Commit Graph

1216510 Commits

Author SHA1 Message Date
Boris Burkov
182940f4f4 btrfs: qgroup: add new quota mode for simple quotas
Add a new quota mode called "simple quotas". It can be enabled by the
existing quota enable ioctl via a new command, and sets an incompat
bit, as the implementation of simple quotas will make backwards
incompatible changes to the disk format of the extent tree.

Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:10 +02:00
Boris Burkov
6b0cd63bc7 btrfs: qgroup: introduce quota mode
In preparation for introducing simple quotas, change from a binary
setting for quotas to an enum based mode. Initially, the possible modes
are disabled/full. Full quotas is normal btrfs qgroups.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:10 +02:00
David Sterba
078b8b90b8 btrfs: merge ordered work callbacks in btrfs_work into one
There are two callbacks defined in btrfs_work but only two actually make
use of them, otherwise there are NULLs. We can get rid of the freeing
callback making it a special case of the normal work. This reduces the
size of btrfs_work by 8 bytes, final layout:

struct btrfs_work {
        btrfs_func_t               func;                 /*     0     8 */
        btrfs_ordered_func_t       ordered_func;         /*     8     8 */
        struct work_struct         normal_work;          /*    16    32 */
        struct list_head           ordered_list;         /*    48    16 */
        /* --- cacheline 1 boundary (64 bytes) --- */
        struct btrfs_workqueue *   wq;                   /*    64     8 */
        long unsigned int          flags;                /*    72     8 */

        /* size: 80, cachelines: 2, members: 6 */
        /* last cacheline: 16 bytes */
};

This in turn reduces size of other structures (on a release config):

- async_chunk			 160 ->  152
- async_submit_bio		 152 ->  144
- btrfs_async_delayed_work	 104 ->   96
- btrfs_caching_control		 176 ->  168
- btrfs_delalloc_work		 144 ->  136
- btrfs_fs_info			3608 -> 3600
- btrfs_ordered_extent		 440 ->  424
- btrfs_writepage_fixup		 104 ->   96

Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:10 +02:00
Johannes Thumshirn
e9b9b911e0 btrfs: add raid stripe tree to features enabled with debug config
Until the raid stripe tree code is well enough tested and feature
complete, "hide" it behind CONFIG_BTRFS_DEBUG so only people who
want to use it are actually using it.

The scrub support may still fail some tests (btrfs/060 and up) and will
be fixed, RAID5/6 is not supported.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:10 +02:00
Johannes Thumshirn
e0b4077fcc btrfs: tree-checker: add support for raid stripe tree
Add a tree checker support for RAID stripe tree items, verify:

- alignment
- presence of the incompat bit
- supported encoding

Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:10 +02:00
Johannes Thumshirn
b5e2c2ff67 btrfs: tracepoints: add events for raid stripe tree
Add trace events for raid-stripe-tree operations.

Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:10 +02:00
Johannes Thumshirn
9f9918a801 btrfs: sysfs: announce presence of raid-stripe-tree
If a filesystem with a raid-stripe-tree is mounted, show the RST feature
in sysfs, currently still under the CONFIG_BTRFS_DEBUG option.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:09 +02:00
Johannes Thumshirn
edde81f1ab btrfs: add raid stripe tree pretty printer
Decode raid-stripe-tree entries on btrfs_print_tree().

Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:09 +02:00
Johannes Thumshirn
568220fa96 btrfs: zoned: support RAID0/1/10 on top of raid stripe tree
When we have a raid-stripe-tree, we can do RAID0/1/10 on zoned devices
for data block groups. For metadata block groups, we don't actually
need anything special, as all metadata I/O is protected by the
btrfs_zoned_meta_io_lock() already.

Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:09 +02:00
Johannes Thumshirn
9acaa64187 btrfs: scrub: implement raid stripe tree support
A filesystem that uses the raid stripe tree for logical to physical
address translation can't use the regular scrub path, that reads all
stripes and then checks if a sector is unused afterwards.

When using the raid stripe tree, this will result in lookup errors, as
the stripe tree doesn't know the requested logical addresses.

In case we're scrubbing a filesystem which uses the RAID stripe tree for
multi-device logical to physical address translation, perform an extra
block mapping step to get the real on-disk stripe length from the stripe
tree when scrubbing the sectors.

This prevents a double completion of the btrfs_bio caused by splitting the
underlying bio and ultimately a use-after-free.

Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:09 +02:00
Johannes Thumshirn
10e27980f2 btrfs: lookup physical address from stripe extent
Lookup the physical address from the raid stripe tree when a read on an
RAID volume formatted with the raid stripe tree was attempted.

Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:09 +02:00
Johannes Thumshirn
ca41504efd btrfs: delete stripe extent on extent deletion
As each stripe extent is tied to an extent item, delete the stripe extent
once the corresponding extent item is deleted.

Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:09 +02:00
Johannes Thumshirn
02c372e1f0 btrfs: add support for inserting raid stripe extents
Add support for inserting stripe extents into the raid stripe tree on
completion of every write that needs an extra logical-to-physical
translation when using RAID.

Inserting the stripe extents happens after the data I/O has completed,
this is done to

  a) support zone-append and
  b) rule out the possibility of a RAID-write-hole.

Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:09 +02:00
Johannes Thumshirn
515020900d btrfs: read raid stripe tree from disk
If we find the raid-stripe-tree on mount, read it from disk. This is
a backward incompatible feature. The rescue=ignorebadroots mount option
will skip this tree.

Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:09 +02:00
Johannes Thumshirn
ee1293308e btrfs: add raid stripe tree definitions
Add definitions for the raid stripe tree. This tree will hold information
about the on-disk layout of the stripes in a RAID set.

Each stripe extent has a 1:1 relationship with an on-disk extent item and
is doing the logical to per-drive physical address translation for the
extent item in question.

Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:09 +02:00
Qu Wenruo
6d3a61945b btrfs: warn on tree blocks which are not nodesize aligned
A long time ago, we had some metadata chunks which started at sector
boundary but not aligned to nodesize boundary.

This led to some older filesystems which can have tree blocks only
aligned to sectorsize, but not nodesize.

Later 'btrfs check' gained the ability to detect and warn about such tree
blocks, and kernel fixed the chunk allocation behavior, nowadays those
tree blocks should be pretty rare.

But in the future, if we want to migrate metadata to folio, we cannot
have such tree blocks, as filemap_add_folio() requires the page index to
be aligned with the folio number of pages.  Such unaligned tree blocks
can lead to VM_BUG_ON().

So this patch adds extra warning for those unaligned tree blocks, as a
preparation for the future folio migration.

Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:09 +02:00
Josef Bacik
11aeb97b45 btrfs: don't arbitrarily slow down delalloc if we're committing
We have a random schedule_timeout() if the current transaction is
committing, which seems to be a holdover from the original delalloc
reservation code.

Remove this, we have the proper flushing stuff, we shouldn't be hoping
for random timing things to make everything work.  This just induces
latency for no reason.

CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:08 +02:00
Filipe Manana
c967c19ea6 btrfs: remove useless comment from btrfs_pin_extent_for_log_replay()
The comment on top of btrfs_pin_extent_for_log_replay() mentioning that
the function must be called within a transaction is pointless as of
commit 9fce570454 ("btrfs: Make btrfs_pin_extent_for_log_replay take
transaction handle"), since the function now takes a transaction handle
as its first argument. So remove the comment because it's completely
useless now.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:08 +02:00
Filipe Manana
df423ee23b btrfs: remove stale comment from btrfs_free_extent()
A comment at btrfs_free_extent() mentions the call to btrfs_pin_extent()
unlocks the pinned mutex, however that mutex is long gone, it was removed
in 2009 by commit 04018de5d4 ("Btrfs: kill the pinned_mutex"). So just
delete the comment.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:08 +02:00
Christoph Hellwig
87463f7e02 btrfs: zoned: factor out DUP bg handling from btrfs_load_block_group_zone_info
Split the code handling a type DUP block group from
btrfs_load_block_group_zone_info to make the code more readable.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:08 +02:00
Christoph Hellwig
9e0e3e74dc btrfs: zoned: factor out single bg handling from btrfs_load_block_group_zone_info
Split the code handling a type single block group from
btrfs_load_block_group_zone_info to make the code more readable.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:08 +02:00
Christoph Hellwig
09a46725cc btrfs: zoned: factor out per-zone logic from btrfs_load_block_group_zone_info
Split out a helper for the body of the per-zone loop in
btrfs_load_block_group_zone_info to make the function easier to read and
modify.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:08 +02:00
Christoph Hellwig
15c12fcc50 btrfs: zoned: introduce a zone_info struct in btrfs_load_block_group_zone_info
Add a new zone_info structure to hold per-zone information in
btrfs_load_block_group_zone_info and prepare for breaking out helpers
from it.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:08 +02:00
Filipe Manana
4d20c1def9 btrfs: remove pointless loop from btrfs_update_block_group()
When an extent is allocated or freed, we call btrfs_update_block_group()
to update its block group and space info. An extent always belongs to a
single block group, it can never span multiple block groups, so the loop
we have at btrfs_update_block_group() is pointless, as it always has a
single iteration. The loop was added in the very early days, 2007, when
the block group code was added in commit 9078a3e1e4 ("Btrfs: start of
block group code"), but even back then it seemed pointless.

So remove the loop and assert the block group containing the start offset
of the extent also contains the whole extent.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:07 +02:00
Filipe Manana
4ebe8d4788 btrfs: mark transaction id check as unlikely at btrfs_mark_buffer_dirty()
At btrfs_mark_buffer_dirty(), having a transaction id mismatch is never
expected to happen and it usually means there's a bug or some memory
corruption due to a bitflip for example. So mark the condition as unlikely
to optimize code generation as well as to make it obvious for human
readers that it is a very unexpected condition.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:07 +02:00
Filipe Manana
20cbe46035 btrfs: use btrfs_crit at btrfs_mark_buffer_dirty()
There's no need to use WARN() at btrfs_mark_buffer_dirty() to print an
error message, as we have the fs_info pointer we can use btrfs_crit()
which prints device information and makes the message have a more uniform
format. As we are already aborting the transaction we already have a stack
trace printed as well. So replace the use of WARN() with btrfs_crit().

Also slightly reword the message to use 'logical' instead of 'block' as
it's what is used in other error/warning messages.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:07 +02:00
Filipe Manana
50564b651d btrfs: abort transaction on generation mismatch when marking eb as dirty
When marking an extent buffer as dirty, at btrfs_mark_buffer_dirty(),
we check if its generation matches the running transaction and if not we
just print a warning. Such mismatch is an indicator that something really
went wrong and only printing a warning message (and stack trace) is not
enough to prevent a corruption. Allowing a transaction to commit with such
an extent buffer will trigger an error if we ever try to read it from disk
due to a generation mismatch with its parent generation.

So abort the current transaction with -EUCLEAN if we notice a generation
mismatch. For this we need to pass a transaction handle to
btrfs_mark_buffer_dirty() which is always available except in test code,
in which case we can pass NULL since it operates on dummy extent buffers
and all test roots have a single node/leaf (root node at level 0).

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:07 +02:00
Anand Jain
bc27d6f0aa btrfs: scan but don't register device on single device filesystem
After the commit 5f58d783fd ("btrfs: free device in btrfs_close_devices
for a single device filesystem") we unregister the device from the kernel
memory upon unmounting for a single device.

So, device registration that was performed before mounting if any is no
longer in the kernel memory.

However, in fact, note that device registration is unnecessary for a
single-device btrfs filesystem unless it's a seed device.

So for commands like 'btrfs device scan' or 'btrfs device ready' with a
non-seed single-device btrfs filesystem, they can return success just
after superblock verification and without the actual device scan.  When
'device scan --forget' is called on such device no error is returned.

The seed device must remain in the kernel memory to allow the sprout
device to mount without the need to specify the seed device explicitly.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:07 +02:00
David Sterba
ed164802e8 btrfs: rename errno identifiers to error
We sync the kernel files to userspace and the 'errno' symbol is defined
by standard library, which does not matter in kernel but the parameters
or local variables could clash. Rename them all.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:07 +02:00
Filipe Manana
28270e25c6 btrfs: always reserve space for delayed refs when starting transaction
When starting a transaction (or joining an existing one with
btrfs_start_transaction()), we reserve space for the number of items we
want to insert in a btree, but we don't do it for the delayed refs we
will generate while using the transaction to modify (COW) extent buffers
in a btree or allocate new extent buffers. Basically how it works:

1) When we start a transaction we reserve space for the number of items
   the caller wants to be inserted/modified/deleted in a btree. This space
   goes to the transaction block reserve;

2) If the delayed refs block reserve is not full, its size is greater
   than the amount of its reserved space, and the flush method is
   BTRFS_RESERVE_FLUSH_ALL, then we attempt to reserve more space for
   it corresponding to the number of items the caller wants to
   insert/modify/delete in a btree;

3) The size of the delayed refs block reserve is increased when a task
   creates delayed refs after COWing an extent buffer, allocating a new
   one or deleting (freeing) an extent buffer. This happens after the
   the task started or joined a transaction, whenever it calls
   btrfs_update_delayed_refs_rsv();

4) The delayed refs block reserve is then refilled by anyone calling
   btrfs_delayed_refs_rsv_refill(), either during unlink/truncate
   operations or when someone else calls btrfs_start_transaction() with
   a 0 number of items and flush method BTRFS_RESERVE_FLUSH_ALL;

5) As a task COWs or allocates extent buffers, it consumes space from the
   transaction block reserve. When the task releases its transaction
   handle (btrfs_end_transaction()) or it attempts to commit the
   transaction, it releases any remaining space in the transaction block
   reserve that it did not use, as not all space may have been used (due
   to pessimistic space calculation) by calling btrfs_block_rsv_release()
   which will try to add that unused space to the delayed refs block
   reserve (if its current size is greater than its reserved space).
   That transferred space may not be enough to completely fulfill the
   delayed refs block reserve.

   Plus we have some tasks that will attempt do modify as many leaves
   as they can before getting -ENOSPC (and then reserving more space and
   retrying), such as hole punching and extent cloning which call
   btrfs_replace_file_extents(). Such tasks can generate therefore a
   high number of delayed refs, for both metadata and data (we can't
   know in advance how many file extent items we will find in a range
   and therefore how many delayed refs for dropping references on data
   extents we will generate);

6) If a transaction starts its commit before the delayed refs block
   reserve is refilled, for example by the transaction kthread or by
   someone who called btrfs_join_transaction() before starting the
   commit, then when running delayed references if we don't have enough
   reserved space in the delayed refs block reserve, we will consume
   space from the global block reserve.

Now this doesn't make a lot of sense because:

1) We should reserve space for delayed references when starting the
   transaction, since we have no guarantees the delayed refs block
   reserve will be refilled;

2) If no refill happens then we will consume from the global block reserve
   when running delayed refs during the transaction commit;

3) If we have a bunch of tasks calling btrfs_start_transaction() with a
   number of items greater than zero and at the time the delayed refs
   reserve is full, then we don't reserve any space at
   btrfs_start_transaction() for the delayed refs that will be generated
   by a task, and we can therefore end up using a lot of space from the
   global reserve when running the delayed refs during a transaction
   commit;

4) There are also other operations that result in bumping the size of the
   delayed refs reserve, such as creating and deleting block groups, as
   well as the need to update a block group item because we allocated or
   freed an extent from the respective block group;

5) If we have a significant gap between the delayed refs reserve's size
   and its reserved space, two very bad things may happen:

   1) The reserved space of the global reserve may not be enough and we
      fail the transaction commit with -ENOSPC when running delayed refs;

   2) If the available space in the global reserve is enough it may result
      in nearly exhausting it. If the fs has no more unallocated device
      space for allocating a new block group and all the available space
      in existing metadata block groups is not far from the global
      reserve's size before we started the transaction commit, we may end
      up in a situation where after the transaction commit we have too
      little available metadata space, and any future transaction commit
      will fail with -ENOSPC, because although we were able to reserve
      space to start the transaction, we were not able to commit it, as
      running delayed refs generates some more delayed refs (to update the
      extent tree for example) - this includes not even being able to
      commit a transaction that was started with the goal of unlinking a
      file, removing an empty data block group or doing reclaim/balance,
      so there's no way to release metadata space.

      In the worst case the next time we mount the filesystem we may
      also fail with -ENOSPC due to failure to commit a transaction to
      cleanup orphan inodes. This later case was reported and hit by
      someone running a SLE (SUSE Linux Enterprise) distribution for
      example - where the fs had no more unallocated space that could be
      used to allocate a new metadata block group, and the available
      metadata space was about 1.5M, not enough to commit a transaction
      to cleanup an orphan inode (or do relocation of data block groups
      that were far from being full).

So improve on this situation by always reserving space for delayed refs
when calling start_transaction(), and if the flush method is
BTRFS_RESERVE_FLUSH_ALL, also try to refill the delayed refs block
reserve if it's not full. The space reserved for the delayed refs is added
to a local block reserve that is part of the transaction handle, and when
a task updates the delayed refs block reserve size, after creating a
delayed ref, the space is transferred from that local reserve to the
global delayed refs reserve (fs_info->delayed_refs_rsv). In case the
local reserve does not have enough space, which may happen for tasks
that generate a variable and potentially large number of delayed refs
(such as the hole punching and extent cloning cases mentioned before),
we transfer any available space and then rely on the current behaviour
of hoping some other task refills the delayed refs reserve or fallback
to the global block reserve.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:06 +02:00
Filipe Manana
adb86dbe42 btrfs: stop doing excessive space reservation for csum deletion
Currently when reserving space for deleting the csum items for a data
extent, when adding or updating a delayed ref head, we determine how
many leaves of csum items we can have and then pass that number to the
helper btrfs_calc_delayed_ref_bytes(). This helper is used for calculating
space for all tree modifications we need when running delayed references,
however the amount of space it computes is excessive for deleting csum
items because:

1) It uses btrfs_calc_insert_metadata_size() which is excessive because
   we only need to delete csum items from the csum tree, we don't need
   to insert any items, so btrfs_calc_metadata_size() is all we need (as
   it computes space needed to delete an item);

2) If the free space tree is enabled, it doubles the amount of space,
   which is pointless for csum deletion since we don't need to touch the
   free space tree or any other tree other than the csum tree.

So improve on this by tracking how many csum deletions we have and using
a new helper to calculate space for csum deletions (just a wrapper around
btrfs_calc_metadata_size() with a comment). This reduces the amount of
space we need to reserve for csum deletions by a factor of 4, and it helps
reduce the number of times we have to block space reservations and have
the reclaim task enter the space flushing algorithm (flush delayed items,
flush delayed refs, etc) in order to satisfy tickets.

For example this results in a total time decrease when unlinking (or
truncating) files with many extents, as we end up having to block on space
metadata reservations less often. Example test:

  $ cat test.sh
  #!/bin/bash

  DEV=/dev/nullb0
  MNT=/mnt/test

  umount $DEV &> /dev/null
  mkfs.btrfs -f $DEV
  # Use compression to quickly create files with a lot of extents
  # (each with a size of 128K).
  mount -o compress=lzo $DEV $MNT

  # 100G gives at least 983040 extents with a size of 128K.
  xfs_io -f -c "pwrite -S 0xab -b 1M 0 120G" $MNT/foobar

  # Flush all delalloc and clear all metadata from memory.
  umount $MNT
  mount -o compress=lzo $DEV $MNT

  start=$(date +%s%N)
  rm -f $MNT/foobar
  end=$(date +%s%N)
  dur=$(( (end - start) / 1000000 ))
  echo "rm took $dur milliseconds"

  umount $MNT

Before this change rm took: 7504 milliseconds
After this change rm took:  6574 milliseconds  (-12.4%)

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:06 +02:00
Filipe Manana
b6ea3e6ab5 btrfs: remove pointless initialization at btrfs_delayed_refs_rsv_release()
There's no point in initializing to 0 the local variable 'released' as
we don't use it before the next assignment to it. So remove the
initialization. This may help avoid some warnings with clang tools such
as the one reported/fixed by commit 966de47ff0 ("btrfs: remove redundant
initialization of variables in log_new_ancestors").

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:06 +02:00
Filipe Manana
3ee56a58ad btrfs: reserve space for delayed refs on a per ref basis
Currently when reserving space for delayed refs we do it on a per ref head
basis. This is generally enough because most back refs for an extent end
up being inlined in the extent item - with the default leaf size of 16K we
can have at most 33 inline back refs (this is calculated by the macro
BTRFS_MAX_EXTENT_ITEM_SIZE()). The amount of bytes reserved for each ref
head is given by btrfs_calc_delayed_ref_bytes(), which basically
corresponds to a single path for insertion into the extent tree plus
another path for insertion into the free space tree if it's enabled.

However if we have reached the limit of inline refs or we have a mix of
inline and non-inline refs, then we will need to insert a non-inline ref
and update the existing extent item to update the total number of
references for the extent. This implies we need reserved space for two
insertion paths in the extent tree, but we only reserved for one path.
The extent item and the non-inline ref item may be located in different
leaves, or even if they are located in the same leaf, after updating the
extent item and before inserting the non-inline ref item, the extent
buffers in the btree path may have been written (due to memory pressure
for e.g.), in which case we need to COW the entire path again. In this
case since we have not reserved enough space for the delayed refs block
reserve, we will use the global block reserve.

If we are in a situation where the fs has no more unallocated space enough
to allocate a new metadata block group and available space in the existing
metadata block groups is close to the maximum size of the global block
reserve (512M), we may end up consuming too much of the free metadata
space to the point where we can't commit any future transaction because it
will fail, with -ENOSPC, during its commit when trying to allocate an
extent for some COW operation (running delayed refs generated by running
delayed refs or COWing the root tree's root node at commit_cowonly_roots()
for example). Such dramatic scenario can happen if we have many delayed
refs that require the insertion of non-inline ref items, due to too many
reflinks or snapshots. We also have situations where we use the global
block reserve because we could not in advance know that we will need
space to update some trees (block group creation for example), so this
all adds up to increase the chances of exhausting the global block reserve
and making any future transaction commit to fail with -ENOSPC and turn
the fs into RO mode, or fail the mount operation in case the mount needs
to start and commit a transaction, such as when we have orphans to cleanup
for example - such case was reported and hit by someone running a SLE
(SUSE Linux Enterprise) distribution for example - where the fs had no
more unallocated space that could be used to allocate a new metadata block
group, and the available metadata space was about 1.5M, not enough to
commit a transaction to cleanup an orphan inode (or do relocation of data
block groups that were far from being full).

So reserve space for delayed refs by individual refs and not by ref heads,
as we may need to COW multiple extent tree paths due to non-inline ref
items.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:06 +02:00
Filipe Manana
8a526c44da btrfs: allow to run delayed refs by bytes to be released instead of count
When running delayed references, through btrfs_run_delayed_refs(), we can
specify how many to run, run all existing delayed references and keep
running delayed references while we can find any. This is controlled with
the value of the 'count' argument, where a value of 0 means to run all
delayed references that exist by the time btrfs_run_delayed_refs() is
called, (unsigned long)-1 means to keep running delayed references while
we are able find any, and any other value to run that exact number of
delayed references.

Typically a specific value other than 0 or -1 is used when flushing space
to try to release a certain amount of bytes for a ticket. In this case
we just simply calculate how many delayed reference heads correspond to a
specific amount of bytes, with calc_delayed_refs_nr(). However that only
takes into account the space reserved for the reference heads themselves,
and does not account for the space reserved for deleting checksums from
the csum tree (see add_delayed_ref_head() and update_existing_head_ref())
in case we are going to delete a data extent. This means we may end up
running more delayed references than necessary in case we process delayed
references for deleting a data extent.

So change the logic of btrfs_run_delayed_refs() to take a bytes argument
to specify how many bytes of delayed references to run/release, using the
special values of 0 to mean all existing delayed references and U64_MAX
(or (u64)-1) to keep running delayed references while we can find any.

This prevents running more delayed references than necessary, when we have
delayed references for deleting data extents, but also makes the upcoming
changes/patches simpler and it's preparatory work for them.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:06 +02:00
Filipe Manana
da8848ac6a btrfs: simplify check for extent item overrun at lookup_inline_extent_backref()
At lookup_inline_extent_backref() we can simplify the check for an overrun
of the extent item by making the while loop's condition to be "ptr < end"
and then check after the loop if an overrun happened ("ptr > end"). This
reduces indentation and makes the loop condition more clear. So move the
check out of the loop and change the loop condition accordingly, while
also adding the 'unlikely' tag to the check since it's not supposed to be
triggered.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:06 +02:00
Filipe Manana
eba444f1c0 btrfs: return -EUCLEAN if extent item is missing when searching inline backref
At lookup_inline_extent_backref() when trying to insert an inline backref,
if we don't find the extent item we log an error and then return -EIO.
This error code is confusing because there was actually no IO error, and
this means we have some corruption, either caused by a bug or something
like a memory bitflip for example. So change the error code from -EIO to
-EUCLEAN.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:06 +02:00
Filipe Manana
cc925b9646 btrfs: use a single variable for return value at lookup_inline_extent_backref()
At lookup_inline_extent_backref(), instead of using a 'ret' and an 'err'
variable for tracking the return value, use a single one ('ret'). This
simplifies the code, makes it comply with most of the existing code and
it's less prone for logic errors as time has proven over and over in the
btrfs code.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:06 +02:00
Filipe Manana
20fb05a6d1 btrfs: use a single variable for return value at run_delayed_extent_op()
Instead of using a 'ret' and an 'err' variable at run_delayed_extent_op()
for tracking the return value, use a single one ('ret'). This simplifies
the code, makes it comply with most of the existing code and it's less
prone for logic errors as time has proven over and over in the btrfs code.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:06 +02:00
Filipe Manana
e721043a98 btrfs: remove pointless 'ref_root' variable from run_delayed_data_ref()
The 'ref_root' variable, at run_delayed_data_ref(), is not really needed
as we can always use ref->root directly, plus its initialization to 0 is
completely pointless as we assign it ref->root before its first use.
So just drop that variable and use ref->root directly.

This may help avoid some warnings with clang tools such as the one
reported/fixed by commit 966de47ff0 ("btrfs: remove redundant
initialization of variables in log_new_ancestors").

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:06 +02:00
Filipe Manana
7cce0d690d btrfs: initialize key where it's used when running delayed data ref
At run_delayed_data_ref() we are always initializing a key but the key
is only needed and used if we are inserting a new extent. So move the
declaration and initialization of the key to 'if' branch where it's used.
Also rename the key from 'ins' to 'key', as it's a more clear name.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:06 +02:00
Filipe Manana
1df6b3c060 btrfs: remove refs_to_drop argument from __btrfs_free_extent()
Currently the 'refs_to_drop' argument of __btrfs_free_extent() always
matches the value of node->ref_mod, so remove the argument and use
node->ref_mod at __btrfs_free_extent().

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:05 +02:00
Filipe Manana
88b2d08879 btrfs: remove refs_to_add argument from __btrfs_inc_extent_ref()
Currently the 'refs_to_add' argument of __btrfs_inc_extent_ref() always
matches the value of node->ref_mod, so remove the argument and use
node->ref_mod at __btrfs_inc_extent_ref().

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:05 +02:00
Filipe Manana
abff279eb3 btrfs: remove the refcount warning/check at btrfs_put_delayed_ref()
At btrfs_put_delayed_ref(), it's pointless to have a WARN_ON() to check if
the refcount of the delayed ref is zero. Such check is already done by the
refcount_t module and refcount_dec_and_test(), which loudly complains if
we try to decrement a reference count that is currently 0.

The WARN_ON() dates back to the time when used a regular atomic_t type
for the reference counter, before we switched to the refcount_t type.
The main goal of the refcount_t type/module is precisely to catch such
types of bugs and loudly complain if they happen.

This also reduces a bit the module's text size.
Before this change:

   $ size fs/btrfs/btrfs.ko
      text	   data	    bss	    dec	    hex	filename
   1612483	 167145	  16864	1796492	 1b698c	fs/btrfs/btrfs.ko

After this change:

   $ size fs/btrfs/btrfs.ko
      text	   data	    bss	    dec	    hex	filename
   1612371	 167073	  16864	1796308	 1b68d4	fs/btrfs/btrfs.ko

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:05 +02:00
Filipe Manana
3cbb9f5160 btrfs: remove unnecessary logic when running new delayed references
When running delayed references, at btrfs_run_delayed_refs(), we have this
logic to run any new delayed references that might have been added just
after we ran all delayed references. This logic grabs the first delayed
reference, then locks it to wait for any contention on it before running
all new delayed references. This however is pointless and not necessary
because at __btrfs_run_delayed_refs() when we start running delayed
references, we pick the first reference with btrfs_obtain_ref_head() and
then we will lock it (with btrfs_delayed_ref_lock()).

So remove the duplicate and unnecessary logic at btrfs_run_delayed_refs().

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:05 +02:00
Filipe Manana
03551d651e btrfs: pass a space_info argument to btrfs_reserve_metadata_bytes()
We are passing a block reserve argument to btrfs_reserve_metadata_bytes()
which is not really used, all we need is to pass the space_info associated
to the block reserve, we don't change the block reserve at all.

Not only it's pointless to pass the block reserve, it's also confusing as
one might think that the reserved bytes will end up being added to the
passed block reserve, when that's not the case. The pattern for reserving
space and adding it to a block reserve is to first reserve space with
btrfs_reserve_metadata_bytes() and if that succeeds, then add the space to
a block reserve by calling btrfs_block_rsv_add_bytes().

Also the reverse of btrfs_reserve_metadata_bytes(), which is
btrfs_space_info_free_bytes_may_use(), takes a space_info argument and
not a block reserve, so one more reason to pass a space_info and not a
block reserve to btrfs_reserve_metadata_bytes().

So change btrfs_reserve_metadata_bytes() and its callers to pass a
space_info argument instead of a block reserve argument.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:05 +02:00
Qu Wenruo
9fb2acc2fe btrfs: remove the need_raid_map parameter from btrfs_map_block()
The parameter @need_raid_map is mostly a legacy from the old days where
we don't yet have a solid definition on the @mirror_num, and only
check-integrity was using that parameter, while all other call sites
just pass 1 for that parameter.

Now since we have removed check-integrity functionality, we can also
remove the @need_raid_map parameter.

This change will also remove the ability to read P/Q stripe directly
when passing 0 as @need_raid_map.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:05 +02:00
Qu Wenruo
732fab95ab btrfs: check-integrity: remove CONFIG_BTRFS_FS_CHECK_INTEGRITY option
Since all check-integrity entry points have been removed, let's also
remove the config and all related code relying on that.

And since we have removed the mount option for check-integrity, we also
need to re-number all the BTRFS_MOUNT_* enums.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:05 +02:00
Qu Wenruo
fb2a836da4 btrfs: check-integrity: remove btrfsic_unmount() function
The function btrfsic_mount() is part of the deprecated check-integrity
functionality.

Now let's remove the main entry point of check-integrity, and thankfully
most of the check-integrity code is self-contained inside
check-integrity.c, we can safely remove the function without huge
changes to btrfs code base.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:05 +02:00
Qu Wenruo
af32d3632e btrfs: check-integrity: remove btrfsic_mount() function
The function btrfsic_mount() is part of the deprecated check-integrity
functionality.

Now let's remove the main entry point of check-integrity, and thankfully
most of the check-integrity code is self-contained inside
check-integrity.c, we can safely remove the function without huge
changes to btrfs code base.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:05 +02:00
Qu Wenruo
51cf580c23 btrfs: check-integrity: remove btrfsic_check_bio() function
The function btrfsic_check_bio() is part of the deprecated
check-integrity functionality.

Now let's remove the main entry point of check-integrity, and thankfully
most of the check-integrity code is self-contained inside
check-integrity.c, we can safely remove the function without huge
changes to btrfs code base.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:05 +02:00