mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-28 06:34:12 +08:00
18d758a2d8
152 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Suren Baghdasaryan
|
1c71222e5f |
mm: replace vma->vm_flags direct modifications with modifier calls
Replace direct modifications to vma->vm_flags with calls to modifier functions to be able to track flag changes and to keep vma locking correctness. [akpm@linux-foundation.org: fix drivers/misc/open-dice.c, per Hyeonggon Yoo] Link: https://lkml.kernel.org/r/20230126193752.297968-5-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Acked-by: Sebastian Reichel <sebastian.reichel@collabora.com> Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com> Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arjun Roy <arjunroy@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: David Rientjes <rientjes@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Laurent Dufour <ldufour@linux.ibm.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Minchan Kim <minchan@google.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Peter Oskolkov <posk@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Punit Agrawal <punit.agrawal@bytedance.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Soheil Hassas Yeganeh <soheil@google.com> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Liam R. Howlett
|
9760ebffbf |
mm: switch vma_merge(), split_vma(), and __split_vma to vma iterator
Drop the vmi_* functions and transition all users to use the vma iterator directly. Link: https://lkml.kernel.org/r/20230120162650.984577-30-Liam.Howlett@oracle.com Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Liam R. Howlett
|
11a9b90274 |
userfaultfd: use vma iterator
Use the vma iterator so that the iterator can be invalidated or updated to avoid each caller doing so. Link: https://lkml.kernel.org/r/20230120162650.984577-17-Liam.Howlett@oracle.com Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Peter Xu
|
9c67a20704 |
mm/hugetlb: introduce hugetlb_walk()
huge_pte_offset() is the main walker function for hugetlb pgtables. The name is not really representing what it does, though. Instead of renaming it, introduce a wrapper function called hugetlb_walk() which will use huge_pte_offset() inside. Assert on the locks when walking the pgtable. Note, the vma lock assertion will be a no-op for private mappings. Document the last special case in the page_vma_mapped_walk() path where we don't need any more lock to call hugetlb_walk(). Taking vma lock there is not needed because either: (1) potential callers of hugetlb pvmw holds i_mmap_rwsem already (from one rmap_walk()), or (2) the caller will not walk a hugetlb vma at all so the hugetlb code path not reachable (e.g. in ksm or uprobe paths). It's slightly implicit for future page_vma_mapped_walk() callers on that lock requirement. But anyway, when one day this rule breaks, one will get a straightforward warning in hugetlb_walk() with lockdep, then there'll be a way out. [akpm@linux-foundation.org: coding-style cleanups] Link: https://lkml.kernel.org/r/20221216155229.2043750-1-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: James Houghton <jthoughton@google.com> Cc: Jann Horn <jannh@google.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Peter Xu
|
b8da2e4660 |
mm/hugetlb: make userfaultfd_huge_must_wait() safe to pmd unshare
We can take the hugetlb walker lock, here taking vma lock directly. Link: https://lkml.kernel.org/r/20221216155217.2043700-1-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: James Houghton <jthoughton@google.com> Cc: Jann Horn <jannh@google.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
David Hildenbrand
|
51d3d5eb74 |
mm/userfaultfd: enable writenotify while userfaultfd-wp is enabled for a VMA
Currently, we don't enable writenotify when enabling userfaultfd-wp on a
shared writable mapping (for now only shmem and hugetlb). The consequence
is that vma->vm_page_prot will still include write permissions, to be set
as default for all PTEs that get remapped (e.g., mprotect(), NUMA hinting,
page migration, ...).
So far, vma->vm_page_prot is assumed to be a safe default, meaning that we
only add permissions (e.g., mkwrite) but not remove permissions (e.g.,
wrprotect). For example, when enabling softdirty tracking, we enable
writenotify. With uffd-wp on shared mappings, that changed. More details
on vma->vm_page_prot semantics were summarized in [1].
This is problematic for uffd-wp: we'd have to manually check for a uffd-wp
PTEs/PMDs and manually write-protect PTEs/PMDs, which is error prone.
Prone to such issues is any code that uses vma->vm_page_prot to set PTE
permissions: primarily pte_modify() and mk_pte().
Instead, let's enable writenotify such that PTEs/PMDs/... will be mapped
write-protected as default and we will only allow selected PTEs that are
definitely safe to be mapped without write-protection (see
can_change_pte_writable()) to be writable. In the future, we might want
to enable write-bit recovery -- e.g., can_change_pte_writable() -- at more
locations, for example, also when removing uffd-wp protection.
This fixes two known cases:
(a) remove_migration_pte() mapping uffd-wp'ed PTEs writable, resulting
in uffd-wp not triggering on write access.
(b) do_numa_page() / do_huge_pmd_numa_page() mapping uffd-wp'ed PTEs/PMDs
writable, resulting in uffd-wp not triggering on write access.
Note that do_numa_page() / do_huge_pmd_numa_page() can be reached even
without NUMA hinting (which currently doesn't seem to be applicable to
shmem), for example, by using uffd-wp with a PROT_WRITE shmem VMA. On
such a VMA, userfaultfd-wp is currently non-functional.
Note that when enabling userfaultfd-wp, there is no need to walk page
tables to enforce the new default protection for the PTEs: we know that
they cannot be uffd-wp'ed yet, because that can only happen after enabling
uffd-wp for the VMA in general.
Also note that this makes mprotect() on ranges with uffd-wp'ed PTEs not
accidentally set the write bit -- which would result in uffd-wp not
triggering on later write access. This commit makes uffd-wp on shmem
behave just like uffd-wp on anonymous memory in that regard, even though,
mixing mprotect with uffd-wp is controversial.
[1] https://lkml.kernel.org/r/92173bad-caa3-6b43-9d1e-9a471fdbc184@redhat.com
Link: https://lkml.kernel.org/r/20221209080912.7968-1-david@redhat.com
Fixes:
|
||
Liam Howlett
|
59f2f4b8a7 |
fs/userfaultfd: Fix maple tree iterator in userfaultfd_unregister()
When iterating the VMAs, the maple state needs to be invalidated if the
tree is modified by a split or merge to ensure the maple tree node
contained in the maple state is still valid. These invalidations were
missed, so add them to the paths which alter the tree.
Reported-by: syzbot+0d2014e4da2ccced5b41@syzkaller.appspotmail.com
Fixes:
|
||
Linus Torvalds
|
27bc50fc90 |
- Yu Zhao's Multi-Gen LRU patches are here. They've been under test in
linux-next for a couple of months without, to my knowledge, any negative reports (or any positive ones, come to that). - Also the Maple Tree from Liam R. Howlett. An overlapping range-based tree for vmas. It it apparently slight more efficient in its own right, but is mainly targeted at enabling work to reduce mmap_lock contention. Liam has identified a number of other tree users in the kernel which could be beneficially onverted to mapletrees. Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat (https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com). This has yet to be addressed due to Liam's unfortunately timed vacation. He is now back and we'll get this fixed up. - Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses clang-generated instrumentation to detect used-unintialized bugs down to the single bit level. KMSAN keeps finding bugs. New ones, as well as the legacy ones. - Yang Shi adds a userspace mechanism (madvise) to induce a collapse of memory into THPs. - Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support file/shmem-backed pages. - userfaultfd updates from Axel Rasmussen - zsmalloc cleanups from Alexey Romanov - cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure - Huang Ying adds enhancements to NUMA balancing memory tiering mode's page promotion, with a new way of detecting hot pages. - memcg updates from Shakeel Butt: charging optimizations and reduced memory consumption. - memcg cleanups from Kairui Song. - memcg fixes and cleanups from Johannes Weiner. - Vishal Moola provides more folio conversions - Zhang Yi removed ll_rw_block() :( - migration enhancements from Peter Xu - migration error-path bugfixes from Huang Ying - Aneesh Kumar added ability for a device driver to alter the memory tiering promotion paths. For optimizations by PMEM drivers, DRM drivers, etc. - vma merging improvements from Jakub Matěn. - NUMA hinting cleanups from David Hildenbrand. - xu xin added aditional userspace visibility into KSM merging activity. - THP & KSM code consolidation from Qi Zheng. - more folio work from Matthew Wilcox. - KASAN updates from Andrey Konovalov. - DAMON cleanups from Kaixu Xia. - DAMON work from SeongJae Park: fixes, cleanups. - hugetlb sysfs cleanups from Muchun Song. - Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core. -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY0HaPgAKCRDdBJ7gKXxA joPjAQDZ5LlRCMWZ1oxLP2NOTp6nm63q9PWcGnmY50FjD/dNlwEAnx7OejCLWGWf bbTuk6U2+TKgJa4X7+pbbejeoqnt5QU= =xfWx -----END PGP SIGNATURE----- Merge tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - Yu Zhao's Multi-Gen LRU patches are here. They've been under test in linux-next for a couple of months without, to my knowledge, any negative reports (or any positive ones, come to that). - Also the Maple Tree from Liam Howlett. An overlapping range-based tree for vmas. It it apparently slightly more efficient in its own right, but is mainly targeted at enabling work to reduce mmap_lock contention. Liam has identified a number of other tree users in the kernel which could be beneficially onverted to mapletrees. Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat at [1]. This has yet to be addressed due to Liam's unfortunately timed vacation. He is now back and we'll get this fixed up. - Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses clang-generated instrumentation to detect used-unintialized bugs down to the single bit level. KMSAN keeps finding bugs. New ones, as well as the legacy ones. - Yang Shi adds a userspace mechanism (madvise) to induce a collapse of memory into THPs. - Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support file/shmem-backed pages. - userfaultfd updates from Axel Rasmussen - zsmalloc cleanups from Alexey Romanov - cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure - Huang Ying adds enhancements to NUMA balancing memory tiering mode's page promotion, with a new way of detecting hot pages. - memcg updates from Shakeel Butt: charging optimizations and reduced memory consumption. - memcg cleanups from Kairui Song. - memcg fixes and cleanups from Johannes Weiner. - Vishal Moola provides more folio conversions - Zhang Yi removed ll_rw_block() :( - migration enhancements from Peter Xu - migration error-path bugfixes from Huang Ying - Aneesh Kumar added ability for a device driver to alter the memory tiering promotion paths. For optimizations by PMEM drivers, DRM drivers, etc. - vma merging improvements from Jakub Matěn. - NUMA hinting cleanups from David Hildenbrand. - xu xin added aditional userspace visibility into KSM merging activity. - THP & KSM code consolidation from Qi Zheng. - more folio work from Matthew Wilcox. - KASAN updates from Andrey Konovalov. - DAMON cleanups from Kaixu Xia. - DAMON work from SeongJae Park: fixes, cleanups. - hugetlb sysfs cleanups from Muchun Song. - Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core. Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1] * tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits) hugetlb: allocate vma lock for all sharable vmas hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer hugetlb: fix vma lock handling during split vma and range unmapping mglru: mm/vmscan.c: fix imprecise comments mm/mglru: don't sync disk for each aging cycle mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol mm: memcontrol: use do_memsw_account() in a few more places mm: memcontrol: deprecate swapaccounting=0 mode mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled mm/secretmem: remove reduntant return value mm/hugetlb: add available_huge_pages() func mm: remove unused inline functions from include/linux/mm_inline.h selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd selftests/vm: add thp collapse shmem testing selftests/vm: add thp collapse file and tmpfs testing selftests/vm: modularize thp collapse memory operations selftests/vm: dedup THP helpers mm/khugepaged: add tracepoint to hpage_collapse_scan_file() mm/madvise: add file and shmem support to MADV_COLLAPSE ... |
||
Linus Torvalds
|
26b84401da |
lsm/stable-6.1 PR 20221003
-----BEGIN PGP SIGNATURE----- iQJIBAABCAAyFiEES0KozwfymdVUl37v6iDy2pc3iXMFAmM68YIUHHBhdWxAcGF1 bC1tb29yZS5jb20ACgkQ6iDy2pc3iXOTbA//TR8i+Wy8iswUCmtfmYg91h1uebpl /kjNsSmfgivAUTGamr3eN2WRlGhZfkFDPIHa25uybSA6Q+75p4lst83Rt3HDbjkv Ga7grCXnHwSDwJoHOSeFh0pojV2u7Zvfmiib2U5hPZEmd3kBw3NCgAJVcSGN80B2 dct36fzZNXjvpWDbygmFtRRkmEseslSkft8bUVvNZBP+B0zvv3vcNY1QFuKuK+W2 8wWpvO/cCSmke5i2c2ktHSk2f8/Y6n26Ik/OTHcTVfoKZLRaFbXEzLyxzLrNWd6m hujXgcxszTtHdmoXx+J6uBauju7TR8pi1x8mO2LSGrlpRc1cX0A5ED8WcH71+HVE 8L1fIOmZShccPZn8xRok7oYycAUm/gIfpmSLzmZA76JsZYAe+mp9Ze9FA6fZtSwp 7Q/rfw/Rlz25WcFBe4xypP078HkOmqutkCk2zy5liR+cWGrgy/WKX15vyC0TaPrX tbsRKuCLkipgfXrTk0dX3kmhz+3bJYjqeZEt7sfPSZYpaOGkNXVmAW0wnCOTuLMU +8pIVktvQxMmACEj2gBMz11iooR4DpWLxOcQQR/impgCpNdZ60nA0a6KPJoIXC+5 NfTa422FZkc99QRVblUZyWSgJBW78Z3ZAQcQlo1AGLlFydbfrSFTRLbmNJZo/Nkl KwpGvWs5nB0rVw0= =VZl5 -----END PGP SIGNATURE----- Merge tag 'lsm-pr-20221003' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/lsm Pull LSM updates from Paul Moore: "Seven patches for the LSM layer and we've got a mix of trivial and significant patches. Highlights below, starting with the smaller bits first so they don't get lost in the discussion of the larger items: - Remove some redundant NULL pointer checks in the common LSM audit code. - Ratelimit the lockdown LSM's access denial messages. With this change there is a chance that the last visible lockdown message on the console is outdated/old, but it does help preserve the initial series of lockdown denials that started the denial message flood and my gut feeling is that these might be the more valuable messages. - Open userfaultfds as readonly instead of read/write. While this code obviously lives outside the LSM, it does have a noticeable impact on the LSMs with Ondrej explaining the situation in the commit description. It is worth noting that this patch languished on the VFS list for over a year without any comments (objections or otherwise) so I took the liberty of pulling it into the LSM tree after giving fair notice. It has been in linux-next since the end of August without any noticeable problems. - Add a LSM hook for user namespace creation, with implementations for both the BPF LSM and SELinux. Even though the changes are fairly small, this is the bulk of the diffstat as we are also including BPF LSM selftests for the new hook. It's also the most contentious of the changes in this pull request with Eric Biederman NACK'ing the LSM hook multiple times during its development and discussion upstream. While I've never taken NACK's lightly, I'm sending these patches to you because it is my belief that they are of good quality, satisfy a long-standing need of users and distros, and are in keeping with the existing nature of the LSM layer and the Linux Kernel as a whole. The patches in implement a LSM hook for user namespace creation that allows for a granular approach, configurable at runtime, which enables both monitoring and control of user namespaces. The general consensus has been that this is far preferable to the other solutions that have been adopted downstream including outright removal from the kernel, disabling via system wide sysctls, or various other out-of-tree mechanisms that users have been forced to adopt since we haven't been able to provide them an upstream solution for their requests. Eric has been steadfast in his objections to this LSM hook, explaining that any restrictions on the user namespace could have significant impact on userspace. While there is the possibility of impacting userspace, it is important to note that this solution only impacts userspace when it is requested based on the runtime configuration supplied by the distro/admin/user. Frederick (the pathset author), the LSM/security community, and myself have tried to work with Eric during development of this patchset to find a mutually acceptable solution, but Eric's approach and unwillingness to engage in a meaningful way have made this impossible. I have CC'd Eric directly on this pull request so he has a chance to provide his side of the story; there have been no objections outside of Eric's" * tag 'lsm-pr-20221003' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/lsm: lockdown: ratelimit denial messages userfaultfd: open userfaultfds with O_RDONLY selinux: Implement userns_create hook selftests/bpf: Add tests verifying bpf lsm userns_create hook bpf-lsm: Make bpf_lsm_userns_create() sleepable security, lsm: Introduce security_create_user_ns() lsm: clean up redundant NULL pointer check |
||
Liam R. Howlett
|
69dbe6daf1 |
userfaultfd: use maple tree iterator to iterate VMAs
Don't use the mm_struct linked list or the vma->vm_next in prep for removal. Link: https://lkml.kernel.org/r/20220906194824.2110408-45-Liam.Howlett@oracle.com Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com> Tested-by: Yu Zhao <yuzhao@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: SeongJae Park <sj@kernel.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Axel Rasmussen
|
2d5de004e0 |
userfaultfd: add /dev/userfaultfd for fine grained access control
Historically, it has been shown that intercepting kernel faults with
userfaultfd (thereby forcing the kernel to wait for an arbitrary amount of
time) can be exploited, or at least can make some kinds of exploits
easier. So, in
|
||
Ondrej Mosnacek
|
abec3d015f |
userfaultfd: open userfaultfds with O_RDONLY
Since userfaultfd doesn't implement a write operation, it is more
appropriate to open it read-only.
When userfaultfds are opened read-write like it is now, and such fd is
passed from one process to another, SELinux will check both read and
write permissions for the target process, even though it can't actually
do any write operation on the fd later.
Inspired by the following bug report, which has hit the SELinux scenario
described above:
https://bugzilla.redhat.com/show_bug.cgi?id=1974559
Reported-by: Robert O'Callahan <roc@ocallahan.org>
Fixes:
|
||
Peter Xu
|
f369b07c86 |
mm/uffd: reset write protection when unregister with wp-mode
The motivation of this patch comes from a recent report and patchfix from
David Hildenbrand on hugetlb shared handling of wr-protected page [1].
With the reproducer provided in commit message of [1], one can leverage
the uffd-wp lazy-reset of ptes to trigger a hugetlb issue which can affect
not only the attacker process, but also the whole system.
The lazy-reset mechanism of uffd-wp was used to make unregister faster,
meanwhile it has an assumption that any leftover pgtable entries should
only affect the process on its own, so not only the user should be aware
of anything it does, but also it should not affect outside of the process.
But it seems that this is not true, and it can also be utilized to make
some exploit easier.
So far there's no clue showing that the lazy-reset is important to any
userfaultfd users because normally the unregister will only happen once
for a specific range of memory of the lifecycle of the process.
Considering all above, what this patch proposes is to do explicit pte
resets when unregister an uffd region with wr-protect mode enabled.
It should be the same as calling ioctl(UFFDIO_WRITEPROTECT, wp=false)
right before ioctl(UFFDIO_UNREGISTER) for the user. So potentially it'll
make the unregister slower. From that pov it's a very slight abi change,
but hopefully nothing should break with this change either.
Regarding to the change itself - core of uffd write [un]protect operation
is moved into a separate function (uffd_wp_range()) and it is reused in
the unregister code path.
Note that the new function will not check for anything, e.g. ranges or
memory types, because they should have been checked during the previous
UFFDIO_REGISTER or it should have failed already. It also doesn't check
mmap_changing because we're with mmap write lock held anyway.
I added a Fixes upon introducing of uffd-wp shmem+hugetlbfs because that's
the only issue reported so far and that's the commit David's reproducer
will start working (v5.19+). But the whole idea actually applies to not
only file memories but also anonymous. It's just that we don't need to
fix anonymous prior to v5.19- because there's no known way to exploit.
IOW, this patch can also fix the issue reported in [1] as the patch 2 does.
[1] https://lore.kernel.org/all/20220811103435.188481-3-david@redhat.com/
Link: https://lkml.kernel.org/r/20220811201340.39342-1-peterx@redhat.com
Fixes:
|
||
Linus Torvalds
|
6614a3c316 |
- The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe
Lin, Yang Shi, Anshuman Khandual and Mike Rapoport - Some kmemleak fixes from Patrick Wang and Waiman Long - DAMON updates from SeongJae Park - memcg debug/visibility work from Roman Gushchin - vmalloc speedup from Uladzislau Rezki - more folio conversion work from Matthew Wilcox - enhancements for coherent device memory mapping from Alex Sierra - addition of shared pages tracking and CoW support for fsdax, from Shiyang Ruan - hugetlb optimizations from Mike Kravetz - Mel Gorman has contributed some pagealloc changes to improve latency and realtime behaviour. - mprotect soft-dirty checking has been improved by Peter Xu - Many other singleton patches all over the place -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCYuravgAKCRDdBJ7gKXxA jpqSAQDrXSdII+ht9kSHlaCVYjqRFQz/rRvURQrWQV74f6aeiAD+NHHeDPwZn11/ SPktqEUrF1pxnGQxqLh1kUFUhsVZQgE= =w/UH -----END PGP SIGNATURE----- Merge tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Most of the MM queue. A few things are still pending. Liam's maple tree rework didn't make it. This has resulted in a few other minor patch series being held over for next time. Multi-gen LRU still isn't merged as we were waiting for mapletree to stabilize. The current plan is to merge MGLRU into -mm soon and to later reintroduce mapletree, with a view to hopefully getting both into 6.1-rc1. Summary: - The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe Lin, Yang Shi, Anshuman Khandual and Mike Rapoport - Some kmemleak fixes from Patrick Wang and Waiman Long - DAMON updates from SeongJae Park - memcg debug/visibility work from Roman Gushchin - vmalloc speedup from Uladzislau Rezki - more folio conversion work from Matthew Wilcox - enhancements for coherent device memory mapping from Alex Sierra - addition of shared pages tracking and CoW support for fsdax, from Shiyang Ruan - hugetlb optimizations from Mike Kravetz - Mel Gorman has contributed some pagealloc changes to improve latency and realtime behaviour. - mprotect soft-dirty checking has been improved by Peter Xu - Many other singleton patches all over the place" [ XFS merge from hell as per Darrick Wong in https://lore.kernel.org/all/YshKnxb4VwXycPO8@magnolia/ ] * tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (282 commits) tools/testing/selftests/vm/hmm-tests.c: fix build mm: Kconfig: fix typo mm: memory-failure: convert to pr_fmt() mm: use is_zone_movable_page() helper hugetlbfs: fix inaccurate comment in hugetlbfs_statfs() hugetlbfs: cleanup some comments in inode.c hugetlbfs: remove unneeded header file hugetlbfs: remove unneeded hugetlbfs_ops forward declaration hugetlbfs: use helper macro SZ_1{K,M} mm: cleanup is_highmem() mm/hmm: add a test for cross device private faults selftests: add soft-dirty into run_vmtests.sh selftests: soft-dirty: add test for mprotect mm/mprotect: fix soft-dirty check in can_change_pte_writable() mm: memcontrol: fix potential oom_lock recursion deadlock mm/gup.c: fix formatting in check_and_migrate_movable_page() xfs: fail dax mount if reflink is enabled on a partition mm/memcontrol.c: remove the redundant updating of stats_flush_threshold userfaultfd: don't fail on unrecognized features hugetlb_cgroup: fix wrong hugetlb cgroup numa stat ... |
||
Axel Rasmussen
|
914eedcb9b |
userfaultfd: don't fail on unrecognized features
The basic interaction for setting up a userfaultfd is, userspace issues a UFFDIO_API ioctl, and passes in a set of zero or more feature flags, indicating the features they would prefer to use. Of course, different kernels may support different sets of features (depending on kernel version, kconfig options, architecture, etc). Userspace's expectations may also not match: perhaps it was built against newer kernel headers, which defined some features the kernel it's running on doesn't support. Currently, if userspace passes in a flag we don't recognize, the initialization fails and we return -EINVAL. This isn't great, though. Userspace doesn't have an obvious way to react to this; sure, one of the features I asked for was unavailable, but which one? The only option it has is to turn off things "at random" and hope something works. Instead, modify UFFDIO_API to just ignore any unrecognized feature flags. The interaction is now that the initialization will succeed, and as always we return the *subset* of feature flags that can actually be used back to userspace. Now userspace has an obvious way to react: it checks if any flags it asked for are missing. If so, it can conclude this kernel doesn't support those, and it can either resign itself to not using them, or fail with an error on its own, or whatever else. Link: https://lkml.kernel.org/r/20220722201513.1624158-1-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Nadav Amit
|
d172b1a3bd |
userfaultfd: provide properly masked address for huge-pages
Commit |
||
Peter Xu
|
b1f9e87686 |
mm/uffd: enable write protection for shmem & hugetlbfs
We've had all the necessary changes ready for both shmem and hugetlbfs. Turn on all the shmem/hugetlbfs switches for userfaultfd-wp. We can expand UFFD_API_RANGE_IOCTLS_BASIC with _UFFDIO_WRITEPROTECT too because all existing types now support write protection mode. Since vma_can_userfault() will be used elsewhere, move into userfaultfd_k.h. Link: https://lkml.kernel.org/r/20220405014926.15101-1-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Peter Xu
|
5c041f5d1f |
mm: teach core mm about pte markers
This patch still does not use pte marker in any way, however it teaches the core mm about the pte marker idea. For example, handle_pte_marker() is introduced that will parse and handle all the pte marker faults. Many of the places are more about commenting it up - so that we know there's the possibility of pte marker showing up, and why we don't need special code for the cases. [peterx@redhat.com: userfaultfd.c needs swapops.h] Link: https://lkml.kernel.org/r/YmRlVj3cdizYJsr0@xz-m1.local Link: https://lkml.kernel.org/r/20220405014833.14015-1-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Nadav Amit
|
824ddc601a |
userfaultfd: provide unmasked address on page-fault
Userfaultfd is supposed to provide the full address (i.e., unmasked) of
the faulting access back to userspace. However, that is not the case for
quite some time.
Even running "userfaultfd_demo" from the userfaultfd man page provides the
wrong output (and contradicts the man page). Notice that
"UFFD_EVENT_PAGEFAULT event" shows the masked address (7fc5e30b3000) and
not the first read address (0x7fc5e30b300f).
Address returned by mmap() = 0x7fc5e30b3000
fault_handler_thread():
poll() returns: nready = 1; POLLIN = 1; POLLERR = 0
UFFD_EVENT_PAGEFAULT event: flags = 0; address = 7fc5e30b3000
(uffdio_copy.copy returned 4096)
Read address 0x7fc5e30b300f in main(): A
Read address 0x7fc5e30b340f in main(): A
Read address 0x7fc5e30b380f in main(): A
Read address 0x7fc5e30b3c0f in main(): A
The exact address is useful for various reasons and specifically for
prefetching decisions. If it is known that the memory is populated by
certain objects whose size is not page-aligned, then based on the faulting
address, the uffd-monitor can decide whether to prefetch and prefault the
adjacent page.
This bug has been for quite some time in the kernel: since commit
|
||
Suren Baghdasaryan
|
5c26f6ac94 |
mm: refactor vm_area_struct::anon_vma_name usage code
Avoid mixing strings and their anon_vma_name referenced pointers by using struct anon_vma_name whenever possible. This simplifies the code and allows easier sharing of anon_vma_name structures when they represent the same name. [surenb@google.com: fix comment] Link: https://lkml.kernel.org/r/20220223153613.835563-1-surenb@google.com Link: https://lkml.kernel.org/r/20220224231834.1481408-1-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Suggested-by: Matthew Wilcox <willy@infradead.org> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Colin Cross <ccross@google.com> Cc: Sumit Semwal <sumit.semwal@linaro.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Alexey Gladkov <legion@kernel.org> Cc: Sasha Levin <sashal@kernel.org> Cc: Chris Hyser <chris.hyser@oracle.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Peter Collingbourne <pcc@google.com> Cc: Xiaofeng Cao <caoxiaofeng@yulong.com> Cc: David Hildenbrand <david@redhat.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Arnd Bergmann
|
17fca131ce |
mm: move anon_vma declarations to linux/mm_inline.h
The patch to add anonymous vma names causes a build failure in some configurations: include/linux/mm_types.h: In function 'is_same_vma_anon_name': include/linux/mm_types.h:924:37: error: implicit declaration of function 'strcmp' [-Werror=implicit-function-declaration] 924 | return name && vma_name && !strcmp(name, vma_name); | ^~~~~~ include/linux/mm_types.h:22:1: note: 'strcmp' is defined in header '<string.h>'; did you forget to '#include <string.h>'? This should not really be part of linux/mm_types.h in the first place, as that header is meant to only contain structure defintions and need a minimum set of indirect includes itself. While the header clearly includes more than it should at this point, let's not make it worse by including string.h as well, which would pull in the expensive (compile-speed wise) fortify-string logic. Move the new functions into a separate header that only needs to be included in a couple of locations. Link: https://lkml.kernel.org/r/20211207125710.2503446-1-arnd@kernel.org Fixes: "mm: add a field to store names for private anonymous memory" Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Colin Cross <ccross@google.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Kees Cook <keescook@chromium.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Colin Cross
|
9a10064f56 |
mm: add a field to store names for private anonymous memory
In many userspace applications, and especially in VM based applications like Android uses heavily, there are multiple different allocators in use. At a minimum there is libc malloc and the stack, and in many cases there are libc malloc, the stack, direct syscalls to mmap anonymous memory, and multiple VM heaps (one for small objects, one for big objects, etc.). Each of these layers usually has its own tools to inspect its usage; malloc by compiling a debug version, the VM through heap inspection tools, and for direct syscalls there is usually no way to track them. On Android we heavily use a set of tools that use an extended version of the logic covered in Documentation/vm/pagemap.txt to walk all pages mapped in userspace and slice their usage by process, shared (COW) vs. unique mappings, backing, etc. This can account for real physical memory usage even in cases like fork without exec (which Android uses heavily to share as many private COW pages as possible between processes), Kernel SamePage Merging, and clean zero pages. It produces a measurement of the pages that only exist in that process (USS, for unique), and a measurement of the physical memory usage of that process with the cost of shared pages being evenly split between processes that share them (PSS). If all anonymous memory is indistinguishable then figuring out the real physical memory usage (PSS) of each heap requires either a pagemap walking tool that can understand the heap debugging of every layer, or for every layer's heap debugging tools to implement the pagemap walking logic, in which case it is hard to get a consistent view of memory across the whole system. Tracking the information in userspace leads to all sorts of problems. It either needs to be stored inside the process, which means every process has to have an API to export its current heap information upon request, or it has to be stored externally in a filesystem that somebody needs to clean up on crashes. It needs to be readable while the process is still running, so it has to have some sort of synchronization with every layer of userspace. Efficiently tracking the ranges requires reimplementing something like the kernel vma trees, and linking to it from every layer of userspace. It requires more memory, more syscalls, more runtime cost, and more complexity to separately track regions that the kernel is already tracking. This patch adds a field to /proc/pid/maps and /proc/pid/smaps to show a userspace-provided name for anonymous vmas. The names of named anonymous vmas are shown in /proc/pid/maps and /proc/pid/smaps as [anon:<name>]. Userspace can set the name for a region of memory by calling prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, start, len, (unsigned long)name) Setting the name to NULL clears it. The name length limit is 80 bytes including NUL-terminator and is checked to contain only printable ascii characters (including space), except '[',']','\','$' and '`'. Ascii strings are being used to have a descriptive identifiers for vmas, which can be understood by the users reading /proc/pid/maps or /proc/pid/smaps. Names can be standardized for a given system and they can include some variable parts such as the name of the allocator or a library, tid of the thread using it, etc. The name is stored in a pointer in the shared union in vm_area_struct that points to a null terminated string. Anonymous vmas with the same name (equivalent strings) and are otherwise mergeable will be merged. The name pointers are not shared between vmas even if they contain the same name. The name pointer is stored in a union with fields that are only used on file-backed mappings, so it does not increase memory usage. CONFIG_ANON_VMA_NAME kernel configuration is introduced to enable this feature. It keeps the feature disabled by default to prevent any additional memory overhead and to avoid confusing procfs parsers on systems which are not ready to support named anonymous vmas. The patch is based on the original patch developed by Colin Cross, more specifically on its latest version [1] posted upstream by Sumit Semwal. It used a userspace pointer to store vma names. In that design, name pointers could be shared between vmas. However during the last upstreaming attempt, Kees Cook raised concerns [2] about this approach and suggested to copy the name into kernel memory space, perform validity checks [3] and store as a string referenced from vm_area_struct. One big concern is about fork() performance which would need to strdup anonymous vma names. Dave Hansen suggested experimenting with worst-case scenario of forking a process with 64k vmas having longest possible names [4]. I ran this experiment on an ARM64 Android device and recorded a worst-case regression of almost 40% when forking such a process. This regression is addressed in the followup patch which replaces the pointer to a name with a refcounted structure that allows sharing the name pointer between vmas of the same name. Instead of duplicating the string during fork() or when splitting a vma it increments the refcount. [1] https://lore.kernel.org/linux-mm/20200901161459.11772-4-sumit.semwal@linaro.org/ [2] https://lore.kernel.org/linux-mm/202009031031.D32EF57ED@keescook/ [3] https://lore.kernel.org/linux-mm/202009031022.3834F692@keescook/ [4] https://lore.kernel.org/linux-mm/5d0358ab-8c47-2f5f-8e43-23b89d6a8e95@intel.com/ Changes for prctl(2) manual page (in the options section): PR_SET_VMA Sets an attribute specified in arg2 for virtual memory areas starting from the address specified in arg3 and spanning the size specified in arg4. arg5 specifies the value of the attribute to be set. Note that assigning an attribute to a virtual memory area might prevent it from being merged with adjacent virtual memory areas due to the difference in that attribute's value. Currently, arg2 must be one of: PR_SET_VMA_ANON_NAME Set a name for anonymous virtual memory areas. arg5 should be a pointer to a null-terminated string containing the name. The name length including null byte cannot exceed 80 bytes. If arg5 is NULL, the name of the appropriate anonymous virtual memory areas will be reset. The name can contain only printable ascii characters (including space), except '[',']','\','$' and '`'. This feature is available only if the kernel is built with the CONFIG_ANON_VMA_NAME option enabled. [surenb@google.com: docs: proc.rst: /proc/PID/maps: fix malformed table] Link: https://lkml.kernel.org/r/20211123185928.2513763-1-surenb@google.com [surenb: rebased over v5.15-rc6, replaced userpointer with a kernel copy, added input sanitization and CONFIG_ANON_VMA_NAME config. The bulk of the work here was done by Colin Cross, therefore, with his permission, keeping him as the author] Link: https://lkml.kernel.org/r/20211019215511.3771969-2-surenb@google.com Signed-off-by: Colin Cross <ccross@google.com> Signed-off-by: Suren Baghdasaryan <surenb@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Jan Glauber <jan.glauber@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rob Landley <rob@landley.net> Cc: "Serge E. Hallyn" <serge.hallyn@ubuntu.com> Cc: Shaohua Li <shli@fusionio.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Nadav Amit
|
cb185d5f1e |
userfaultfd: fix a race between writeprotect and exit_mmap()
A race is possible when a process exits, its VMAs are removed by
exit_mmap() and at the same time userfaultfd_writeprotect() is called.
The race was detected by KASAN on a development kernel, but it appears
to be possible on vanilla kernels as well.
Use mmget_not_zero() to prevent the race as done in other userfaultfd
operations.
Link: https://lkml.kernel.org/r/20210921200247.25749-1-namit@vmware.com
Fixes:
|
||
Nadav Amit
|
22e5fe2a2a |
userfaultfd: prevent concurrent API initialization
userfaultfd assumes that the enabled features are set once and never
changed after UFFDIO_API ioctl succeeded.
However, currently, UFFDIO_API can be called concurrently from two
different threads, succeed on both threads and leave userfaultfd's
features in non-deterministic state. Theoretically, other uffd operations
(ioctl's and page-faults) can be dispatched while adversely affected by
such changes of features.
Moreover, the writes to ctx->state and ctx->features are not ordered,
which can - theoretically, again - let userfaultfd_ioctl() think that
userfaultfd API completed, while the features are still not initialized.
To avoid races, it is arguably best to get rid of ctx->state. Since there
are only 2 states, record the API initialization in ctx->features as the
uppermost bit and remove ctx->state.
Link: https://lkml.kernel.org/r/20210808020724.1022515-3-namit@vmware.com
Fixes:
|
||
Nadav Amit
|
a759a909d4 |
userfaultfd: change mmap_changing to atomic
Patch series "userfaultfd: minor bug fixes".
Three unrelated bug fixes. The first two addresses possible issues (not
too theoretical ones), but I did not encounter them in practice.
The third patch addresses a test bug that causes the test to fail on my
system. It has been sent before as part of a bigger RFC.
This patch (of 3):
mmap_changing is currently a boolean variable, which is set and cleared
without any lock that protects against concurrent modifications.
mmap_changing is supposed to mark whether userfaultfd page-faults handling
should be retried since mappings are undergoing a change. However,
concurrent calls, for instance to madvise(MADV_DONTNEED), might cause
mmap_changing to be false, although the remove event was still not read
(hence acknowledged) by the user.
Change mmap_changing to atomic_t and increase/decrease appropriately. Add
a debug assertion to see whether mmap_changing is negative.
Link: https://lkml.kernel.org/r/20210808020724.1022515-1-namit@vmware.com
Link: https://lkml.kernel.org/r/20210808020724.1022515-2-namit@vmware.com
Fixes:
|
||
Peter Collingbourne
|
e71e2ace57 |
userfaultfd: do not untag user pointers
Patch series "userfaultfd: do not untag user pointers", v5. If a user program uses userfaultfd on ranges of heap memory, it may end up passing a tagged pointer to the kernel in the range.start field of the UFFDIO_REGISTER ioctl. This can happen when using an MTE-capable allocator, or on Android if using the Tagged Pointers feature for MTE readiness [1]. When a fault subsequently occurs, the tag is stripped from the fault address returned to the application in the fault.address field of struct uffd_msg. However, from the application's perspective, the tagged address *is* the memory address, so if the application is unaware of memory tags, it may get confused by receiving an address that is, from its point of view, outside of the bounds of the allocation. We observed this behavior in the kselftest for userfaultfd [2] but other applications could have the same problem. Address this by not untagging pointers passed to the userfaultfd ioctls. Instead, let the system call fail. Also change the kselftest to use mmap so that it doesn't encounter this problem. [1] https://source.android.com/devices/tech/debug/tagged-pointers [2] tools/testing/selftests/vm/userfaultfd.c This patch (of 2): Do not untag pointers passed to the userfaultfd ioctls. Instead, let the system call fail. This will provide an early indication of problems with tag-unaware userspace code instead of letting the code get confused later, and is consistent with how we decided to handle brk/mmap/mremap in commit |
||
Linus Torvalds
|
71bd934101 |
Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton: "190 patches. Subsystems affected by this patch series: mm (hugetlb, userfaultfd, vmscan, kconfig, proc, z3fold, zbud, ras, mempolicy, memblock, migration, thp, nommu, kconfig, madvise, memory-hotplug, zswap, zsmalloc, zram, cleanups, kfence, and hmm), procfs, sysctl, misc, core-kernel, lib, lz4, checkpatch, init, kprobes, nilfs2, hfs, signals, exec, kcov, selftests, compress/decompress, and ipc" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (190 commits) ipc/util.c: use binary search for max_idx ipc/sem.c: use READ_ONCE()/WRITE_ONCE() for use_global_lock ipc: use kmalloc for msg_queue and shmid_kernel ipc sem: use kvmalloc for sem_undo allocation lib/decompressors: remove set but not used variabled 'level' selftests/vm/pkeys: exercise x86 XSAVE init state selftests/vm/pkeys: refill shadow register after implicit kernel write selftests/vm/pkeys: handle negative sys_pkey_alloc() return code selftests/vm/pkeys: fix alloc_random_pkey() to make it really, really random kcov: add __no_sanitize_coverage to fix noinstr for all architectures exec: remove checks in __register_bimfmt() x86: signal: don't do sas_ss_reset() until we are certain that sigframe won't be abandoned hfsplus: report create_date to kstat.btime hfsplus: remove unnecessary oom message nilfs2: remove redundant continue statement in a while-loop kprobes: remove duplicated strong free_insn_page in x86 and s390 init: print out unknown kernel parameters checkpatch: do not complain about positive return values starting with EPOLL checkpatch: improve the indented label test checkpatch: scripts/spdxcheck.py now requires python3 ... |
||
Axel Rasmussen
|
964ab0040f |
userfaultfd/shmem: advertise shmem minor fault support
Now that the feature is fully implemented (the faulting path hooks exist so userspace is notified, and the ioctl to resolve such faults is available), advertise this as a supported feature. Link: https://lkml.kernel.org/r/20210503180737.2487560-6-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Peter Xu <peterx@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Axel Rasmussen
|
c949b097ef |
userfaultfd/shmem: support minor fault registration for shmem
This patch allows shmem-backed VMAs to be registered for minor faults. Minor faults are appropriately relayed to userspace in the fault path, for VMAs with the relevant flag. This commit doesn't hook up the UFFDIO_CONTINUE ioctl for shmem-backed minor faults, though, so userspace doesn't yet have a way to resolve such faults. Because of this, we also don't yet advertise this as a supported feature. That will be done in a separate commit when the feature is fully implemented. Link: https://lkml.kernel.org/r/20210503180737.2487560-4-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Peter Xu <peterx@redhat.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Peter Xu
|
00b151f21f |
mm/userfaultfd: fail uffd-wp registration if not supported
We should fail uffd-wp registration immediately if the arch does not even have CONFIG_HAVE_ARCH_USERFAULTFD_WP defined. That'll block also relevant ioctls on e.g. UFFDIO_WRITEPROTECT because that'll check against VM_UFFD_WP, which can only be applied with a success registration. Remove the WP feature bit too for those archs when handling UFFDIO_API ioctl. Link: https://lkml.kernel.org/r/20210428225030.9708-5-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Peter Zijlstra
|
2f064a59a1 |
sched: Change task_struct::state
Change the type and name of task_struct::state. Drop the volatile and shrink it to an 'unsigned int'. Rename it in order to find all uses such that we can use READ_ONCE/WRITE_ONCE as appropriate. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com> Acked-by: Will Deacon <will@kernel.org> Acked-by: Daniel Thompson <daniel.thompson@linaro.org> Link: https://lore.kernel.org/r/20210611082838.550736351@infradead.org |
||
Axel Rasmussen
|
f619147104 |
userfaultfd: add UFFDIO_CONTINUE ioctl
This ioctl is how userspace ought to resolve "minor" userfaults. The idea is, userspace is notified that a minor fault has occurred. It might change the contents of the page using its second non-UFFD mapping, or not. Then, it calls UFFDIO_CONTINUE to tell the kernel "I have ensured the page contents are correct, carry on setting up the mapping". Note that it doesn't make much sense to use UFFDIO_{COPY,ZEROPAGE} for MINOR registered VMAs. ZEROPAGE maps the VMA to the zero page; but in the minor fault case, we already have some pre-existing underlying page. Likewise, UFFDIO_COPY isn't useful if we have a second non-UFFD mapping. We'd just use memcpy() or similar instead. It turns out hugetlb_mcopy_atomic_pte() already does very close to what we want, if an existing page is provided via `struct page **pagep`. We already special-case the behavior a bit for the UFFDIO_ZEROPAGE case, so just extend that design: add an enum for the three modes of operation, and make the small adjustments needed for the MCOPY_ATOMIC_CONTINUE case. (Basically, look up the existing page, and avoid adding the existing page to the page cache or calling set_page_huge_active() on it.) Link: https://lkml.kernel.org/r/20210301222728.176417-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Reviewed-by: Peter Xu <peterx@redhat.com> Cc: Adam Ruprecht <ruprecht@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Cannon Matthews <cannonmatthews@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chinwen Chang <chinwen.chang@mediatek.com> Cc: David Rientjes <rientjes@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Michal Koutn" <mkoutny@suse.com> Cc: Michel Lespinasse <walken@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shawn Anastasio <shawn@anastas.io> Cc: Steven Price <steven.price@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Axel Rasmussen
|
7677f7fd8b |
userfaultfd: add minor fault registration mode
Patch series "userfaultfd: add minor fault handling", v9. Overview ======== This series adds a new userfaultfd feature, UFFD_FEATURE_MINOR_HUGETLBFS. When enabled (via the UFFDIO_API ioctl), this feature means that any hugetlbfs VMAs registered with UFFDIO_REGISTER_MODE_MISSING will *also* get events for "minor" faults. By "minor" fault, I mean the following situation: Let there exist two mappings (i.e., VMAs) to the same page(s) (shared memory). One of the mappings is registered with userfaultfd (in minor mode), and the other is not. Via the non-UFFD mapping, the underlying pages have already been allocated & filled with some contents. The UFFD mapping has not yet been faulted in; when it is touched for the first time, this results in what I'm calling a "minor" fault. As a concrete example, when working with hugetlbfs, we have huge_pte_none(), but find_lock_page() finds an existing page. We also add a new ioctl to resolve such faults: UFFDIO_CONTINUE. The idea is, userspace resolves the fault by either a) doing nothing if the contents are already correct, or b) updating the underlying contents using the second, non-UFFD mapping (via memcpy/memset or similar, or something fancier like RDMA, or etc...). In either case, userspace issues UFFDIO_CONTINUE to tell the kernel "I have ensured the page contents are correct, carry on setting up the mapping". Use Case ======== Consider the use case of VM live migration (e.g. under QEMU/KVM): 1. While a VM is still running, we copy the contents of its memory to a target machine. The pages are populated on the target by writing to the non-UFFD mapping, using the setup described above. The VM is still running (and therefore its memory is likely changing), so this may be repeated several times, until we decide the target is "up to date enough". 2. We pause the VM on the source, and start executing on the target machine. During this gap, the VM's user(s) will *see* a pause, so it is desirable to minimize this window. 3. Between the last time any page was copied from the source to the target, and when the VM was paused, the contents of that page may have changed - and therefore the copy we have on the target machine is out of date. Although we can keep track of which pages are out of date, for VMs with large amounts of memory, it is "slow" to transfer this information to the target machine. We want to resume execution before such a transfer would complete. 4. So, the guest begins executing on the target machine. The first time it touches its memory (via the UFFD-registered mapping), userspace wants to intercept this fault. Userspace checks whether or not the page is up to date, and if not, copies the updated page from the source machine, via the non-UFFD mapping. Finally, whether a copy was performed or not, userspace issues a UFFDIO_CONTINUE ioctl to tell the kernel "I have ensured the page contents are correct, carry on setting up the mapping". We don't have to do all of the final updates on-demand. The userfaultfd manager can, in the background, also copy over updated pages once it receives the map of which pages are up-to-date or not. Interaction with Existing APIs ============================== Because this is a feature, a registered VMA could potentially receive both missing and minor faults. I spent some time thinking through how the existing API interacts with the new feature: UFFDIO_CONTINUE cannot be used to resolve non-minor faults, as it does not allocate a new page. If UFFDIO_CONTINUE is used on a non-minor fault: - For non-shared memory or shmem, -EINVAL is returned. - For hugetlb, -EFAULT is returned. UFFDIO_COPY and UFFDIO_ZEROPAGE cannot be used to resolve minor faults. Without modifications, the existing codepath assumes a new page needs to be allocated. This is okay, since userspace must have a second non-UFFD-registered mapping anyway, thus there isn't much reason to want to use these in any case (just memcpy or memset or similar). - If UFFDIO_COPY is used on a minor fault, -EEXIST is returned. - If UFFDIO_ZEROPAGE is used on a minor fault, -EEXIST is returned (or -EINVAL in the case of hugetlb, as UFFDIO_ZEROPAGE is unsupported in any case). - UFFDIO_WRITEPROTECT simply doesn't work with shared memory, and returns -ENOENT in that case (regardless of the kind of fault). Future Work =========== This series only supports hugetlbfs. I have a second series in flight to support shmem as well, extending the functionality. This series is more mature than the shmem support at this point, and the functionality works fully on hugetlbfs, so this series can be merged first and then shmem support will follow. This patch (of 6): This feature allows userspace to intercept "minor" faults. By "minor" faults, I mean the following situation: Let there exist two mappings (i.e., VMAs) to the same page(s). One of the mappings is registered with userfaultfd (in minor mode), and the other is not. Via the non-UFFD mapping, the underlying pages have already been allocated & filled with some contents. The UFFD mapping has not yet been faulted in; when it is touched for the first time, this results in what I'm calling a "minor" fault. As a concrete example, when working with hugetlbfs, we have huge_pte_none(), but find_lock_page() finds an existing page. This commit adds the new registration mode, and sets the relevant flag on the VMAs being registered. In the hugetlb fault path, if we find that we have huge_pte_none(), but find_lock_page() does indeed find an existing page, then we have a "minor" fault, and if the VMA has the userfaultfd registration flag, we call into userfaultfd to handle it. This is implemented as a new registration mode, instead of an API feature. This is because the alternative implementation has significant drawbacks [1]. However, doing it this was requires we allocate a VM_* flag for the new registration mode. On 32-bit systems, there are no unused bits, so this feature is only supported on architectures with CONFIG_ARCH_USES_HIGH_VMA_FLAGS. When attempting to register a VMA in MINOR mode on 32-bit architectures, we return -EINVAL. [1] https://lore.kernel.org/patchwork/patch/1380226/ [peterx@redhat.com: fix minor fault page leak] Link: https://lkml.kernel.org/r/20210322175132.36659-1-peterx@redhat.com Link: https://lkml.kernel.org/r/20210301222728.176417-1-axelrasmussen@google.com Link: https://lkml.kernel.org/r/20210301222728.176417-2-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Reviewed-by: Peter Xu <peterx@redhat.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chinwen Chang <chinwen.chang@mediatek.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Michal Koutn" <mkoutny@suse.com> Cc: Michel Lespinasse <walken@google.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Shaohua Li <shli@fb.com> Cc: Shawn Anastasio <shawn@anastas.io> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Steven Price <steven.price@arm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Adam Ruprecht <ruprecht@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Cannon Matthews <cannonmatthews@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Peter Xu
|
6dfeaff93b |
hugetlb/userfaultfd: unshare all pmds for hugetlbfs when register wp
Huge pmd sharing for hugetlbfs is racy with userfaultfd-wp because userfaultfd-wp is always based on pgtable entries, so they cannot be shared. Walk the hugetlb range and unshare all such mappings if there is, right before UFFDIO_REGISTER will succeed and return to userspace. This will pair with want_pmd_share() in hugetlb code so that huge pmd sharing is completely disabled for userfaultfd-wp registered range. Link: https://lkml.kernel.org/r/20210218231206.15524-1-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Peter Xu <peterx@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Adam Ruprecht <ruprecht@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Cannon Matthews <cannonmatthews@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chinwen Chang <chinwen.chang@mediatek.com> Cc: David Rientjes <rientjes@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Michal Koutn" <mkoutny@suse.com> Cc: Michel Lespinasse <walken@google.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shawn Anastasio <shawn@anastas.io> Cc: Steven Price <steven.price@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Daniel Colascione
|
b537900f15 |
userfaultfd: use secure anon inodes for userfaultfd
This change gives userfaultfd file descriptors a real security context, allowing policy to act on them. Signed-off-by: Daniel Colascione <dancol@google.com> [LG: Remove owner inode from userfaultfd_ctx] [LG: Use anon_inode_getfd_secure() in userfaultfd syscall] [LG: Use inode of file in userfaultfd_read() in resolve_userfault_fork()] Signed-off-by: Lokesh Gidra <lokeshgidra@google.com> Reviewed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Paul Moore <paul@paul-moore.com> |
||
Lokesh Gidra
|
d0d4730ac2 |
userfaultfd: add user-mode only option to unprivileged_userfaultfd sysctl knob
With this change, when the knob is set to 0, it allows unprivileged users to call userfaultfd, like when it is set to 1, but with the restriction that page faults from only user-mode can be handled. In this mode, an unprivileged user (without SYS_CAP_PTRACE capability) must pass UFFD_USER_MODE_ONLY to userfaultd or the API will fail with EPERM. This enables administrators to reduce the likelihood that an attacker with access to userfaultfd can delay faulting kernel code to widen timing windows for other exploits. The default value of this knob is changed to 0. This is required for correct functioning of pipe mutex. However, this will fail postcopy live migration, which will be unnoticeable to the VM guests. To avoid this, set 'vm.userfault = 1' in /sys/sysctl.conf. The main reason this change is desirable as in the short term is that the Android userland will behave as with the sysctl set to zero. So without this commit, any Linux binary using userfaultfd to manage its memory would behave differently if run within the Android userland. For more details, refer to Andrea's reply [1]. [1] https://lore.kernel.org/lkml/20200904033438.GI9411@redhat.com/ Link: https://lkml.kernel.org/r/20201120030411.2690816-3-lokeshgidra@google.com Signed-off-by: Lokesh Gidra <lokeshgidra@google.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Peter Xu <peterx@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Stephen Smalley <stephen.smalley.work@gmail.com> Cc: Eric Biggers <ebiggers@kernel.org> Cc: Daniel Colascione <dancol@dancol.org> Cc: "Joel Fernandes (Google)" <joel@joelfernandes.org> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Jeff Vander Stoep <jeffv@google.com> Cc: <calin@google.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Shaohua Li <shli@fb.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Mauro Carvalho Chehab <mchehab+huawei@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Nitin Gupta <nigupta@nvidia.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Iurii Zaikin <yzaikin@google.com> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Daniel Colascione <dancol@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Lokesh Gidra
|
37cd0575b8 |
userfaultfd: add UFFD_USER_MODE_ONLY
Patch series "Control over userfaultfd kernel-fault handling", v6. This patch series is split from [1]. The other series enables SELinux support for userfaultfd file descriptors so that its creation and movement can be controlled. It has been demonstrated on various occasions that suspending kernel code execution for an arbitrary amount of time at any access to userspace memory (copy_from_user()/copy_to_user()/...) can be exploited to change the intended behavior of the kernel. For instance, handling page faults in kernel-mode using userfaultfd has been exploited in [2, 3]. Likewise, FUSE, which is similar to userfaultfd in this respect, has been exploited in [4, 5] for similar outcome. This small patch series adds a new flag to userfaultfd(2) that allows callers to give up the ability to handle kernel-mode faults with the resulting UFFD file object. It then adds a 'user-mode only' option to the unprivileged_userfaultfd sysctl knob to require unprivileged callers to use this new flag. The purpose of this new interface is to decrease the chance of an unprivileged userfaultfd user taking advantage of userfaultfd to enhance security vulnerabilities by lengthening the race window in kernel code. [1] https://lore.kernel.org/lkml/20200211225547.235083-1-dancol@google.com/ [2] https://duasynt.com/blog/linux-kernel-heap-spray [3] https://duasynt.com/blog/cve-2016-6187-heap-off-by-one-exploit [4] https://googleprojectzero.blogspot.com/2016/06/exploiting-recursion-in-linux-kernel_20.html [5] https://bugs.chromium.org/p/project-zero/issues/detail?id=808 This patch (of 2): userfaultfd handles page faults from both user and kernel code. Add a new UFFD_USER_MODE_ONLY flag for userfaultfd(2) that makes the resulting userfaultfd object refuse to handle faults from kernel mode, treating these faults as if SIGBUS were always raised, causing the kernel code to fail with EFAULT. A future patch adds a knob allowing administrators to give some processes the ability to create userfaultfd file objects only if they pass UFFD_USER_MODE_ONLY, reducing the likelihood that these processes will exploit userfaultfd's ability to delay kernel page faults to open timing windows for future exploits. Link: https://lkml.kernel.org/r/20201120030411.2690816-1-lokeshgidra@google.com Link: https://lkml.kernel.org/r/20201120030411.2690816-2-lokeshgidra@google.com Signed-off-by: Daniel Colascione <dancol@google.com> Signed-off-by: Lokesh Gidra <lokeshgidra@google.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: <calin@google.com> Cc: Daniel Colascione <dancol@dancol.org> Cc: Eric Biggers <ebiggers@kernel.org> Cc: Iurii Zaikin <yzaikin@google.com> Cc: Jeff Vander Stoep <jeffv@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: "Joel Fernandes (Google)" <joel@joelfernandes.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Kees Cook <keescook@chromium.org> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Mauro Carvalho Chehab <mchehab+huawei@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Nitin Gupta <nigupta@nvidia.com> Cc: Peter Xu <peterx@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Shaohua Li <shli@fb.com> Cc: Stephen Smalley <stephen.smalley.work@gmail.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jann Horn
|
4d45e75a99 |
mm: remove the now-unnecessary mmget_still_valid() hack
The preceding patches have ensured that core dumping properly takes the mmap_lock. Thanks to that, we can now remove mmget_still_valid() and all its users. Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: "Eric W . Biederman" <ebiederm@xmission.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Hugh Dickins <hughd@google.com> Link: http://lkml.kernel.org/r/20200827114932.3572699-8-jannh@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
97d052ea3f |
A set of locking fixes and updates:
- Untangle the header spaghetti which causes build failures in various situations caused by the lockdep additions to seqcount to validate that the write side critical sections are non-preemptible. - The seqcount associated lock debug addons which were blocked by the above fallout. seqcount writers contrary to seqlock writers must be externally serialized, which usually happens via locking - except for strict per CPU seqcounts. As the lock is not part of the seqcount, lockdep cannot validate that the lock is held. This new debug mechanism adds the concept of associated locks. sequence count has now lock type variants and corresponding initializers which take a pointer to the associated lock used for writer serialization. If lockdep is enabled the pointer is stored and write_seqcount_begin() has a lockdep assertion to validate that the lock is held. Aside of the type and the initializer no other code changes are required at the seqcount usage sites. The rest of the seqcount API is unchanged and determines the type at compile time with the help of _Generic which is possible now that the minimal GCC version has been moved up. Adding this lockdep coverage unearthed a handful of seqcount bugs which have been addressed already independent of this. While generaly useful this comes with a Trojan Horse twist: On RT kernels the write side critical section can become preemtible if the writers are serialized by an associated lock, which leads to the well known reader preempts writer livelock. RT prevents this by storing the associated lock pointer independent of lockdep in the seqcount and changing the reader side to block on the lock when a reader detects that a writer is in the write side critical section. - Conversion of seqcount usage sites to associated types and initializers. -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl8xmPYTHHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYoTuQEACyzQCjU8PgehPp9oMqWzaX2fcVyuZO QU2yw6gmz2oTz3ZHUNwdW8UnzGh2OWosK3kDruoD9FtSS51lER1/ISfSPCGfyqxC KTjOcB1Kvxwq/3LcCx7Zi3ZxWApat74qs3EhYhKtEiQ2Y9xv9rLq8VV1UWAwyxq0 eHpjlIJ6b6rbt+ARslaB7drnccOsdK+W/roNj4kfyt+gezjBfojGRdMGQNMFcpnv shuTC+vYurAVIiVA/0IuizgHfwZiXOtVpjVoEWaxg6bBH6HNuYMYzdSa/YrlDkZs n/aBI/Xkvx+Eacu8b1Zwmbzs5EnikUK/2dMqbzXKUZK61eV4hX5c2xrnr1yGWKTs F/juh69Squ7X6VZyKVgJ9RIccVueqwR2EprXWgH3+RMice5kjnXH4zURp0GHALxa DFPfB6fawcH3Ps87kcRFvjgm6FBo0hJ1AxmsW1dY4ACFB9azFa2euW+AARDzHOy2 VRsUdhL9CGwtPjXcZ/9Rhej6fZLGBXKr8uq5QiMuvttp4b6+j9FEfBgD4S6h8csl AT2c2I9LcbWqyUM9P4S7zY/YgOZw88vHRuDH7tEBdIeoiHfrbSBU7EQ9jlAKq/59 f+Htu2Io281c005g7DEeuCYvpzSYnJnAitj5Lmp/kzk2Wn3utY1uIAVszqwf95Ul 81ppn2KlvzUK8g== =7Gj+ -----END PGP SIGNATURE----- Merge tag 'locking-urgent-2020-08-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull locking updates from Thomas Gleixner: "A set of locking fixes and updates: - Untangle the header spaghetti which causes build failures in various situations caused by the lockdep additions to seqcount to validate that the write side critical sections are non-preemptible. - The seqcount associated lock debug addons which were blocked by the above fallout. seqcount writers contrary to seqlock writers must be externally serialized, which usually happens via locking - except for strict per CPU seqcounts. As the lock is not part of the seqcount, lockdep cannot validate that the lock is held. This new debug mechanism adds the concept of associated locks. sequence count has now lock type variants and corresponding initializers which take a pointer to the associated lock used for writer serialization. If lockdep is enabled the pointer is stored and write_seqcount_begin() has a lockdep assertion to validate that the lock is held. Aside of the type and the initializer no other code changes are required at the seqcount usage sites. The rest of the seqcount API is unchanged and determines the type at compile time with the help of _Generic which is possible now that the minimal GCC version has been moved up. Adding this lockdep coverage unearthed a handful of seqcount bugs which have been addressed already independent of this. While generally useful this comes with a Trojan Horse twist: On RT kernels the write side critical section can become preemtible if the writers are serialized by an associated lock, which leads to the well known reader preempts writer livelock. RT prevents this by storing the associated lock pointer independent of lockdep in the seqcount and changing the reader side to block on the lock when a reader detects that a writer is in the write side critical section. - Conversion of seqcount usage sites to associated types and initializers" * tag 'locking-urgent-2020-08-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (25 commits) locking/seqlock, headers: Untangle the spaghetti monster locking, arch/ia64: Reduce <asm/smp.h> header dependencies by moving XTP bits into the new <asm/xtp.h> header x86/headers: Remove APIC headers from <asm/smp.h> seqcount: More consistent seqprop names seqcount: Compress SEQCNT_LOCKNAME_ZERO() seqlock: Fold seqcount_LOCKNAME_init() definition seqlock: Fold seqcount_LOCKNAME_t definition seqlock: s/__SEQ_LOCKDEP/__SEQ_LOCK/g hrtimer: Use sequence counter with associated raw spinlock kvm/eventfd: Use sequence counter with associated spinlock userfaultfd: Use sequence counter with associated spinlock NFSv4: Use sequence counter with associated spinlock iocost: Use sequence counter with associated spinlock raid5: Use sequence counter with associated spinlock vfs: Use sequence counter with associated spinlock timekeeping: Use sequence counter with associated raw spinlock xfrm: policy: Use sequence counters with associated lock netfilter: nft_set_rbtree: Use sequence counter with associated rwlock netfilter: conntrack: Use sequence counter with associated spinlock sched: tasks: Use sequence counter with associated spinlock ... |
||
Linus Torvalds
|
f9bf352224 |
userfaultfd: simplify fault handling
Instead of waiting in a loop for the userfaultfd condition to become true, just wait once and return VM_FAULT_RETRY. We've already dropped the mmap lock, we know we can't really successfully handle the fault at this point and the caller will have to retry anyway. So there's no point in making the wait any more complicated than it needs to be - just schedule away. And once you don't have that complexity with explicit looping, you can also just lose all the 'userfaultfd_signal_pending()' complexity, because once we've set the correct process sleeping state, and don't loop, the act of scheduling itself will be checking if there are any pending signals before going to sleep. We can also drop the VM_FAULT_MAJOR games, since we'll be treating all retried faults as major soon anyway (series to regularize and share more of fault handling across architectures in a separate series by Peter Xu, and in the meantime we won't worry about the possible minor - I'll be here all week, try the veal - accounting difference). Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ahmed S. Darwish
|
2ca97ac8bd |
userfaultfd: Use sequence counter with associated spinlock
A sequence counter write side critical section must be protected by some form of locking to serialize writers. A plain seqcount_t does not contain the information of which lock must be held when entering a write side critical section. Use the new seqcount_spinlock_t data type, which allows to associate a spinlock with the sequence counter. This enables lockdep to verify that the spinlock used for writer serialization is held when the write side critical section is entered. If lockdep is disabled this lock association is compiled out and has neither storage size nor runtime overhead. Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200720155530.1173732-23-a.darwish@linutronix.de |
||
Michel Lespinasse
|
c1e8d7c6a7 |
mmap locking API: convert mmap_sem comments
Convert comments that reference mmap_sem to reference mmap_lock instead. [akpm@linux-foundation.org: fix up linux-next leftovers] [akpm@linux-foundation.org: s/lockaphore/lock/, per Vlastimil] [akpm@linux-foundation.org: more linux-next fixups, per Michel] Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Laurent Dufour <ldufour@linux.ibm.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-13-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michel Lespinasse
|
3e4e28c5a8 |
mmap locking API: convert mmap_sem API comments
Convert comments that reference old mmap_sem APIs to reference corresponding new mmap locking APIs instead. Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Davidlohr Bueso <dbueso@suse.de> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Laurent Dufour <ldufour@linux.ibm.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-12-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michel Lespinasse
|
42fc541404 |
mmap locking API: add mmap_assert_locked() and mmap_assert_write_locked()
Add new APIs to assert that mmap_sem is held. Using this instead of rwsem_is_locked and lockdep_assert_held[_write] makes the assertions more tolerant of future changes to the lock type. Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Laurent Dufour <ldufour@linux.ibm.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-10-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michel Lespinasse
|
d8ed45c5dc |
mmap locking API: use coccinelle to convert mmap_sem rwsem call sites
This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Peter Xu
|
14819305e0 |
userfaultfd: wp: declare _UFFDIO_WRITEPROTECT conditionally
Only declare _UFFDIO_WRITEPROTECT if the user specified UFFDIO_REGISTER_MODE_WP and if all the checks passed. Then when the user registers regions with shmem/hugetlbfs we won't expose the new ioctl to them. Even with complete anonymous memory range, we'll only expose the new WP ioctl bit if the register mode has MODE_WP. Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: Brian Geffon <bgeffon@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Pavel Emelyanov <xemul@openvz.org> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@fb.com> Link: http://lkml.kernel.org/r/20200220163112.11409-18-peterx@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Peter Xu
|
23080e2783 |
userfaultfd: wp: don't wake up when doing write protect
It does not make sense to try to wake up any waiting thread when we're write-protecting a memory region. Only wake up when resolving a write protected page fault. Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: Brian Geffon <bgeffon@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Pavel Emelyanov <xemul@openvz.org> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@fb.com> Link: http://lkml.kernel.org/r/20200220163112.11409-16-peterx@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrea Arcangeli
|
63b2d4174c |
userfaultfd: wp: add the writeprotect API to userfaultfd ioctl
Introduce the new uffd-wp APIs for userspace. Firstly, we'll allow to do UFFDIO_REGISTER with write protection tracking using the new UFFDIO_REGISTER_MODE_WP flag. Note that this flag can co-exist with the existing UFFDIO_REGISTER_MODE_MISSING, in which case the userspace program can not only resolve missing page faults, and at the same time tracking page data changes along the way. Secondly, we introduced the new UFFDIO_WRITEPROTECT API to do page level write protection tracking. Note that we will need to register the memory region with UFFDIO_REGISTER_MODE_WP before that. [peterx@redhat.com: write up the commit message] [peterx@redhat.com: remove useless block, write commit message, check against VM_MAYWRITE rather than VM_WRITE when register] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Jerome Glisse <jglisse@redhat.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: Brian Geffon <bgeffon@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@fb.com> Link: http://lkml.kernel.org/r/20200220163112.11409-14-peterx@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrea Arcangeli
|
72981e0e7b |
userfaultfd: wp: add UFFDIO_COPY_MODE_WP
This allows UFFDIO_COPY to map pages write-protected. [peterx@redhat.com: switch to VM_WARN_ON_ONCE in mfill_atomic_pte; add brackets around "dst_vma->vm_flags & VM_WRITE"; fix wordings in comments and commit messages] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Jerome Glisse <jglisse@redhat.com> Reviewed-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: Brian Geffon <bgeffon@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Pavel Emelyanov <xemul@openvz.org> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@fb.com> Link: http://lkml.kernel.org/r/20200220163112.11409-6-peterx@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Peter Xu
|
3e69ad081c |
mm/userfaultfd: honor FAULT_FLAG_KILLABLE in fault path
Userfaultfd fault path was by default killable even if the caller does not have FAULT_FLAG_KILLABLE. That makes sense before in that when with gup we don't have FAULT_FLAG_KILLABLE properly set before. Now after previous patch we've got FAULT_FLAG_KILLABLE applied even for gup code so it should also make sense to let userfaultfd to honor the FAULT_FLAG_KILLABLE. Because we're unconditionally setting FAULT_FLAG_KILLABLE in gup code right now, this patch should have no functional change. It also cleaned the code a little bit by introducing some helpers. Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Brian Geffon <bgeffon@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Matthew Wilcox <willy@infradead.org> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Link: http://lkml.kernel.org/r/20200220160300.9941-1-peterx@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |