.

        echo "idle" > /sys/block/zram0/writeback
	or/and
	echo "huge" > /sys/block/zram0/writeback
        # write the IDLE or/and huge marked slot into backing device
	# and free the memory.
}

Per the discussion at
https://lore.kernel.org/lkml/20181122065926.GG3441@jagdpanzerIV/T/#u,

This patch removes direct incommpressibe page writeback feature
(d2afd25114f4 ("zram: write incompressible pages to backing device")).

Below concerns from Sergey:
== &< ==

"IDLE writeback" is superior to "incompressible writeback".

"incompressible writeback" is completely unpredictable and uncontrollable;
it depens on data patterns and compression algorithms.  While "IDLE
writeback" is predictable.

I even suspect, that, *ideally*, we can remove "incompressible writeback".
"IDLE pages" is a super set which also includes "incompressible" pages.
So, technically, we still can do "incompressible writeback" from "IDLE
writeback" path; but a much more reasonable one, based on a page idling
period.

I understand that you want to keep "direct incompressible writeback"
around.  ZRAM is especially popular on devices which do suffer from flash
wearout, so I can see "incompressible writeback" path becoming a dead
code, long term.

== &< ==

Below concerns from Minchan:
== &< ==

My concern is if we enable CONFIG_ZRAM_WRITEBACK in this implementation,
both hugepage/idlepage writeck will turn on.  However someuser want to
enable only idlepage writeback so we need to introduce turn on/off knob
for hugepage or new CONFIG_ZRAM_IDLEPAGE_WRITEBACK for those usecase.  I
don't want to make it complicated *if possible*.

Long term, I imagine we need to make VM aware of new swap hierarchy a
little bit different with as-is.  For example, first high priority swap
can return -EIO or -ENOCOMP, swap try to fallback to next lower priority
swap device.  With that, hugepage writeback will work tranparently.

So we could regard it as regression because incompressible pages doesn't
go to backing storage automatically.  Instead, user should do it via "echo
huge" > /sys/block/zram/writeback" manually.

== &< ==

Link: http://lkml.kernel.org/r/20181127055429.251614-6-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Joey Pabalinas <joeypabalinas@gmail.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:49 -08:00
Bartlomiej Zolnierkiewicz
486c6fba90 drivers/block: remove redundant 'default n' from Kconfig-s
'default n' is the default value for any bool or tristate Kconfig
setting so there is no need to write it explicitly.

Also since commit f467c5640c ("kconfig: only write '# CONFIG_FOO
is not set' for visible symbols") the Kconfig behavior is the same
regardless of 'default n' being present or not:

    ...
    One side effect of (and the main motivation for) this change is making
    the following two definitions behave exactly the same:

        config FOO
                bool

        config FOO
                bool
                default n

    With this change, neither of these will generate a
    '# CONFIG_FOO is not set' line (assuming FOO isn't selected/implied).
    That might make it clearer to people that a bare 'default n' is
    redundant.
    ...

Signed-off-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-10 14:11:08 -06:00
Minchan Kim
c0265342bf zram: introduce zram memory tracking
zRam as swap is useful for small memory device.  However, swap means
those pages on zram are mostly cold pages due to VM's LRU algorithm.
Especially, once init data for application are touched for launching,
they tend to be not accessed any more and finally swapped out.  zRAM can
store such cold pages as compressed form but it's pointless to keep in
memory.  Better idea is app developers free them directly rather than
remaining them on heap.

This patch tell us last access time of each block of zram via "cat
/sys/kernel/debug/zram/zram0/block_state".

The output is as follows,
      300    75.033841 .wh
      301    63.806904 s..
      302    63.806919 ..h

First column is zram's block index and 3rh one represents symbol (s:
same page w: written page to backing store h: huge page) of the block
state.  Second column represents usec time unit of the block was last
accessed.  So above example means the 300th block is accessed at
75.033851 second and it was huge so it was written to the backing store.

Admin can leverage this information to catch cold|incompressible pages
of process with *pagemap* once part of heaps are swapped out.

I used the feature a few years ago to find memory hoggers in userspace
to notify them what memory they have wasted without touch for a long
time.  With it, they could reduce unnecessary memory space.  However, at
that time, I hacked up zram for the feature but now I need the feature
again so I decided it would be better to upstream rather than keeping it
alone.  I hope I submit the userspace tool to use the feature soon.

[akpm@linux-foundation.org: fix i386 printk warning]
[minchan@kernel.org: use ktime_get_boottime() instead of sched_clock()]
  Link: http://lkml.kernel.org/r/20180420063525.GA253739@rodete-desktop-imager.corp.google.com
[akpm@linux-foundation.org: documentation tweak]
[akpm@linux-foundation.org: fix i386 printk warning]
[minchan@kernel.org: fix compile warning]
  Link: http://lkml.kernel.org/r/20180508104849.GA8209@rodete-desktop-imager.corp.google.com
[rdunlap@infradead.org: fix printk formats]
  Link: http://lkml.kernel.org/r/3652ccb1-96ef-0b0b-05d1-f661d7733dcc@infradead.org
Link: http://lkml.kernel.org/r/20180416090946.63057-5-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:34:34 -07:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Minchan Kim
5a47074f02 zram: add config and doc file for writeback feature
This patch adds document and kconfig for using of writeback feature.

Link: http://lkml.kernel.org/r/1498459987-24562-10-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Juneho Choi <juno.choi@lge.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:25 -07:00
Sergey Senozhatsky
ce1ed9f98e zram: delete custom lzo/lz4
Remove lzo/lz4 backends, we use crypto API now.

[sergey.senozhatsky@gmail.com: zram-delete-custom-lzo-lz4-v3]
  Link: http://lkml.kernel.org/r/20160604024902.11778-6-sergey.senozhatsky@gmail.com
Link: http://lkml.kernel.org/r/20160531122017.2878-7-sergey.senozhatsky@gmail.com
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Sergey Senozhatsky
ebaf9ab56d zram: switch to crypto compress API
We don't have an idle zstreams list anymore and our write path now works
absolutely differently, preventing preemption during compression.  This
removes possibilities of read paths preempting writes at wrong places
(which could badly affect the performance of both paths) and at the same
time opens the door for a move from custom LZO/LZ4 compression backends
implementation to a more generic one, using crypto compress API.

Joonsoo Kim [1] attempted to do this a while ago, but faced with the
need of introducing a new crypto API interface.  The root cause was the
fact that crypto API compression algorithms require a compression stream
structure (in zram terminology) for both compression and decompression
ops, while in reality only several of compression algorithms really need
it.  This resulted in a concept of context-less crypto API compression
backends [2].  Both write and read paths, though, would have been
executed with the preemption enabled, which in the worst case could have
resulted in a decreased worst-case performance, e.g.  consider the
following case:

	CPU0

	zram_write()
	  spin_lock()
	    take the last idle stream
	  spin_unlock()

	<< preempted >>

		zram_read()
		  spin_lock()
		   no idle streams
			  spin_unlock()
			  schedule()

	resuming zram_write compression()

but it took me some time to realize that, and it took even longer to
evolve zram and to make it ready for crypto API.  The key turned out to be
-- drop the idle streams list entirely.  Without the idle streams list we
are free to use compression algorithms that require compression stream for
decompression (read), because streams are now placed in per-cpu data and
each write path has to disable preemption for compression op, almost
completely eliminating the aforementioned case (technically, we still have
a small chance, because write path has a fast and a slow paths and the
slow path is executed with the preemption enabled; but the frequency of
failed fast path is too low).

TEST
====

- 4 CPUs, x86_64 system
- 3G zram, lzo
- fio tests: read, randread, write, randwrite, rw, randrw

test script [3] command:
 ZRAM_SIZE=3G LOG_SUFFIX=XXXX FIO_LOOPS=5 ./zram-fio-test.sh

                   BASE           PATCHED
jobs1
READ:           2527.2MB/s	 2482.7MB/s
READ:           2102.7MB/s	 2045.0MB/s
WRITE:          1284.3MB/s	 1324.3MB/s
WRITE:          1080.7MB/s	 1101.9MB/s
READ:           430125KB/s	 437498KB/s
WRITE:          430538KB/s	 437919KB/s
READ:           399593KB/s	 403987KB/s
WRITE:          399910KB/s	 404308KB/s
jobs2
READ:           8133.5MB/s	 7854.8MB/s
READ:           7086.6MB/s	 6912.8MB/s
WRITE:          3177.2MB/s	 3298.3MB/s
WRITE:          2810.2MB/s	 2871.4MB/s
READ:           1017.6MB/s	 1023.4MB/s
WRITE:          1018.2MB/s	 1023.1MB/s
READ:           977836KB/s	 984205KB/s
WRITE:          979435KB/s	 985814KB/s
jobs3
READ:           13557MB/s	 13391MB/s
READ:           11876MB/s	 11752MB/s
WRITE:          4641.5MB/s	 4682.1MB/s
WRITE:          4164.9MB/s	 4179.3MB/s
READ:           1453.8MB/s	 1455.1MB/s
WRITE:          1455.1MB/s	 1458.2MB/s
READ:           1387.7MB/s	 1395.7MB/s
WRITE:          1386.1MB/s	 1394.9MB/s
jobs4
READ:           20271MB/s	 20078MB/s
READ:           18033MB/s	 17928MB/s
WRITE:          6176.8MB/s	 6180.5MB/s
WRITE:          5686.3MB/s	 5705.3MB/s
READ:           2009.4MB/s	 2006.7MB/s
WRITE:          2007.5MB/s	 2004.9MB/s
READ:           1929.7MB/s	 1935.6MB/s
WRITE:          1926.8MB/s	 1932.6MB/s
jobs5
READ:           18823MB/s	 19024MB/s
READ:           18968MB/s	 19071MB/s
WRITE:          6191.6MB/s	 6372.1MB/s
WRITE:          5818.7MB/s	 5787.1MB/s
READ:           2011.7MB/s	 1981.3MB/s
WRITE:          2011.4MB/s	 1980.1MB/s
READ:           1949.3MB/s	 1935.7MB/s
WRITE:          1940.4MB/s	 1926.1MB/s
jobs6
READ:           21870MB/s	 21715MB/s
READ:           19957MB/s	 19879MB/s
WRITE:          6528.4MB/s	 6537.6MB/s
WRITE:          6098.9MB/s	 6073.6MB/s
READ:           2048.6MB/s	 2049.9MB/s
WRITE:          2041.7MB/s	 2042.9MB/s
READ:           2013.4MB/s	 1990.4MB/s
WRITE:          2009.4MB/s	 1986.5MB/s
jobs7
READ:           21359MB/s	 21124MB/s
READ:           19746MB/s	 19293MB/s
WRITE:          6660.4MB/s	 6518.8MB/s
WRITE:          6211.6MB/s	 6193.1MB/s
READ:           2089.7MB/s	 2080.6MB/s
WRITE:          2085.8MB/s	 2076.5MB/s
READ:           2041.2MB/s	 2052.5MB/s
WRITE:          2037.5MB/s	 2048.8MB/s
jobs8
READ:           20477MB/s	 19974MB/s
READ:           18922MB/s	 18576MB/s
WRITE:          6851.9MB/s	 6788.3MB/s
WRITE:          6407.7MB/s	 6347.5MB/s
READ:           2134.8MB/s	 2136.1MB/s
WRITE:          2132.8MB/s	 2134.4MB/s
READ:           2074.2MB/s	 2069.6MB/s
WRITE:          2087.3MB/s	 2082.4MB/s
jobs9
READ:           19797MB/s	 19994MB/s
READ:           18806MB/s	 18581MB/s
WRITE:          6878.7MB/s	 6822.7MB/s
WRITE:          6456.8MB/s	 6447.2MB/s
READ:           2141.1MB/s	 2154.7MB/s
WRITE:          2144.4MB/s	 2157.3MB/s
READ:           2084.1MB/s	 2085.1MB/s
WRITE:          2091.5MB/s	 2092.5MB/s
jobs10
READ:           19794MB/s	 19784MB/s
READ:           18794MB/s	 18745MB/s
WRITE:          6984.4MB/s	 6676.3MB/s
WRITE:          6532.3MB/s	 6342.7MB/s
READ:           2150.6MB/s	 2155.4MB/s
WRITE:          2156.8MB/s	 2161.5MB/s
READ:           2106.4MB/s	 2095.6MB/s
WRITE:          2109.7MB/s	 2098.4MB/s

                                    BASE                       PATCHED
jobs1                              perfstat
stalled-cycles-frontend     102,480,595,419 (  41.53%)	  114,508,864,804 (  46.92%)
stalled-cycles-backend       51,941,417,832 (  21.05%)	   46,836,112,388 (  19.19%)
instructions                283,612,054,215 (    1.15)	  283,918,134,959 (    1.16)
branches                     56,372,560,385 ( 724.923)	   56,449,814,753 ( 733.766)
branch-misses                   374,826,000 (   0.66%)	      326,935,859 (   0.58%)
jobs2                              perfstat
stalled-cycles-frontend     155,142,745,777 (  40.99%)	  164,170,979,198 (  43.82%)
stalled-cycles-backend       70,813,866,387 (  18.71%)	   66,456,858,165 (  17.74%)
instructions                463,436,648,173 (    1.22)	  464,221,890,191 (    1.24)
branches                     91,088,733,902 ( 760.088)	   91,278,144,546 ( 769.133)
branch-misses                   504,460,363 (   0.55%)	      394,033,842 (   0.43%)
jobs3                              perfstat
stalled-cycles-frontend     201,300,397,212 (  39.84%)	  223,969,902,257 (  44.44%)
stalled-cycles-backend       87,712,593,974 (  17.36%)	   81,618,888,712 (  16.19%)
instructions                642,869,545,023 (    1.27)	  644,677,354,132 (    1.28)
branches                    125,724,560,594 ( 690.682)	  126,133,159,521 ( 694.542)
branch-misses                   527,941,798 (   0.42%)	      444,782,220 (   0.35%)
jobs4                              perfstat
stalled-cycles-frontend     246,701,197,429 (  38.12%)	  280,076,030,886 (  43.29%)
stalled-cycles-backend      119,050,341,112 (  18.40%)	  110,955,641,671 (  17.15%)
instructions                822,716,962,127 (    1.27)	  825,536,969,320 (    1.28)
branches                    160,590,028,545 ( 688.614)	  161,152,996,915 ( 691.068)
branch-misses                   650,295,287 (   0.40%)	      550,229,113 (   0.34%)
jobs5                              perfstat
stalled-cycles-frontend     298,958,462,516 (  38.30%)	  344,852,200,358 (  44.16%)
stalled-cycles-backend      137,558,742,122 (  17.62%)	  129,465,067,102 (  16.58%)
instructions              1,005,714,688,752 (    1.29)	1,007,657,999,432 (    1.29)
branches                    195,988,773,962 ( 697.730)	  196,446,873,984 ( 700.319)
branch-misses                   695,818,940 (   0.36%)	      624,823,263 (   0.32%)
jobs6                              perfstat
stalled-cycles-frontend     334,497,602,856 (  36.71%)	  387,590,419,779 (  42.38%)
stalled-cycles-backend      163,539,365,335 (  17.95%)	  152,640,193,639 (  16.69%)
instructions              1,184,738,177,851 (    1.30)	1,187,396,281,677 (    1.30)
branches                    230,592,915,640 ( 702.902)	  231,253,802,882 ( 702.356)
branch-misses                   747,934,786 (   0.32%)	      643,902,424 (   0.28%)
jobs7                              perfstat
stalled-cycles-frontend     396,724,684,187 (  37.71%)	  460,705,858,952 (  43.84%)
stalled-cycles-backend      188,096,616,496 (  17.88%)	  175,785,787,036 (  16.73%)
instructions              1,364,041,136,608 (    1.30)	1,366,689,075,112 (    1.30)
branches                    265,253,096,936 ( 700.078)	  265,890,524,883 ( 702.839)
branch-misses                   784,991,589 (   0.30%)	      729,196,689 (   0.27%)
jobs8                              perfstat
stalled-cycles-frontend     440,248,299,870 (  36.92%)	  509,554,793,816 (  42.46%)
stalled-cycles-backend      222,575,930,616 (  18.67%)	  213,401,248,432 (  17.78%)
instructions              1,542,262,045,114 (    1.29)	1,545,233,932,257 (    1.29)
branches                    299,775,178,439 ( 697.666)	  300,528,458,505 ( 694.769)
branch-misses                   847,496,084 (   0.28%)	      748,794,308 (   0.25%)
jobs9                              perfstat
stalled-cycles-frontend     506,269,882,480 (  37.86%)	  592,798,032,820 (  44.43%)
stalled-cycles-backend      253,192,498,861 (  18.93%)	  233,727,666,185 (  17.52%)
instructions              1,721,985,080,913 (    1.29)	1,724,666,236,005 (    1.29)
branches                    334,517,360,255 ( 694.134)	  335,199,758,164 ( 697.131)
branch-misses                   873,496,730 (   0.26%)	      815,379,236 (   0.24%)
jobs10                             perfstat
stalled-cycles-frontend     549,063,363,749 (  37.18%)	  651,302,376,662 (  43.61%)
stalled-cycles-backend      281,680,986,810 (  19.07%)	  277,005,235,582 (  18.55%)
instructions              1,901,859,271,180 (    1.29)	1,906,311,064,230 (    1.28)
branches                    369,398,536,153 ( 694.004)	  370,527,696,358 ( 688.409)
branch-misses                   967,929,335 (   0.26%)	      890,125,056 (   0.24%)

                            BASE           PATCHED
seconds elapsed        79.421641008	78.735285546
seconds elapsed        61.471246133	60.869085949
seconds elapsed        62.317058173	62.224188495
seconds elapsed        60.030739363	60.081102518
seconds elapsed        74.070398362	74.317582865
seconds elapsed        84.985953007	85.414364176
seconds elapsed        97.724553255	98.173311344
seconds elapsed        109.488066758	110.268399318
seconds elapsed        122.768189405	122.967164498
seconds elapsed        135.130035105	136.934770801

On my other system (8 x86_64 CPUs, short version of test results):

                            BASE           PATCHED
seconds elapsed        19.518065994	19.806320662
seconds elapsed        15.172772749	15.594718291
seconds elapsed        13.820925970	13.821708564
seconds elapsed        13.293097816	14.585206405
seconds elapsed        16.207284118	16.064431606
seconds elapsed        17.958376158	17.771825767
seconds elapsed        19.478009164	19.602961508
seconds elapsed        21.347152811	21.352318709
seconds elapsed        24.478121126	24.171088735
seconds elapsed        26.865057442	26.767327618

So performance-wise the numbers are quite similar.

Also update zcomp interface to be more aligned with the crypto API.

[1] http://marc.info/?l=linux-kernel&m=144480832108927&w=2
[2] http://marc.info/?l=linux-kernel&m=145379613507518&w=2
[3] https://github.com/sergey-senozhatsky/zram-perf-test

Link: http://lkml.kernel.org/r/20160531122017.2878-3-sergey.senozhatsky@gmail.com
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Suggested-by: Minchan Kim <minchan@kernel.org>
Suggested-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Marcin Jabrzyk
9e65bf68a8 zram: remove obsolete ZRAM_DEBUG option
This config option doesn't provide any usage for zram.

Signed-off-by: Marcin Jabrzyk <m.jabrzyk@samsung.com>
Acked-by: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 17:00:35 -07:00
Sergey Senozhatsky
6e76668e41 zram: add lz4 algorithm backend
Introduce LZ4 compression backend and make it available for selection.
LZ4 support is optional and requires user to set ZRAM_LZ4_COMPRESS config
option.  The default compression backend is LZO.

TEST

(x86_64, core i5, 2 cores + 2 hyperthreading, zram disk size 1G,
ext4 file system, 3 compression streams)

iozone -t 3 -R -r 16K -s 60M -I +Z

       Test           LZO           LZ4
----------------------------------------------
  Initial write   1642744.62    1317005.09
        Rewrite   2498980.88    1800645.16
           Read   3957026.38    5877043.75
        Re-read   3950997.38    5861847.00
   Reverse Read   2937114.56    5047384.00
    Stride read   2948163.19    4929587.38
    Random read   3292692.69    4880793.62
 Mixed workload   1545602.62    3502940.38
   Random write   2448039.75    1758786.25
         Pwrite   1670051.03    1338329.69
          Pread   2530682.00    5097177.62
         Fwrite   3232085.62    3275942.56
          Fread   6306880.25    6645271.12

So on my system LZ4 is slower in write-only tests, while it performs
better in read-only and mixed (reads + writes) tests.

Official LZ4 benchmarks available here http://code.google.com/p/lz4/
(linux kernel uses revision r90).

Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:36:01 -07:00
Minchan Kim
49061236a9 zram: remove old private project comment
Remove the old private compcache project address so upcoming patches
should be sent to LKML because we Linux kernel community will take care.

Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-30 16:56:55 -08:00
Minchan Kim
cd67e10ac6 zram: promote zram from staging
Zram has lived in staging for a LONG LONG time and have been
fixed/improved by many contributors so code is clean and stable now.  Of
course, there are lots of product using zram in real practice.

The major TV companys have used zram as swap since two years ago and
recently our production team released android smart phone with zram
which is used as swap, too and recently Android Kitkat start to use zram
for small memory smart phone.  And there was a report Google released
their ChromeOS with zram, too and cyanogenmod have been used zram long
time ago.  And I heard some disto have used zram block device for tmpfs.
In addition, I saw many report from many other peoples.  For example,
Lubuntu start to use it.

The benefit of zram is very clear.  With my experience, one of the
benefit was to remove jitter of video application with backgroud memory
pressure.  It would be effect of efficient memory usage by compression
but more issue is whether swap is there or not in the system.  Recent
mobile platforms have used JAVA so there are many anonymous pages.  But
embedded system normally are reluctant to use eMMC or SDCard as swap
because there is wear-leveling and latency issues so if we do not use
swap, it means we can't reclaim anoymous pages and at last, we could
encounter OOM kill.  :(

Although we have real storage as swap, it was a problem, too.  Because
it sometime ends up making system very unresponsible caused by slow swap
storage performance.

Quote from Luigi on Google
 "Since Chrome OS was mentioned: the main reason why we don't use swap
  to a disk (rotating or SSD) is because it doesn't degrade gracefully
  and leads to a bad interactive experience.  Generally we prefer to
  manage RAM at a higher level, by transparently killing and restarting
  processes.  But we noticed that zram is fast enough to be competitive
  with the latter, and it lets us make more efficient use of the
  available RAM.  " and he announced.
http://www.spinics.net/lists/linux-mm/msg57717.html

Other uses case is to use zram for block device.  Zram is block device
so anyone can format the block device and mount on it so some guys on
the internet start zram as /var/tmp.
http://forums.gentoo.org/viewtopic-t-838198-start-0.html

Let's promote zram and enhance/maintain it instead of removing.

Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Nitin Gupta <ngupta@vflare.org>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Seth Jennings <sjenning@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-30 16:56:55 -08:00