There's a non-trivial dependency between some commits we want to put in
next and the KVM prefetch work around that went into fixes. So merge
fixes into next.
Bring in the commit to rename find_linux_pte_or_hugepte() which touches
arch and KVM code, and might need to be merged with the kvmppc tree to
avoid conflicts.
Add newer helpers to make the function usage simpler. It is always
recommended to use find_current_mm_pte() for walking the page table.
If we cannot use find_current_mm_pte(), it should be documented why
the said usage of __find_linux_pte() is safe against a parallel THP
split.
For now we have KVM code using __find_linux_pte(). This is because kvm
code ends up calling __find_linux_pte() in real mode with MSR_EE=0 but
with PACA soft_enabled = 1. We may want to fix that later and make
sure we keep the MSR_EE and PACA soft_enabled in sync. When we do that
we can switch kvm to use find_linux_pte().
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This updates the definitions for the various DSISR bits to
match both some historical stuff and to match new bits on
POWER9.
In addition, we define some masks corresponding to the "bad"
faults on Book3S, and some masks corresponding to the bits
that match between DSISR and SRR1 for a DSI and an ISI.
This comes with a small code update to change the definition
of DSISR_PGDIRFAULT which becomes DSISR_PRTABLE_FAULT to
match architecture 3.0B
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
-----BEGIN PGP SIGNATURE-----
iQEcBAABAgAGBQJZapWhAAoJEHm+PkMAQRiGKb0IAJM6b7SbWaw69Og7+qiFB+zZ
xp29iXqbE9fPISC6a5BRQV1ONjeDM6opGixGHqGC8Hla6k2IYz25VDNoF8wd0MXN
cz/Ih20vd3C5afxXGe5cTT8lsPAlV0mWXxForlu6j8jPeL62FPfq6RhEkw7AcrYL
yfYy3k3qSdOrrvBdII0WAAUi46UfIs+we9BQgbsMbkHOiqV2K0MOrzKE84Xbgepq
RAy2xg6P4b4+hTx8xTrYc1MXwpnqjRc0oJ08gdmiwW3AOOU7LxYFn7zDkLPWi9Rr
g4x6r4YhBTGxT4wNvovLIiqd9QFs//dMCuPWYwEtTICG48umIqqq24beQ0mvCdg=
=08Ic
-----END PGP SIGNATURE-----
Merge tag 'v4.13-rc1' into fixes
The fixes branch is based off a random pre-rc1 commit, because we had
some fixes that needed to go in before rc1 was released.
However we now need to fix some code that went in after that point, but
before rc1, so merge rc1 to get that code into fixes so we can fix it!
There's a somewhat architectural issue with Radix MMU and KVM.
When coming out of a guest with AIL (Alternate Interrupt Location, ie,
MMU enabled), we start executing hypervisor code with the PID register
still containing whatever the guest has been using.
The problem is that the CPU can (and will) then start prefetching or
speculatively load from whatever host context has that same PID (if
any), thus bringing translations for that context into the TLB, which
Linux doesn't know about.
This can cause stale translations and subsequent crashes.
Fixing this in a way that is neither racy nor a huge performance
impact is difficult. We could just make the host invalidations always
use broadcast forms but that would hurt single threaded programs for
example.
We chose to fix it instead by partitioning the PID space between guest
and host. This is possible because today Linux only use 19 out of the
20 bits of PID space, so existing guests will work if we make the host
use the top half of the 20 bits space.
We additionally add support for a property to indicate to Linux the
size of the PID register which will be useful if we eventually have
processors with a larger PID space available.
There is still an issue with malicious guests purposefully setting the
PID register to a value in the hosts PID range. Hopefully future HW
can prevent that, but in the meantime, we handle it with a pair of
kludges:
- On the way out of a guest, before we clear the current VCPU in the
PACA, we check the PID and if it's outside of the permitted range
we flush the TLB for that PID.
- When context switching, if the mm is "new" on that CPU (the
corresponding bit was set for the first time in the mm cpumask), we
check if any sibling thread is in KVM (has a non-NULL VCPU pointer
in the PACA). If that is the case, we also flush the PID for that
CPU (core).
This second part is needed to handle the case where a process is
migrated (or starts a new pthread) on a sibling thread of the CPU
coming out of KVM, as there's a window where stale translations can
exist before we detect it and flush them out.
A future optimization could be added by keeping track of whether the
PID has ever been used and avoid doing that for completely fresh PIDs.
We could similarily mark PIDs that have been the subject of a global
invalidation as "fresh". But for now this will do.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[mpe: Rework the asm to build with CONFIG_PPC_RADIX_MMU=n, drop
unneeded include of kvm_book3s_asm.h]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
__GFP_REPEAT was designed to allow retry-but-eventually-fail semantic to
the page allocator. This has been true but only for allocations
requests larger than PAGE_ALLOC_COSTLY_ORDER. It has been always
ignored for smaller sizes. This is a bit unfortunate because there is
no way to express the same semantic for those requests and they are
considered too important to fail so they might end up looping in the
page allocator for ever, similarly to GFP_NOFAIL requests.
Now that the whole tree has been cleaned up and accidental or misled
usage of __GFP_REPEAT flag has been removed for !costly requests we can
give the original flag a better name and more importantly a more useful
semantic. Let's rename it to __GFP_RETRY_MAYFAIL which tells the user
that the allocator would try really hard but there is no promise of a
success. This will work independent of the order and overrides the
default allocator behavior. Page allocator users have several levels of
guarantee vs. cost options (take GFP_KERNEL as an example)
- GFP_KERNEL & ~__GFP_RECLAIM - optimistic allocation without _any_
attempt to free memory at all. The most light weight mode which even
doesn't kick the background reclaim. Should be used carefully because
it might deplete the memory and the next user might hit the more
aggressive reclaim
- GFP_KERNEL & ~__GFP_DIRECT_RECLAIM (or GFP_NOWAIT)- optimistic
allocation without any attempt to free memory from the current
context but can wake kswapd to reclaim memory if the zone is below
the low watermark. Can be used from either atomic contexts or when
the request is a performance optimization and there is another
fallback for a slow path.
- (GFP_KERNEL|__GFP_HIGH) & ~__GFP_DIRECT_RECLAIM (aka GFP_ATOMIC) -
non sleeping allocation with an expensive fallback so it can access
some portion of memory reserves. Usually used from interrupt/bh
context with an expensive slow path fallback.
- GFP_KERNEL - both background and direct reclaim are allowed and the
_default_ page allocator behavior is used. That means that !costly
allocation requests are basically nofail but there is no guarantee of
that behavior so failures have to be checked properly by callers
(e.g. OOM killer victim is allowed to fail currently).
- GFP_KERNEL | __GFP_NORETRY - overrides the default allocator behavior
and all allocation requests fail early rather than cause disruptive
reclaim (one round of reclaim in this implementation). The OOM killer
is not invoked.
- GFP_KERNEL | __GFP_RETRY_MAYFAIL - overrides the default allocator
behavior and all allocation requests try really hard. The request
will fail if the reclaim cannot make any progress. The OOM killer
won't be triggered.
- GFP_KERNEL | __GFP_NOFAIL - overrides the default allocator behavior
and all allocation requests will loop endlessly until they succeed.
This might be really dangerous especially for larger orders.
Existing users of __GFP_REPEAT are changed to __GFP_RETRY_MAYFAIL
because they already had their semantic. No new users are added.
__alloc_pages_slowpath is changed to bail out for __GFP_RETRY_MAYFAIL if
there is no progress and we have already passed the OOM point.
This means that all the reclaim opportunities have been exhausted except
the most disruptive one (the OOM killer) and a user defined fallback
behavior is more sensible than keep retrying in the page allocator.
[akpm@linux-foundation.org: fix arch/sparc/kernel/mdesc.c]
[mhocko@suse.com: semantic fix]
Link: http://lkml.kernel.org/r/20170626123847.GM11534@dhcp22.suse.cz
[mhocko@kernel.org: address other thing spotted by Vlastimil]
Link: http://lkml.kernel.org/r/20170626124233.GN11534@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20170623085345.11304-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alex Belits <alex.belits@cavium.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: David Daney <david.daney@cavium.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: NeilBrown <neilb@suse.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Highlights include:
- Support for STRICT_KERNEL_RWX on 64-bit server CPUs.
- Platform support for FSP2 (476fpe) board
- Enable ZONE_DEVICE on 64-bit server CPUs.
- Generic & powerpc spin loop primitives to optimise busy waiting
- Convert VDSO update function to use new update_vsyscall() interface
- Optimisations to hypercall/syscall/context-switch paths
- Improvements to the CPU idle code on Power8 and Power9.
As well as many other fixes and improvements.
Thanks to:
Akshay Adiga, Andrew Donnellan, Andrew Jeffery, Anshuman Khandual, Anton
Blanchard, Balbir Singh, Benjamin Herrenschmidt, Christophe Leroy, Christophe
Lombard, Colin Ian King, Dan Carpenter, Gautham R. Shenoy, Hari Bathini, Ian
Munsie, Ivan Mikhaylov, Javier Martinez Canillas, Madhavan Srinivasan,
Masahiro Yamada, Matt Brown, Michael Neuling, Michal Suchanek, Murilo
Opsfelder Araujo, Naveen N. Rao, Nicholas Piggin, Oliver O'Halloran, Paul
Mackerras, Pavel Machek, Russell Currey, Santosh Sivaraj, Stephen Rothwell,
Thiago Jung Bauermann, Yang Li.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJZXyPCAAoJEFHr6jzI4aWAI9QQAISf2x5y//cqCi4ISyQB5pTq
KLS/yQajNkQOw7c0fzBZOaH5Xd/SJ6AcKWDg8yDlpDR3+sRRsr98iIRECgKS5I7/
DxD9ywcbSoMXFQQo1ZMCp5CeuMUIJRtugBnUQM+JXCSUCPbznCY5DchDTLyTBTpO
MeMVhI//JxthhoOMA9MudiEGaYCU9ho442Z4OJUSiLUv8WRbvQX9pTqoc4vx1fxA
BWf2mflztBVcIfKIyxIIIlDLukkMzix6gSYPMCbC7lzkbnU7JSqKiheJXjo1gJS2
ePHKDxeNR2/QP0g/j3aT/MR1uTt9MaNBSX3gANE1xQ9OoJ8m1sOtCO4gNbSdLWae
eXhDnoiEp930DRZOeEioOItuWWoxFaMyYk3BMmRKV4QNdYL3y3TRVeL2/XmRGqYL
Lxz4IY/x5TteFEJNGcRX90uizNSi8AaEXPF16pUk8Ctt6eH3ZSwPMv2fHeYVCMr0
KFlKHyaPEKEoztyzLcUR6u9QB56yxDN58bvLpd32AeHvKhqyxFoySy59x9bZbatn
B2y8mmDItg860e0tIG6jrtplpOVvL8i5jla5RWFVoQDuxxrLAds3vG9JZQs+eRzx
Fiic93bqeUAS6RzhXbJ6QQJYIyhE7yqpcgv7ME1W87SPef3HPBk9xlp3yIDwdA2z
bBDvrRnvupusz8qCWrxe
=w8rj
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.13-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Highlights include:
- Support for STRICT_KERNEL_RWX on 64-bit server CPUs.
- Platform support for FSP2 (476fpe) board
- Enable ZONE_DEVICE on 64-bit server CPUs.
- Generic & powerpc spin loop primitives to optimise busy waiting
- Convert VDSO update function to use new update_vsyscall() interface
- Optimisations to hypercall/syscall/context-switch paths
- Improvements to the CPU idle code on Power8 and Power9.
As well as many other fixes and improvements.
Thanks to: Akshay Adiga, Andrew Donnellan, Andrew Jeffery, Anshuman
Khandual, Anton Blanchard, Balbir Singh, Benjamin Herrenschmidt,
Christophe Leroy, Christophe Lombard, Colin Ian King, Dan Carpenter,
Gautham R. Shenoy, Hari Bathini, Ian Munsie, Ivan Mikhaylov, Javier
Martinez Canillas, Madhavan Srinivasan, Masahiro Yamada, Matt Brown,
Michael Neuling, Michal Suchanek, Murilo Opsfelder Araujo, Naveen N.
Rao, Nicholas Piggin, Oliver O'Halloran, Paul Mackerras, Pavel Machek,
Russell Currey, Santosh Sivaraj, Stephen Rothwell, Thiago Jung
Bauermann, Yang Li"
* tag 'powerpc-4.13-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (158 commits)
powerpc/Kconfig: Enable STRICT_KERNEL_RWX for some configs
powerpc/mm/radix: Implement STRICT_RWX/mark_rodata_ro() for Radix
powerpc/mm/hash: Implement mark_rodata_ro() for hash
powerpc/vmlinux.lds: Align __init_begin to 16M
powerpc/lib/code-patching: Use alternate map for patch_instruction()
powerpc/xmon: Add patch_instruction() support for xmon
powerpc/kprobes/optprobes: Use patch_instruction()
powerpc/kprobes: Move kprobes over to patch_instruction()
powerpc/mm/radix: Fix execute permissions for interrupt_vectors
powerpc/pseries: Fix passing of pp0 in updatepp() and updateboltedpp()
powerpc/64s: Blacklist rtas entry/exit from kprobes
powerpc/64s: Blacklist functions invoked on a trap
powerpc/64s: Un-blacklist system_call() from kprobes
powerpc/64s: Move system_call() symbol to just after setting MSR_EE
powerpc/64s: Blacklist system_call() and system_call_common() from kprobes
powerpc/64s: Convert .L__replay_interrupt_return to a local label
powerpc64/elfv1: Only dereference function descriptor for non-text symbols
cxl: Export library to support IBM XSL
powerpc/dts: Use #include "..." to include local DT
powerpc/perf/hv-24x7: Aggregate result elements on POWER9 SMT8
...
- Better machine check handling for HV KVM
- Ability to support guests with threads=2, 4 or 8 on POWER9
- Fix for a race that could cause delayed recognition of signals
- Fix for a bug where POWER9 guests could sleep with interrupts pending.
ARM:
- VCPU request overhaul
- allow timer and PMU to have their interrupt number selected from userspace
- workaround for Cavium erratum 30115
- handling of memory poisonning
- the usual crop of fixes and cleanups
s390:
- initial machine check forwarding
- migration support for the CMMA page hinting information
- cleanups and fixes
x86:
- nested VMX bugfixes and improvements
- more reliable NMI window detection on AMD
- APIC timer optimizations
Generic:
- VCPU request overhaul + documentation of common code patterns
- kvm_stat improvements
There is a small conflict in arch/s390 due to an arch-wide field rename.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJZW4XTAAoJEL/70l94x66DkhMH/izpk54KI17PtyQ9VYI2sYeZ
BWK6Kl886g3ij4pFi3pECqjDJzWaa3ai+vFfzzpJJ8OkCJT5Rv4LxC5ERltVVmR8
A3T1I/MRktSC0VJLv34daPC2z4Lco/6SPipUpPnL4bE2HATKed4vzoOjQ3tOeGTy
dwi7TFjKwoVDiM7kPPDRnTHqCe5G5n13sZ49dBe9WeJ7ttJauWqoxhlYosCGNPEj
g8ZX8+cvcAhVnz5uFL8roqZ8ygNEQq2mgkU18W8ZZKuiuwR0gdsG0gSBFNTdwIMK
NoreRKMrw0+oLXTIB8SZsoieU6Qi7w3xMAMabe8AJsvYtoersugbOmdxGCr1lsA=
=OD7H
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"PPC:
- Better machine check handling for HV KVM
- Ability to support guests with threads=2, 4 or 8 on POWER9
- Fix for a race that could cause delayed recognition of signals
- Fix for a bug where POWER9 guests could sleep with interrupts pending.
ARM:
- VCPU request overhaul
- allow timer and PMU to have their interrupt number selected from userspace
- workaround for Cavium erratum 30115
- handling of memory poisonning
- the usual crop of fixes and cleanups
s390:
- initial machine check forwarding
- migration support for the CMMA page hinting information
- cleanups and fixes
x86:
- nested VMX bugfixes and improvements
- more reliable NMI window detection on AMD
- APIC timer optimizations
Generic:
- VCPU request overhaul + documentation of common code patterns
- kvm_stat improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (124 commits)
Update my email address
kvm: vmx: allow host to access guest MSR_IA32_BNDCFGS
x86: kvm: mmu: use ept a/d in vmcs02 iff used in vmcs12
kvm: x86: mmu: allow A/D bits to be disabled in an mmu
x86: kvm: mmu: make spte mmio mask more explicit
x86: kvm: mmu: dead code thanks to access tracking
KVM: PPC: Book3S: Fix typo in XICS-on-XIVE state saving code
KVM: PPC: Book3S HV: Close race with testing for signals on guest entry
KVM: PPC: Book3S HV: Simplify dynamic micro-threading code
KVM: x86: remove ignored type attribute
KVM: LAPIC: Fix lapic timer injection delay
KVM: lapic: reorganize restart_apic_timer
KVM: lapic: reorganize start_hv_timer
kvm: nVMX: Check memory operand to INVVPID
KVM: s390: Inject machine check into the nested guest
KVM: s390: Inject machine check into the guest
tools/kvm_stat: add new interactive command 'b'
tools/kvm_stat: add new command line switch '-i'
tools/kvm_stat: fix error on interactive command 'g'
KVM: SVM: suppress unnecessary NMI singlestep on GIF=0 and nested exit
...
Pull SMP hotplug updates from Thomas Gleixner:
"This update is primarily a cleanup of the CPU hotplug locking code.
The hotplug locking mechanism is an open coded RWSEM, which allows
recursive locking. The main problem with that is the recursive nature
as it evades the full lockdep coverage and hides potential deadlocks.
The rework replaces the open coded RWSEM with a percpu RWSEM and
establishes full lockdep coverage that way.
The bulk of the changes fix up recursive locking issues and address
the now fully reported potential deadlocks all over the place. Some of
these deadlocks have been observed in the RT tree, but on mainline the
probability was low enough to hide them away."
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
cpu/hotplug: Constify attribute_group structures
powerpc: Only obtain cpu_hotplug_lock if called by rtasd
ARM/hw_breakpoint: Fix possible recursive locking for arch_hw_breakpoint_init
cpu/hotplug: Remove unused check_for_tasks() function
perf/core: Don't release cred_guard_mutex if not taken
cpuhotplug: Link lock stacks for hotplug callbacks
acpi/processor: Prevent cpu hotplug deadlock
sched: Provide is_percpu_thread() helper
cpu/hotplug: Convert hotplug locking to percpu rwsem
s390: Prevent hotplug rwsem recursion
arm: Prevent hotplug rwsem recursion
arm64: Prevent cpu hotplug rwsem recursion
kprobes: Cure hotplug lock ordering issues
jump_label: Reorder hotplug lock and jump_label_lock
perf/tracing/cpuhotplug: Fix locking order
ACPI/processor: Use cpu_hotplug_disable() instead of get_online_cpus()
PCI: Replace the racy recursion prevention
PCI: Use cpu_hotplug_disable() instead of get_online_cpus()
perf/x86/intel: Drop get_online_cpus() in intel_snb_check_microcode()
x86/perf: Drop EXPORT of perf_check_microcode
...
Merge our fixes branch, a few of them are tripping people up while
working on top of next, and we also have a dependency between the CXL
fixes and new CXL code we want to merge into next.
- Better machine check handling for HV KVM
- Ability to support guests with threads=2, 4 or 8 on POWER9
- Fix for a race that could cause delayed recognition of signals
- Fix for a bug where POWER9 guests could sleep with interrupts
pending.
At present, interrupts are hard-disabled fairly late in the guest
entry path, in the assembly code. Since we check for pending signals
for the vCPU(s) task(s) earlier in the guest entry path, it is
possible for a signal to be delivered before we enter the guest but
not be noticed until after we exit the guest for some other reason.
Similarly, it is possible for the scheduler to request a reschedule
while we are in the guest entry path, and we won't notice until after
we have run the guest, potentially for a whole timeslice.
Furthermore, with a radix guest on POWER9, we can take the interrupt
with the MMU on. In this case we end up leaving interrupts
hard-disabled after the guest exit, and they are likely to stay
hard-disabled until we exit to userspace or context-switch to
another process. This was masking the fact that we were also not
setting the RI (recoverable interrupt) bit in the MSR, meaning
that if we had taken an interrupt, it would have crashed the host
kernel with an unrecoverable interrupt message.
To close these races, we need to check for signals and reschedule
requests after hard-disabling interrupts, and then keep interrupts
hard-disabled until we enter the guest. If there is a signal or a
reschedule request from another CPU, it will send an IPI, which will
cause a guest exit.
This puts the interrupt disabling before we call kvmppc_start_thread()
for all the secondary threads of this core that are going to run vCPUs.
The reason for that is that once we have started the secondary threads
there is no easy way to back out without going through at least part
of the guest entry path. However, kvmppc_start_thread() includes some
code for radix guests which needs to call smp_call_function(), which
must be called with interrupts enabled. To solve this problem, this
patch moves that code into a separate function that is called earlier.
When the guest exit is caused by an external interrupt, a hypervisor
doorbell or a hypervisor maintenance interrupt, we now handle these
using the replay facility. __kvmppc_vcore_entry() now returns the
trap number that caused the exit on this thread, and instead of the
assembly code jumping to the handler entry, we return to C code with
interrupts still hard-disabled and set the irq_happened flag in the
PACA, so that when we do local_irq_enable() the appropriate handler
gets called.
With all this, we now have the interrupt soft-enable flag clear while
we are in the guest. This is useful because code in the real-mode
hypercall handlers that checks whether interrupts are enabled will
now see that they are disabled, which is correct, since interrupts
are hard-disabled in the real-mode code.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Since commit b009031f74 ("KVM: PPC: Book3S HV: Take out virtual
core piggybacking code", 2016-09-15), we only have at most one
vcore per subcore. Previously, the fact that there might be more
than one vcore per subcore meant that we had the notion of a
"master vcore", which was the vcore that controlled thread 0 of
the subcore. We also needed a list per subcore in the core_info
struct to record which vcores belonged to each subcore. Now that
there can only be one vcore in the subcore, we can replace the
list with a simple pointer and get rid of the notion of the
master vcore (and in fact treat every vcore as a master vcore).
We can also get rid of the subcore_vm[] field in the core_info
struct since it is never read.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
- vcpu request overhaul
- allow timer and PMU to have their interrupt number
selected from userspace
- workaround for Cavium erratum 30115
- handling of memory poisonning
- the usual crop of fixes and cleanups
-----BEGIN PGP SIGNATURE-----
iQJJBAABCAAzFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAllWCM0VHG1hcmMuenlu
Z2llckBhcm0uY29tAAoJECPQ0LrRPXpDjJ0QAI16x6+trKhH31lTSYekYfqm4hZ2
Fp7IbALW9KNCaY35tZov2Zuh99qGRduxTh7ewqhKpON8kkU+UKj0F7zH22+vfN4m
yas/+uNr8R9VLyvea4ysPsgx8Q8v1Ix9setohHYNZIL9/klVqtaHpYvArHVF/mzq
p2j/NxRS2dlp9r2TtoMRMhA05u6r0wolhUuh+z9v2ipib0gfOBIG24jsqCTEcD9n
5A/cVd+ztYshkrV95h3y9peahwt3zOA4QBGzrQ2K25jp0s54nqhmC7JTNSa8dtar
YGW2MuAMoIFTwCFAlpwCzrwpOJFzF3Q6A8bOxei2fjclzjPMgT1xQxuhOoe4ntFa
lTPxSHalm5W6dFTW90YSo2DBcPe+N7sQkhjR0cCeY3GYsOFhXMLTlOl5Pt1YK1or
+3FAI74tFRKvVmb9mhZeGTvuzhDgRvtf3Qq5rjwlGzKc2BBOEgtMyj/Wgwo4N6Dz
IjOnoRaUGELoBCWoTorMxLpsPBdPVSUxNyJTdAhqZ/ZtT1xqjhFNLZcrVWmOTzDM
1cav+jZkla4sLmJSNDD54aCSvvtPHis0nZn9PRlh12xgOyYiAVx4K++MNuWP0P37
hbh1gbPT+FcoVxPurUsX/pjNlTucPZcBwFytZDQlpwtPBpEFzJiImLYe/PldRb0f
9WQOH1Y1+q14MF+N
=6hNK
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-for-4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/ARM updates for 4.13
- vcpu request overhaul
- allow timer and PMU to have their interrupt number
selected from userspace
- workaround for Cavium erratum 30115
- handling of memory poisonning
- the usual crop of fixes and cleanups
Conflicts:
arch/s390/include/asm/kvm_host.h
Add a trace point for tlbie(l) (Translation Lookaside Buffer Invalidate
Entry (Local)) instructions.
The tlbie instruction has changed over the years, so not all versions
accept the same operands. Use the ISA v3 field operands because they are
the most verbose, we may change them in future.
Example output:
qemu-system-ppc-5371 [016] 1412.369519: tlbie:
tlbie with lpid 0, local 1, rb=67bd8900174c11c1, rs=0, ric=0 prs=0 r=0
Signed-off-by: Balbir Singh <bsingharora@gmail.com>
[mpe: Add some missing trace_tlbie()s, reword change log]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Now that userspace can set the virtual SMT mode by enabling the
KVM_CAP_PPC_SMT capability, it is useful for userspace to be able
to query the set of possible virtual SMT modes. This provides a
new capability, KVM_CAP_PPC_SMT_POSSIBLE, to provide this
information. The return value is a bitmap of possible modes, with
bit N set if virtual SMT mode 2^N is available. That is, 1 indicates
SMT1 is available, 2 indicates that SMT2 is available, 3 indicates
that both SMT1 and SMT2 are available, and so on.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Enhance KVM to cause a guest exit with KVM_EXIT_NMI
exit reason upon a machine check exception (MCE) in
the guest address space if the KVM_CAP_PPC_FWNMI
capability is enabled (instead of delivering a 0x200
interrupt to guest). This enables QEMU to build error
log and deliver machine check exception to guest via
guest registered machine check handler.
This approach simplifies the delivery of machine
check exception to guest OS compared to the earlier
approach of KVM directly invoking 0x200 guest interrupt
vector.
This design/approach is based on the feedback for the
QEMU patches to handle machine check exception. Details
of earlier approach of handling machine check exception
in QEMU and related discussions can be found at:
https://lists.nongnu.org/archive/html/qemu-devel/2014-11/msg00813.html
Note:
This patch now directly invokes machine_check_print_event_info()
from kvmppc_handle_exit_hv() to print the event to host console
at the time of guest exit before the exception is passed on to the
guest. Hence, the host-side handling which was performed earlier
via machine_check_fwnmi is removed.
The reasons for this approach is (i) it is not possible
to distinguish whether the exception occurred in the
guest or the host from the pt_regs passed on the
machine_check_exception(). Hence machine_check_exception()
calls panic, instead of passing on the exception to
the guest, if the machine check exception is not
recoverable. (ii) the approach introduced in this
patch gives opportunity to the host kernel to perform
actions in virtual mode before passing on the exception
to the guest. This approach does not require complex
tweaks to machine_check_fwnmi and friends.
Signed-off-by: Aravinda Prasad <aravinda@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This introduces a new KVM capability to control how KVM behaves
on machine check exception (MCE) in HV KVM guests.
If this capability has not been enabled, KVM redirects machine check
exceptions to guest's 0x200 vector, if the address in error belongs to
the guest. With this capability enabled, KVM will cause a guest exit
with the exit reason indicating an NMI.
The new capability is required to avoid problems if a new kernel/KVM
is used with an old QEMU, running a guest that doesn't issue
"ibm,nmi-register". As old QEMU does not understand the NMI exit
type, it treats it as a fatal error. However, the guest could have
handled the machine check error if the exception was delivered to
guest's 0x200 interrupt vector instead of NMI exit in case of old
QEMU.
[paulus@ozlabs.org - Reworded the commit message to be clearer,
enable only on HV KVM.]
Signed-off-by: Aravinda Prasad <aravinda@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
* fix problems that could cause hangs or crashes in the host on POWER9
* fix problems that could allow guests to potentially affect or disrupt
the execution of the controlling userspace
On a POWER9 system, it is possible for an interrupt to become pending
for a VCPU when that VCPU is about to cede (execute a H_CEDE hypercall)
and has already disabled interrupts, or in the H_CEDE processing up
to the point where the XIVE context is pulled from the hardware. In
such a case, the H_CEDE should not sleep, but should return immediately
to the guest. However, the conditions tested in kvmppc_vcpu_woken()
don't include the condition that a XIVE interrupt is pending, so the
VCPU could sleep until the next decrementer interrupt.
To fix this, we add a new xive_interrupt_pending() helper which looks
in the XIVE context that was pulled from the hardware to see if the
priority of any pending interrupt is higher (numerically lower than)
the CPU priority. If so then kvmppc_vcpu_woken() will return true.
If the XIVE context has never been used, then both the pipr and the
cppr fields will be zero and the test will indicate that no interrupt
is pending.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Idle code now always runs at the 0xc... effective address whether
in real or virtual mode. This means rfid can be ditched, along
with a lot of SRR manipulations.
In the wakeup path, carry SRR1 around in r12. Use mtmsrd to change
MSR states as required.
This also balances the return prediction for the idle call, by
doing blr rather than rfid to return to the idle caller.
On POWER9, 2-process context switch on different cores, with snooze
disabled, increases performance by 2%.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Incorporate v2 fixes from Nick]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
On POWER9, we no longer have the restriction that we had on POWER8
where all threads in a core have to be in the same partition, so
the CPU threads are now independent. However, we still want to be
able to run guests with a virtual SMT topology, if only to allow
migration of guests from POWER8 systems to POWER9.
A guest that has a virtual SMT mode greater than 1 will expect to
be able to use the doorbell facility; it will expect the msgsndp
and msgclrp instructions to work appropriately and to be able to read
sensible values from the TIR (thread identification register) and
DPDES (directed privileged doorbell exception status) special-purpose
registers. However, since each CPU thread is a separate sub-processor
in POWER9, these instructions and registers can only be used within
a single CPU thread.
In order for these instructions to appear to act correctly according
to the guest's virtual SMT mode, we have to trap and emulate them.
We cause them to trap by clearing the HFSCR_MSGP bit in the HFSCR
register. The emulation is triggered by the hypervisor facility
unavailable interrupt that occurs when the guest uses them.
To cause a doorbell interrupt to occur within the guest, we set the
DPDES register to 1. If the guest has interrupts enabled, the CPU
will generate a doorbell interrupt and clear the DPDES register in
hardware. The DPDES hardware register for the guest is saved in the
vcpu->arch.vcore->dpdes field. Since this gets written by the guest
exit code, other VCPUs wishing to cause a doorbell interrupt don't
write that field directly, but instead set a vcpu->arch.doorbell_request
flag. This is consumed and set to 0 by the guest entry code, which
then sets DPDES to 1.
Emulating reads of the DPDES register is somewhat involved, because
it requires reading the doorbell pending interrupt status of all of the
VCPU threads in the virtual core, and if any of those VCPUs are
running, their doorbell status is only up-to-date in the hardware
DPDES registers of the CPUs where they are running. In order to get
a reasonable approximation of the current doorbell status, we send
those CPUs an IPI, causing an exit from the guest which will update
the vcpu->arch.vcore->dpdes field. We then use that value in
constructing the emulated DPDES register value.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This allows userspace to set the desired virtual SMT (simultaneous
multithreading) mode for a VM, that is, the number of VCPUs that
get assigned to each virtual core. Previously, the virtual SMT mode
was fixed to the number of threads per subcore, and if userspace
wanted to have fewer vcpus per vcore, then it would achieve that by
using a sparse CPU numbering. This had the disadvantage that the
vcpu numbers can get quite large, particularly for SMT1 guests on
a POWER8 with 8 threads per core. With this patch, userspace can
set its desired virtual SMT mode and then use contiguous vcpu
numbering.
On POWER8, where the threading mode is "strict", the virtual SMT mode
must be less than or equal to the number of threads per subcore. On
POWER9, which implements a "loose" threading mode, the virtual SMT
mode can be any power of 2 between 1 and 8, even though there is
effectively one thread per subcore, since the threads are independent
and can all be in different partitions.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This adds code to allow us to use a different value for the HFSCR
(Hypervisor Facilities Status and Control Register) when running the
guest from that which applies in the host. The reason for doing this
is to allow us to trap the msgsndp instruction and related operations
in future so that they can be virtualized. We also save the value of
HFSCR when a hypervisor facility unavailable interrupt occurs, because
the high byte of HFSCR indicates which facility the guest attempted to
access.
We save and restore the host value on guest entry/exit because some
bits of it affect host userspace execution.
We only do all this on POWER9, not on POWER8, because we are not
intending to virtualize any of the facilities controlled by HFSCR on
POWER8. In particular, the HFSCR bit that controls execution of
msgsndp and related operations does not exist on POWER8. The HFSCR
doesn't exist at all on POWER7.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
It is possible, through a narrow race condition, for a VCPU to exit
the guest with a H_CEDE hypercall while it has a doorbell interrupt
pending. In this case, the H_CEDE should return immediately, but in
fact it puts the VCPU to sleep until some other interrupt becomes
pending or a prod is received (via another VCPU doing H_PROD).
This fixes it by checking the DPDES (Directed Privileged Doorbell
Exception Status) bit for the thread along with the other interrupt
pending bits.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This allows userspace (e.g. QEMU) to enable large decrementer mode for
the guest when running on a POWER9 host, by setting the LPCR_LD bit in
the guest LPCR value. With this, the guest exit code saves 64 bits of
the guest DEC value on exit. Other places that use the guest DEC
value check the LPCR_LD bit in the guest LPCR value, and if it is set,
omit the 32-bit sign extension that would otherwise be done.
This doesn't change the DEC emulation used by PR KVM because PR KVM
is not supported on POWER9 yet.
This is partly based on an earlier patch by Oliver O'Halloran.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Three small fixes for recently merged code:
- remove a spurious WARN_ON when a PCI device has no of_node, it's allowed in
some circumstances for there to be no of_node.
- fix the offset for store EOI MMIOs in the XIVE interrupt controller.
- fix non-const WARN_ONs which were becoming BUGs due to them losing
BUGFLAG_WARNING in a recent cleanup patch.
Thanks to:
Alexey Kardashevskiy, Alistair Popple, Benjamin Herrenschmidt.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJZQ7XeAAoJEFHr6jzI4aWA2bgP/R++c9YehNdDKbZyLqumY+6q
7ns8NoxgEW/Gc8JuSTE4MW51q2HimBJu6ntyHfMUwgpGQpGzOGDn6g8OxVfjOySa
kFc7cytgOOhEpTHENDZ3xxZtcSd9iafyX9ga/0dz6UycfEHcZayiXDRuXffRzJwa
RNqbwDxOtkgn6w4bW02SRlfDSTra+zQZQd6NsPXSJJgF+tb3MflMj1A9WoJp/mj/
tXc9fpKQsZkIG/AvAHziizHqeAKJxUrmoVb8qy1SYTKVUDZoxTYgiO1G1nebZX/s
Zzsdd/fcHcd0DIEJkjf2V3cegmIGTLzw7mUOodU7IF3mZ1LPgCMVF5lTTZzjcXDQ
d1gugVojHnGr7KB3lNNijyHxsmHG7LdTQmRHcyZ2L8KYpa3/+Ca3ZuFnTwjvgRNx
dJEFX5JdAhCrkg1B73rvcjKCFg0ysVIrkdf27SaameaQdQQuZU4+5+s1LB2EqJQr
II3+pnZr/RF3OWu4yJE5KAHX5ZBQQ+unzVPpW4pqvwYMoVKhO7dhCPPISeRCtzJE
+po5Ys4ncheSRhwf5dQhf+H04kXmL6ekpl1GJOBB3BskJcsIr8hiLp3/mF238et1
80o6yTAJLADKUIl75ISiePz+KFZNamgke1/XWZolfHYZ9dNRF0c//E0qvpopz8jE
F90hxEAtJ9ws/VUlo40Q
=Mnxp
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.12-6' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
"Three small fixes for recently merged code:
- remove a spurious WARN_ON when a PCI device has no of_node, it's
allowed in some circumstances for there to be no of_node.
- fix the offset for store EOI MMIOs in the XIVE interrupt
controller.
- fix non-const WARN_ONs which were becoming BUGs due to them losing
BUGFLAG_WARNING in a recent cleanup patch.
Thanks to: Alexey Kardashevskiy, Alistair Popple, Benjamin
Herrenschmidt"
* tag 'powerpc-4.12-6' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/debug: Add missing warn flag to WARN_ON's non-builtin path
powerpc/xive: Fix offset for store EOI MMIOs
powerpc/npu-dma: Remove spurious WARN_ON when a PCI device has no of_node
POWER9 DD1 has an erratum where writing to the TBU40 register, which
is used to apply an offset to the timebase, can cause the timebase to
lose counts. This results in the timebase on some CPUs getting out of
sync with other CPUs, which then results in misbehaviour of the
timekeeping code.
To work around the problem, we make KVM ignore the timebase offset for
all guests on POWER9 DD1 machines. This means that live migration
cannot be supported on POWER9 DD1 machines.
Cc: stable@vger.kernel.org # v4.10+
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
At present, HV KVM on POWER8 and POWER9 machines loses any instruction
or data breakpoint set in the host whenever a guest is run.
Instruction breakpoints are currently only used by xmon, but ptrace
and the perf_event subsystem can set data breakpoints as well as xmon.
To fix this, we save the host values of the debug registers (CIABR,
DAWR and DAWRX) before entering the guest and restore them on exit.
To provide space to save them in the stack frame, we expand the stack
frame allocated by kvmppc_hv_entry() from 112 to 144 bytes.
Fixes: b005255e12 ("KVM: PPC: Book3S HV: Context-switch new POWER8 SPRs", 2014-01-08)
Cc: stable@vger.kernel.org # v3.14+
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Architecturally we should apply a 0x400 offset for these. Not doing
it will break future HW implementations.
The offset of 0 is supposed to remain for "triggers" though not all
sources support both trigger and store EOI, and in P9 specifically,
some sources will treat 0 as a store EOI. But future chips will not.
So this makes us use the properly architected offset which should work
always.
Fixes: 243e25112d ("powerpc/xive: Native exploitation of the XIVE interrupt controller")
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
If userspace attempts to call the KVM_RUN ioctl when it has hardware
transactional memory (HTM) enabled, the values that it has put in the
HTM-related SPRs TFHAR, TFIAR and TEXASR will get overwritten by
guest values. To fix this, we detect this condition and save those
SPR values in the thread struct, and disable HTM for the task. If
userspace goes to access those SPRs or the HTM facility in future,
a TM-unavailable interrupt will occur and the handler will reload
those SPRs and re-enable HTM.
If userspace has started a transaction and suspended it, we would
currently lose the transactional state in the guest entry path and
would almost certainly get a "TM Bad Thing" interrupt, which would
cause the host to crash. To avoid this, we detect this case and
return from the KVM_RUN ioctl with an EINVAL error, with the KVM
exit reason set to KVM_EXIT_FAIL_ENTRY.
Fixes: b005255e12 ("KVM: PPC: Book3S HV: Context-switch new POWER8 SPRs", 2014-01-08)
Cc: stable@vger.kernel.org # v3.14+
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This restores several special-purpose registers (SPRs) to sane values
on guest exit that were missed before.
TAR and VRSAVE are readable and writable by userspace, and we need to
save and restore them to prevent the guest from potentially affecting
userspace execution (not that TAR or VRSAVE are used by any known
program that run uses the KVM_RUN ioctl). We save/restore these
in kvmppc_vcpu_run_hv() rather than on every guest entry/exit.
FSCR affects userspace execution in that it can prohibit access to
certain facilities by userspace. We restore it to the normal value
for the task on exit from the KVM_RUN ioctl.
IAMR is normally 0, and is restored to 0 on guest exit. However,
with a radix host on POWER9, it is set to a value that prevents the
kernel from executing user-accessible memory. On POWER9, we save
IAMR on guest entry and restore it on guest exit to the saved value
rather than 0. On POWER8 we continue to set it to 0 on guest exit.
PSPB is normally 0. We restore it to 0 on guest exit to prevent
userspace taking advantage of the guest having set it non-zero
(which would allow userspace to set its SMT priority to high).
UAMOR is normally 0. We restore it to 0 on guest exit to prevent
the AMR from being used as a covert channel between userspace
processes, since the AMR is not context-switched at present.
Fixes: b005255e12 ("KVM: PPC: Book3S HV: Context-switch new POWER8 SPRs", 2014-01-08)
Cc: stable@vger.kernel.org # v3.14+
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This adds code to save the values of three SPRs (special-purpose
registers) used by userspace to control event-based branches (EBBs),
which are essentially interrupts that get delivered directly to
userspace. These registers are loaded up with guest values when
entering the guest, and their values are saved when exiting the
guest, but we were not saving the host values and restoring them
before going back to userspace.
On POWER8 this would only affect userspace programs which explicitly
request the use of EBBs and also use the KVM_RUN ioctl, since the
only source of EBBs on POWER8 is the PMU, and there is an explicit
enable bit in the PMU registers (and those PMU registers do get
properly context-switched between host and guest). On POWER9 there
is provision for externally-generated EBBs, and these are not subject
to the control in the PMU registers.
Since these registers only affect userspace, we can save them when
we first come in from userspace and restore them before returning to
userspace, rather than saving/restoring the host values on every
guest entry/exit. Similarly, we don't need to worry about their
values on offline secondary threads since they execute in the context
of the idle task, which never executes in userspace.
Fixes: b005255e12 ("KVM: PPC: Book3S HV: Context-switch new POWER8 SPRs", 2014-01-08)
Cc: stable@vger.kernel.org # v3.14+
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
A first step in vcpu->requests encapsulation. Additionally, we now
use READ_ONCE() when accessing vcpu->requests, which ensures we
always load vcpu->requests when it's accessed. This is important as
other threads can change it any time. Also, READ_ONCE() documents
that vcpu->requests is used with other threads, likely requiring
memory barriers, which it does.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
[ Documented the new use of READ_ONCE() and converted another check
in arch/mips/kvm/vz.c ]
Signed-off-by: Andrew Jones <drjones@redhat.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
POWER9 introduces a new mode for the decrementer register, called
large decrementer mode, in which the decrementer counter is 56 bits
wide rather than 32, and reads are sign-extended rather than
zero-extended. For the decrementer, this new mode is optional and
controlled by a bit in the LPCR. The hypervisor decrementer (HDEC)
is 56 bits wide on POWER9 and has no mode control.
Since KVM code reads and writes the decrementer and hypervisor
decrementer registers in a few places, it needs to be aware of the
need to treat the decrementer value as a 64-bit quantity, and only do
a 32-bit sign extension when large decrementer mode is not in effect.
Similarly, the HDEC should always be treated as a 64-bit quantity on
POWER9. We define a new EXTEND_HDEC macro to encapsulate the feature
test for POWER9 and the sign extension.
To enable the sign extension to be removed in large decrementer mode,
we test the LPCR_LD bit in the host LPCR image stored in the struct
kvm for the guest. If is set then large decrementer mode is enabled
and the sign extension should be skipped.
This is partly based on an earlier patch by Oliver O'Halloran.
Cc: stable@vger.kernel.org # v4.10+
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
kvmppc_alloc_host_rm_ops() holds get_online_cpus() while invoking
cpuhp_setup_state_nocalls().
cpuhp_setup_state_nocalls() invokes get_online_cpus() as well. This is
correct, but prevents the conversion of the hotplug locking to a percpu
rwsem.
Use cpuhp_setup_state_nocalls_cpuslocked() to avoid the nested
call. Convert *_online_cpus() to the new interfaces while at it.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: kvm@vger.kernel.org
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: kvm-ppc@vger.kernel.org
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: Alexander Graf <agraf@suse.com>
Link: http://lkml.kernel.org/r/20170524081547.809616236@linutronix.de
Commit e91aa8e6ec ("KVM: PPC: Enable IOMMU_API for KVM_BOOK3S_64
permanently", 2017-03-22) enabled the SPAPR TCE code for all 64-bit
Book 3S kernel configurations in order to simplify the code and
reduce #ifdefs. However, 64-bit Book 3S PPC platforms other than
pseries and powernv don't implement the necessary IOMMU callbacks,
leading to build failures like the following (for a pasemi config):
scripts/kconfig/conf --silentoldconfig Kconfig
warning: (KVM_BOOK3S_64) selects SPAPR_TCE_IOMMU which has unmet direct dependencies (IOMMU_SUPPORT && (PPC_POWERNV || PPC_PSERIES))
...
CC [M] arch/powerpc/kvm/book3s_64_vio.o
/home/paulus/kernel/kvm/arch/powerpc/kvm/book3s_64_vio.c: In function ‘kvmppc_clear_tce’:
/home/paulus/kernel/kvm/arch/powerpc/kvm/book3s_64_vio.c:363:2: error: implicit declaration of function ‘iommu_tce_xchg’ [-Werror=implicit-function-declaration]
iommu_tce_xchg(tbl, entry, &hpa, &dir);
^
To fix this, we make the inclusion of the SPAPR TCE support, and the
code that uses it in book3s_vio.c and book3s_vio_hv.c, depend on
the inclusion of support for the pseries and/or powernv platforms.
This means that when running a 'pseries' guest on those platforms,
the guest won't have in-kernel acceleration of the PAPR TCE hypercalls,
but at least now they compile.
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The PR KVM implementation of the PAPR HPT hypercalls (H_ENTER etc.)
access an image of the HPT in userspace memory using copy_from_user
and copy_to_user. Recently, the declarations of those functions were
annotated to indicate that the return value must be checked. Since
this code doesn't currently check the return value, this causes
compile warnings like the ones shown below, and since on PPC the
default is to compile arch/powerpc with -Werror, this causes the
build to fail.
To fix this, we check the return values, and if non-zero, fail the
hypercall being processed with a H_FUNCTION error return value.
There is really no good error return value to use since PAPR didn't
envisage the possibility that the hypervisor may not be able to access
the guest's HPT, and H_FUNCTION (function not supported) seems as
good as any.
The typical compile warnings look like this:
CC arch/powerpc/kvm/book3s_pr_papr.o
/home/paulus/kernel/kvm/arch/powerpc/kvm/book3s_pr_papr.c: In function ‘kvmppc_h_pr_enter’:
/home/paulus/kernel/kvm/arch/powerpc/kvm/book3s_pr_papr.c:53:2: error: ignoring return value of ‘copy_from_user’, declared with attribute warn_unused_result [-Werror=unused-result]
copy_from_user(pteg, (void __user *)pteg_addr, sizeof(pteg));
^
/home/paulus/kernel/kvm/arch/powerpc/kvm/book3s_pr_papr.c:74:2: error: ignoring return value of ‘copy_to_user’, declared with attribute warn_unused_result [-Werror=unused-result]
copy_to_user((void __user *)pteg_addr, hpte, HPTE_SIZE);
^
... etc.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
POWER9 running a radix guest will take some hypervisor interrupts
without going to real mode (turning off the MMU). This means that
early hypercall handlers may now be called in virtual mode. Most of
the handlers work just fine in both modes, but there are some that
can crash the host if called in virtual mode, notably the TCE (IOMMU)
hypercalls H_PUT_TCE, H_STUFF_TCE and H_PUT_TCE_INDIRECT. These
already have both a real-mode and a virtual-mode version, so we
arrange for the real-mode version to return H_TOO_HARD for radix
guests, which will result in the virtual-mode version being called.
The other hypercall which is sensitive to the MMU mode is H_RANDOM.
It doesn't have a virtual-mode version, so this adds code to enable
it to be called in either mode.
An alternative solution was considered which would refuse to call any
of the early hypercall handlers when doing a virtual-mode exit from a
radix guest. However, the XICS-on-XIVE code depends on the XICS
hypercalls being handled early even for virtual-mode exits, because
the handlers need to be called before the XIVE vCPU state has been
pulled off the hardware. Therefore that solution would have become
quite invasive and complicated, and was rejected in favour of the
simpler, though less elegant, solution presented here.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Tested-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The main thing here is a new implementation of the in-kernel
XICS interrupt controller emulation for POWER9 machines, from Ben
Herrenschmidt.
POWER9 has a new interrupt controller called XIVE (eXternal Interrupt
Virtualization Engine) which is able to deliver interrupts directly
to guest virtual CPUs in hardware without hypervisor intervention.
With this new code, the guest still sees the old XICS interface but
performance is better because the XICS emulation in the host uses the
XIVE directly rather than going through a XICS emulation in firmware.
Conflicts:
arch/powerpc/kernel/cpu_setup_power.S [cherry-picked fix]
arch/powerpc/kvm/book3s_xive.c [include asm/debugfs.h]
support; virtual interrupt controller performance improvements; support
for userspace virtual interrupt controller (slower, but necessary for
KVM on the weird Broadcom SoCs used by the Raspberry Pi 3)
* MIPS: basic support for hardware virtualization (ImgTec
P5600/P6600/I6400 and Cavium Octeon III)
* PPC: in-kernel acceleration for VFIO
* s390: support for guests without storage keys; adapter interruption
suppression
* x86: usual range of nVMX improvements, notably nested EPT support for
accessed and dirty bits; emulation of CPL3 CPUID faulting
* generic: first part of VCPU thread request API; kvm_stat improvements
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJZEHUkAAoJEL/70l94x66DBeYH/09wrpJ2FjU4Rqv7FxmqgWfH
9WGi4wvn/Z+XzQSyfMJiu2SfZVzU69/Y67OMHudy7vBT6knB+ziM7Ntoiu/hUfbG
0g5KsDX79FW15HuvuuGh9kSjUsj7qsQdyPZwP4FW/6ZoDArV9mibSvdjSmiUSMV/
2wxaoLzjoShdOuCe9EABaPhKK0XCrOYkygT6Paz1pItDxaSn8iW3ulaCuWMprUfG
Niq+dFemK464E4yn6HVD88xg5j2eUM6bfuXB3qR3eTR76mHLgtwejBzZdDjLG9fk
32PNYKhJNomBxHVqtksJ9/7cSR6iNPs7neQ1XHemKWTuYqwYQMlPj1NDy0aslQU=
=IsiZ
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- HYP mode stub supports kexec/kdump on 32-bit
- improved PMU support
- virtual interrupt controller performance improvements
- support for userspace virtual interrupt controller (slower, but
necessary for KVM on the weird Broadcom SoCs used by the Raspberry
Pi 3)
MIPS:
- basic support for hardware virtualization (ImgTec P5600/P6600/I6400
and Cavium Octeon III)
PPC:
- in-kernel acceleration for VFIO
s390:
- support for guests without storage keys
- adapter interruption suppression
x86:
- usual range of nVMX improvements, notably nested EPT support for
accessed and dirty bits
- emulation of CPL3 CPUID faulting
generic:
- first part of VCPU thread request API
- kvm_stat improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (227 commits)
kvm: nVMX: Don't validate disabled secondary controls
KVM: put back #ifndef CONFIG_S390 around kvm_vcpu_kick
Revert "KVM: Support vCPU-based gfn->hva cache"
tools/kvm: fix top level makefile
KVM: x86: don't hold kvm->lock in KVM_SET_GSI_ROUTING
KVM: Documentation: remove VM mmap documentation
kvm: nVMX: Remove superfluous VMX instruction fault checks
KVM: x86: fix emulation of RSM and IRET instructions
KVM: mark requests that need synchronization
KVM: return if kvm_vcpu_wake_up() did wake up the VCPU
KVM: add explicit barrier to kvm_vcpu_kick
KVM: perform a wake_up in kvm_make_all_cpus_request
KVM: mark requests that do not need a wakeup
KVM: remove #ifndef CONFIG_S390 around kvm_vcpu_wake_up
KVM: x86: always use kvm_make_request instead of set_bit
KVM: add kvm_{test,clear}_request to replace {test,clear}_bit
s390: kvm: Cpu model support for msa6, msa7 and msa8
KVM: x86: remove irq disablement around KVM_SET_CLOCK/KVM_GET_CLOCK
kvm: better MWAIT emulation for guests
KVM: x86: virtualize cpuid faulting
...
Here is the big staging tree update for 4.12-rc1. And it's a big one,
adding about 350k new lines of crap^Wcode, mostly all in a big dump of
media drivers from Intel. But there's other new drivers in here as
well, yet-another-wifi driver, new IIO drivers, and a new crypto
accelerator. We also deleted a bunch of stuff, mostly in patch
cleanups, but also the Android ION code has shrunk a lot, and the
Android low memory killer driver was finally deleted, much to the
celebration of the -mm developers.
All of these have been in linux-next with a few build issues that will
show up when you merge to your tree, I'll follow up with fixes for those
after this gets merged.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCWQzzlQ8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ylNMgCcD+GoaF/Ml7YnULRl2GG/526II78AnitZ8qjd
rPqeowMIewYu9fgckLUc
=7rzO
-----END PGP SIGNATURE-----
Merge tag 'staging-4.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging
Pull staging/IIO updates from Greg KH:
"Here is the big staging tree update for 4.12-rc1.
It's a big one, adding about 350k new lines of crap^Wcode, mostly all
in a big dump of media drivers from Intel. But there's other new
drivers in here as well, yet-another-wifi driver, new IIO drivers, and
a new crypto accelerator.
We also deleted a bunch of stuff, mostly in patch cleanups, but also
the Android ION code has shrunk a lot, and the Android low memory
killer driver was finally deleted, much to the celebration of the -mm
developers.
All of these have been in linux-next with a few build issues that will
show up when you merge to your tree"
Merge conflicts in the new rtl8723bs driver (due to the wifi changes
this merge window) handled as per linux-next, courtesy of Stephen
Rothwell.
* tag 'staging-4.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging: (1182 commits)
staging: fsl-mc/dpio: add cpu <--> LE conversion for dpaa2_fd
staging: ks7010: remove line continuations in quoted strings
staging: vt6656: use tabs instead of spaces
staging: android: ion: Fix unnecessary initialization of static variable
staging: media: atomisp: fix range checking on clk_num
staging: media: atomisp: fix misspelled word in comment
staging: media: atomisp: kmap() can't fail
staging: atomisp: remove #ifdef for runtime PM functions
staging: atomisp: satm include directory is gone
atomisp: remove some more unused files
atomisp: remove hmm_load/store/clear indirections
atomisp: kill off mmgr_free
atomisp: clean up the hmm init/cleanup indirections
atomisp: handle allocation calls before init in the hmm layer
staging: fsl-dpaa2/eth: Add maintainer for Ethernet driver
staging: fsl-dpaa2/eth: Add TODO file
staging: fsl-dpaa2/eth: Add trace points
staging: fsl-dpaa2/eth: Add driver specific stats
staging: fsl-dpaa2/eth: Add ethtool support
staging: fsl-dpaa2/eth: Add Freescale DPAA2 Ethernet driver
...
Highlights include:
- Larger virtual address space on 64-bit server CPUs. By default we use a 128TB
virtual address space, but a process can request access to the full 512TB by
passing a hint to mmap().
- Support for the new Power9 "XIVE" interrupt controller.
- TLB flushing optimisations for the radix MMU on Power9.
- Support for CAPI cards on Power9, using the "Coherent Accelerator Interface
Architecture 2.0".
- The ability to configure the mmap randomisation limits at build and runtime.
- Several small fixes and cleanups to the kprobes code, as well as support for
KPROBES_ON_FTRACE.
- Major improvements to handling of system reset interrupts, correctly treating
them as NMIs, giving them a dedicated stack and using a new hypervisor call
to trigger them, all of which should aid debugging and robustness.
Many fixes and other minor enhancements.
Thanks to:
Alastair D'Silva, Alexey Kardashevskiy, Alistair Popple, Andrew Donnellan,
Aneesh Kumar K.V, Anshuman Khandual, Anton Blanchard, Balbir Singh, Ben
Hutchings, Benjamin Herrenschmidt, Bhupesh Sharma, Chris Packham, Christian
Zigotzky, Christophe Leroy, Christophe Lombard, Daniel Axtens, David Gibson,
Gautham R. Shenoy, Gavin Shan, Geert Uytterhoeven, Guilherme G. Piccoli,
Hamish Martin, Hari Bathini, Kees Cook, Laurent Dufour, Madhavan Srinivasan,
Mahesh J Salgaonkar, Mahesh Salgaonkar, Masami Hiramatsu, Matt Brown, Matthew
R. Ochs, Michael Neuling, Naveen N. Rao, Nicholas Piggin, Oliver O'Halloran,
Pan Xinhui, Paul Mackerras, Rashmica Gupta, Russell Currey, Sukadev
Bhattiprolu, Thadeu Lima de Souza Cascardo, Tobin C. Harding, Tyrel Datwyler,
Uma Krishnan, Vaibhav Jain, Vipin K Parashar, Yang Shi.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJZDHUMAAoJEFHr6jzI4aWAT7oQALkE2Nj3gjcn1z0SkFhq/1iO
Py9Elmqm4E+L6NKYtBY5dS8xVAJ088ffzERyqJ1FY1LHkB8tn8bWRcMQmbjAFzTI
V4TAzDNI890BN/F4ptrYRwNFxRBHAvZ4NDunTzagwYnwmTzW9PYHmOi4pvWTo3Tw
KFUQ0joLSEgHzyfXxYB3fyj41u8N0FZvhfazdNSqia2Y5Vwwv/ION5jKplDM+09Y
EtVEXFvaKAS1sjbM/d/Jo5rblHfR0D9/lYV10+jjyIokjzslIpyTbnj3izeYoM5V
I4h99372zfsEjBGPPXyM3khL3zizGMSDYRmJHQSaKxjtecS9SPywPTZ8ufO/aSzV
Ngq6nlND+f1zep29VQ0cxd3Jh40skWOXzxJaFjfDT25xa6FbfsWP2NCtk8PGylZ7
EyqTuCWkMgIP02KlX3oHvEB2LRRPCDmRU2zECecRGNJrIQwYC2xjoiVi7Q8Qe8rY
gr7Ib5Jj/a+uiTcCIy37+5nXq2s14/JBOKqxuYZIxeuZFvKYuRUipbKWO05WDOAz
m/pSzeC3J8AAoYiqR0gcSOuJTOnJpGhs7zrQFqnEISbXIwLW+ICumzOmTAiBqOEY
Rt8uW2gYkPwKLrE05445RfVUoERaAjaE06eRMOWS6slnngHmmnRJbf3PcoALiJkT
ediqGEj0/N1HMB31V5tS
=vSF3
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.12-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Highlights include:
- Larger virtual address space on 64-bit server CPUs. By default we
use a 128TB virtual address space, but a process can request access
to the full 512TB by passing a hint to mmap().
- Support for the new Power9 "XIVE" interrupt controller.
- TLB flushing optimisations for the radix MMU on Power9.
- Support for CAPI cards on Power9, using the "Coherent Accelerator
Interface Architecture 2.0".
- The ability to configure the mmap randomisation limits at build and
runtime.
- Several small fixes and cleanups to the kprobes code, as well as
support for KPROBES_ON_FTRACE.
- Major improvements to handling of system reset interrupts,
correctly treating them as NMIs, giving them a dedicated stack and
using a new hypervisor call to trigger them, all of which should
aid debugging and robustness.
- Many fixes and other minor enhancements.
Thanks to: Alastair D'Silva, Alexey Kardashevskiy, Alistair Popple,
Andrew Donnellan, Aneesh Kumar K.V, Anshuman Khandual, Anton
Blanchard, Balbir Singh, Ben Hutchings, Benjamin Herrenschmidt,
Bhupesh Sharma, Chris Packham, Christian Zigotzky, Christophe Leroy,
Christophe Lombard, Daniel Axtens, David Gibson, Gautham R. Shenoy,
Gavin Shan, Geert Uytterhoeven, Guilherme G. Piccoli, Hamish Martin,
Hari Bathini, Kees Cook, Laurent Dufour, Madhavan Srinivasan, Mahesh J
Salgaonkar, Mahesh Salgaonkar, Masami Hiramatsu, Matt Brown, Matthew
R. Ochs, Michael Neuling, Naveen N. Rao, Nicholas Piggin, Oliver
O'Halloran, Pan Xinhui, Paul Mackerras, Rashmica Gupta, Russell
Currey, Sukadev Bhattiprolu, Thadeu Lima de Souza Cascardo, Tobin C.
Harding, Tyrel Datwyler, Uma Krishnan, Vaibhav Jain, Vipin K Parashar,
Yang Shi"
* tag 'powerpc-4.12-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (214 commits)
powerpc/64s: Power9 has no LPCR[VRMASD] field so don't set it
powerpc/powernv: Fix TCE kill on NVLink2
powerpc/mm/radix: Drop support for CPUs without lockless tlbie
powerpc/book3s/mce: Move add_taint() later in virtual mode
powerpc/sysfs: Move #ifdef CONFIG_HOTPLUG_CPU out of the function body
powerpc/smp: Document irq enable/disable after migrating IRQs
powerpc/mpc52xx: Don't select user-visible RTAS_PROC
powerpc/powernv: Document cxl dependency on special case in pnv_eeh_reset()
powerpc/eeh: Clean up and document event handling functions
powerpc/eeh: Avoid use after free in eeh_handle_special_event()
cxl: Mask slice error interrupts after first occurrence
cxl: Route eeh events to all drivers in cxl_pci_error_detected()
cxl: Force context lock during EEH flow
powerpc/64: Allow CONFIG_RELOCATABLE if COMPILE_TEST
powerpc/xmon: Teach xmon oops about radix vectors
powerpc/mm/hash: Fix off-by-one in comment about kernel contexts ids
powerpc/pseries: Enable VFIO
powerpc/powernv: Fix iommu table size calculation hook for small tables
powerpc/powernv: Check kzalloc() return value in pnv_pci_table_alloc
powerpc: Add arch/powerpc/tools directory
...
This merges in the powerpc topic/xive branch to bring in the code for
the in-kernel XICS interrupt controller emulation to use the new XIVE
(eXternal Interrupt Virtualization Engine) hardware in the POWER9 chip
directly, rather than via a XICS emulation in firmware.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
With CONFIG_DEBUG_PREEMPT, get_paca() produces the following warning
in kvmppc_book3s_init_hv() since it calls debug_smp_processor_id().
There is no real issue with the xics_phys field.
If paca->kvm_hstate.xics_phys is non-zero on one cpu, it will be
non-zero on them all. Therefore this is not fixing any actual
problem, just the warning.
[ 138.521188] BUG: using smp_processor_id() in preemptible [00000000] code: modprobe/5596
[ 138.521308] caller is .kvmppc_book3s_init_hv+0x184/0x350 [kvm_hv]
[ 138.521404] CPU: 5 PID: 5596 Comm: modprobe Not tainted 4.11.0-rc3-00022-gc7e790c #1
[ 138.521509] Call Trace:
[ 138.521563] [c0000007d018b810] [c0000000023eef10] .dump_stack+0xe4/0x150 (unreliable)
[ 138.521694] [c0000007d018b8a0] [c000000001f6ec04] .check_preemption_disabled+0x134/0x150
[ 138.521829] [c0000007d018b940] [d00000000a010274] .kvmppc_book3s_init_hv+0x184/0x350 [kvm_hv]
[ 138.521963] [c0000007d018ba00] [c00000000191d5cc] .do_one_initcall+0x5c/0x1c0
[ 138.522082] [c0000007d018bad0] [c0000000023e9494] .do_init_module+0x84/0x240
[ 138.522201] [c0000007d018bb70] [c000000001aade18] .load_module+0x1f68/0x2a10
[ 138.522319] [c0000007d018bd20] [c000000001aaeb30] .SyS_finit_module+0xc0/0xf0
[ 138.522439] [c0000007d018be30] [c00000000191baec] system_call+0x38/0xfc
Signed-off-by: Denis Kirjanov <kda@linux-powerpc.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Users were expected to use kvm_check_request() for testing and clearing,
but request have expanded their use since then and some users want to
only test or do a faster clear.
Make sure that requests are not directly accessed with bit operations.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch makes KVM capable of using the XIVE interrupt controller
to provide the standard PAPR "XICS" style hypercalls. It is necessary
for proper operations when the host uses XIVE natively.
This has been lightly tested on an actual system, including PCI
pass-through with a TG3 device.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[mpe: Cleanup pr_xxx(), unsplit pr_xxx() strings, etc., fix build
failures by adding KVM_XIVE which depends on KVM_XICS and XIVE, and
adding empty stubs for the kvm_xive_xxx() routines, fixup subject,
integrate fixes from Paul for building PR=y HV=n]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
According to the PowerISA 2.07, mtspr and mfspr should not always
generate an illegal instruction exception when being used with an
undefined SPR, but rather treat the instruction as a NOP or inject a
privilege exception in some cases, too - depending on the SPR number.
Also turn the printk here into a ratelimited print statement, so that
the guest can not flood the dmesg log of the host by issueing lots of
illegal mtspr/mfspr instruction here.
Signed-off-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>