Use new ethtool [sg]et_tunable() to set tx_copybread (inline threshold)
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Amir Vadai <amirv@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
- Remove unused variable ring->poll_cnt
- No need to set some fields if using blueflame
- Add missing const's
- Use unlikely
- Remove unneeded new line
- Make some comments more precise
- struct mlx4_bf @offset field reduced to unsigned int to save space
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Amir Vadai <amirv@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Standard qdisc API to setup a timer implies an atomic operation on every
packet dequeue : qdisc_unthrottled()
It turns out this is not really needed for FQ, as FQ has no concept of
global qdisc throttling, being a qdisc handling many different flows,
some of them can be throttled, while others are not.
Fix is straightforward : add a 'bool throttle' to
qdisc_watchdog_schedule_ns(), and remove calls to qdisc_unthrottled()
in sch_fq.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The Openvswitch implementation is completely agnostic to the options
that are in use and can handle newly defined options without
further work. It does this by simply matching on a byte array
of options and allowing userspace to setup flows on this array.
Signed-off-by: Jesse Gross <jesse@nicira.com>
Singed-off-by: Ansis Atteka <aatteka@nicira.com>
Signed-off-by: Andy Zhou <azhou@nicira.com>
Acked-by: Thomas Graf <tgraf@noironetworks.com>
Acked-by: Pravin B Shelar <pshelar@nicira.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently, the flow information that is matched for tunnels and
the tunnel data passed around with packets is the same. However,
as additional information is added this is not necessarily desirable,
as in the case of pointers.
This adds a new structure for tunnel metadata which currently contains
only the existing struct. This change is purely internal to the kernel
since the current OVS_KEY_ATTR_IPV4_TUNNEL is simply a compressed version
of OVS_KEY_ATTR_TUNNEL that is translated at flow setup.
Signed-off-by: Jesse Gross <jesse@nicira.com>
Signed-off-by: Andy Zhou <azhou@nicira.com>
Acked-by: Pravin B Shelar <pshelar@nicira.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Some tunnel formats have mechanisms for indicating that packets are
OAM frames that should be handled specially (either as high priority or
not forwarded beyond an endpoint). This provides support for allowing
those types of packets to be matched.
Signed-off-by: Jesse Gross <jesse@nicira.com>
Signed-off-by: Andy Zhou <azhou@nicira.com>
Acked-by: Pravin B Shelar <pshelar@nicira.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This adds a device level support for Geneve -- Generic Network
Virtualization Encapsulation. The protocol is documented at
http://tools.ietf.org/html/draft-gross-geneve-01
Only protocol layer Geneve support is provided by this driver.
Openvswitch can be used for configuring, set up and tear down
functional Geneve tunnels.
Signed-off-by: Jesse Gross <jesse@nicira.com>
Signed-off-by: Andy Zhou <azhou@nicira.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
John W. Linville says:
====================
pull request: wireless-next 2014-10-03
Please pull tihs batch of updates intended for the 3.18 stream!
For the iwlwifi bits, Emmanuel says:
"I have here a few things that depend on the latest mac80211's changes:
RRM, TPC, Quiet Period etc... Eyal keeps improving our rate control
and we have a new device ID. This last patch should probably have
gone to wireless.git, but at that stage, I preferred to send it to
-next and CC stable."
For (most of) the Atheros bits, Kalle says:
"The only new feature is testmode support from me. Ben added a new method
to crash the firmware with an assert for debug purposes. As usual, we
have lots of smaller fixes from Michal. Matteo fixed a Kconfig
dependency with debugfs. I fixed some warnings recently added to
checkpatch."
For the NFC bits, Samuel says:
"We've had major updates for TI and ST Microelectronics drivers, and a
few NCI related changes.
For TI's trf7970a driver:
- Target mode support for trf7970a
- Suspend/resume support for trf7970a
- DT properties additions to handle different quirks
- A bunch of fixes for smartphone IOP related issues
For ST Microelectronics' ST21NFCA and ST21NFCB drivers:
- ISO15693 support for st21nfcb
- checkpatch and sparse related warning fixes
- Code cleanups and a few minor fixes
Finally, Marvell added ISO15693 support to the NCI stack, together with a
couple of NCI fixes."
For the Bluetooth bits, Johan says:
"This 3.18 pull request replaces the one I did on Monday ("bluetooth-next
2014-09-22", which hasn't been pulled yet). The additions since the last
request are:
- SCO connection fix for devices not supporting eSCO
- Cleanups regarding the SCO establishment logic
- Remove unnecessary return value from logging functions
- Header compression fix for 6lowpan
- Cleanups to the ieee802154/mrf24j40 driver
Here's a copy from previous request that this one replaces:
'
Here are some more patches for 3.18. They include various fixes to the
btusb HCI driver, a fix for LE SMP, as well as adding Jukka to the
MAINTAINERS file for generic 6LoWPAN (as requested by Alexander Aring).
I've held on to this pull request a bit since we were waiting for a SCO
related fix to get sorted out first. However, since the merge window is
getting closer I decided not to wait for it. If we do get the fix sorted
out there'll probably be a second small pull request later this week.
'"
And,
"Unless 3.17 gets delayed this will probably be our last -next pull request for
3.18. We've got:
- New Marvell hardware supportr
- Multicast support for 6lowpan
- Several of 6lowpan fixes & cleanups
- Fix for a (false-positive) lockdep warning in L2CAP
- Minor btusb cleanup"
On top of all that comes the usual sort of updates to ath5k, ath9k,
ath10k, brcmfmac, mwifiex, and wil6210. This time around there are
also a number of rtlwifi updates to enable some new hardware and
to reconcile the in-kernel drivers with some newer releases of the
Realtek vendor drivers. Also of note is some device tree work for
the bcma bus.
Please let me know if there are problems!
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Pablo Neira Ayuso says:
====================
Netfilter/IPVS updates for net-next
The following patchset contains another batch with Netfilter/IPVS updates
for net-next, they are:
1) Add abstracted ICMP codes to the nf_tables reject expression. We
introduce four reasons to reject using ICMP that overlap in IPv4
and IPv6 from the semantic point of view. This should simplify the
maintainance of dual stack rule-sets through the inet table.
2) Move nf_send_reset() functions from header files to per-family
nf_reject modules, suggested by Patrick McHardy.
3) We have to use IS_ENABLED(CONFIG_BRIDGE_NETFILTER) everywhere in the
code now that br_netfilter can be modularized. Convert remaining spots
in the network stack code.
4) Use rcu_barrier() in the nf_tables module removal path to ensure that
we don't leave object that are still pending to be released via
call_rcu (that may likely result in a crash).
5) Remove incomplete arch 32/64 compat from nft_compat. The original (bad)
idea was to probe the word size based on the xtables match/target info
size, but this assumption is wrong when you have to dump the information
back to userspace.
6) Allow to filter from prerouting and postrouting in the nf_tables bridge.
In order to emulate the ebtables NAT chains (which are actually simple
filter chains with no special semantics), we have support filtering from
this hooks too.
7) Add explicit module dependency between xt_physdev and br_netfilter.
This provides a way to detect if the user needs br_netfilter from
the configuration path. This should reduce the breakage of the
br_netfilter modularization.
8) Cleanup coding style in ip_vs.h, from Simon Horman.
9) Fix crash in the recently added nf_tables masq expression. We have
to register/unregister the notifiers to clean up the conntrack table
entries from the module init/exit path, not from the rule addition /
deletion path. From Arturo Borrero.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
the inet6 state INET6_IFADDR_STATE_UP only appeared in its definition.
Cc: Christoph Paasch <christoph.paasch@uclouvain.be>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sébastien Barré <sebastien.barre@uclouvain.be>
Signed-off-by: David S. Miller <davem@davemloft.net>
SKB_FCLONE_UNAVAILABLE has overloaded meaning depending on type of skb.
1: If skb is allocated from head_cache, it indicates fclone is not available.
2: If skb is a companion fclone skb (allocated from fclone_cache), it indicates
it is available to be used.
To avoid confusion for case 2 above, this patch replaces
SKB_FCLONE_UNAVAILABLE with SKB_FCLONE_FREE where appropriate. For fclone
companion skbs, this indicates it is free for use.
SKB_FCLONE_UNAVAILABLE will now simply indicate skb is from head_cache and
cannot / will not have a companion fclone.
Signed-off-by: Vijay Subramanian <subramanian.vijay@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch allows configuring IPIP, sit, and GRE tunnels to use GUE.
This is very similar to fou excpet that we need to insert the GUE header
in addition to the UDP header on transmit.
Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds support receiving for GUE packets in the fou module. The
fou module now supports direct foo-over-udp (no encapsulation header)
and GUE. To support this a type parameter is added to the fou netlink
parameters.
For a GUE socket we define gue_udp_recv, gue_gro_receive, and
gue_gro_complete to handle the specifics of the GUE protocol. Most
of the code to manage and configure sockets is common with the fou.
Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch removes fou[46]_gro_receive and fou[46]_gro_complete
functions. The v4 or v6 variants were chosen for the UDP offloads
based on the address family of the socket this is not necessary
or correct. Alternatively, this patch adds is_ipv6 to napi_gro_skb.
This is set in udp6_gro_receive and unset in udp4_gro_receive. In
fou_gro_receive the value is used to select the correct inet_offloads
for the protocol of the outer IP header.
Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch puts a common part as the first field of mlx5_core_qp. This field is
used to identify which resource generated an event. This is required since upcoming
new resource types such as DC targets are allocated for the same numerical space
as regular QPs and may generate the same events. By searching the resource in the
same table we can then look at the common field to identify the resource.
Signed-off-by: Eli Cohen <eli@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Transform device capabilities related commands to use set/get macros to
manipulate command mailboxes.
Signed-off-by: Eli Cohen <eli@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add an auto generated header file that describes hardware registers along with
set of macros that set/get values. The macros do static checks to avoid
overflow, handle endianess, and overall provide a clean way to code commands.
Currently the header file is small and we will add structs as we make use of
the macros.
A few commands were removed from the commands enum since they are not supported
currently and will be added when support is available.
Signed-off-by: Eli Cohen <eli@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Rearrange struct mlx5_caps so it has a "gen" field to represent the current
capabilities configured for the device. Max capabilities can also be queried
from the device. Also update capabilities struct to contain more fields as per
the latest revision if firmware specification.
Signed-off-by: Eli Cohen <eli@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Validation of skb can be pretty expensive :
GSO segmentation and/or checksum computations.
We can do this without holding qdisc lock, so that other cpus
can queue additional packets.
Trick is that requeued packets were already validated, so we carry
a boolean so that sch_direct_xmit() can validate a fresh skb list,
or directly use an old one.
Tested on 40Gb NIC (8 TX queues) and 200 concurrent flows, 48 threads
host.
Turning TSO on or off had no effect on throughput, only few more cpu
cycles. Lock contention on qdisc lock disappeared.
Same if disabling TX checksum offload.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Based on DaveM's recent API work on dev_hard_start_xmit(), that allows
sending/processing an entire skb list.
This patch implements qdisc bulk dequeue, by allowing multiple packets
to be dequeued in dequeue_skb().
The optimization principle for this is two fold, (1) to amortize
locking cost and (2) avoid expensive tailptr update for notifying HW.
(1) Several packets are dequeued while holding the qdisc root_lock,
amortizing locking cost over several packet. The dequeued SKB list is
processed under the TXQ lock in dev_hard_start_xmit(), thus also
amortizing the cost of the TXQ lock.
(2) Further more, dev_hard_start_xmit() will utilize the skb->xmit_more
API to delay HW tailptr update, which also reduces the cost per
packet.
One restriction of the new API is that every SKB must belong to the
same TXQ. This patch takes the easy way out, by restricting bulk
dequeue to qdisc's with the TCQ_F_ONETXQUEUE flag, that specifies the
qdisc only have attached a single TXQ.
Some detail about the flow; dev_hard_start_xmit() will process the skb
list, and transmit packets individually towards the driver (see
xmit_one()). In case the driver stops midway in the list, the
remaining skb list is returned by dev_hard_start_xmit(). In
sch_direct_xmit() this returned list is requeued by dev_requeue_skb().
To avoid overshooting the HW limits, which results in requeuing, the
patch limits the amount of bytes dequeued, based on the drivers BQL
limits. In-effect bulking will only happen for BQL enabled drivers.
Small amounts for extra HoL blocking (2x MTU/0.24ms) were
measured at 100Mbit/s, with bulking 8 packets, but the
oscillating nature of the measurement indicate something, like
sched latency might be causing this effect. More comparisons
show, that this oscillation goes away occationally. Thus, we
disregard this artifact completely and remove any "magic" bulking
limit.
For now, as a conservative approach, stop bulking when seeing TSO and
segmented GSO packets. They already benefit from bulking on their own.
A followup patch add this, to allow easier bisect-ability for finding
regressions.
Jointed work with Hannes, Daniel and Florian.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
Conflicts:
drivers/net/usb/r8152.c
net/netfilter/nfnetlink.c
Both r8152 and nfnetlink conflicts were simple overlapping changes.
Signed-off-by: David S. Miller <davem@davemloft.net>
Introduce netdev IOCTLs, to be used by the debug tools.
Allows to read/write single dword value or
memory block, aligned to dword
Different address modes supported:
- BAR offset
- Firmware "linker" address
- target's AHB bus
Signed-off-by: Vladimir Kondratiev <qca_vkondrat@qca.qualcomm.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
* Consistently use the multi-line comment style for networking code:
/* This
* That
* The other thing
*/
* Use single-line comment style for comments with only one line of text.
* In general follow the leading '*' of each line of a comment with a
single space and then text.
* Add missing line break between functions, remove double line break,
align comments to previous lines whenever possible.
Reported-by: Sergei Shtylyov <sergei.shtylyov@cogentembedded.com>
Signed-off-by: Simon Horman <horms@verge.net.au>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
You can use physdev to match the physical interface enslaved to the
bridge device. This information is stored in skb->nf_bridge and it is
set up by br_netfilter. So, this is only available when iptables is
used from the bridge netfilter path.
Since 34666d4 ("netfilter: bridge: move br_netfilter out of the core"),
the br_netfilter code is modular. To reduce the impact of this change,
we can autoload the br_netfilter if the physdev match is used since
we assume that the users need br_netfilter in place.
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Move nf_send_reset() and nf_send_reset6() to nf_reject_ipv4 and
nf_reject_ipv6 respectively. This code is shared by x_tables and
nf_tables.
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
This patch introduces the NFT_REJECT_ICMPX_UNREACH type which provides
an abstraction to the ICMP and ICMPv6 codes that you can use from the
inet and bridge tables, they are:
* NFT_REJECT_ICMPX_NO_ROUTE: no route to host - network unreachable
* NFT_REJECT_ICMPX_PORT_UNREACH: port unreachable
* NFT_REJECT_ICMPX_HOST_UNREACH: host unreachable
* NFT_REJECT_ICMPX_ADMIN_PROHIBITED: administratevely prohibited
You can still use the specific codes when restricting the rule to match
the corresponding layer 3 protocol.
I decided to not overload the existing NFT_REJECT_ICMP_UNREACH to have
different semantics depending on the table family and to allow the user
to specify ICMP family specific codes if they restrict it to the
corresponding family.
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Pull networking fixes from David Miller:
1) Don't halt the firmware in r8152 driver, from Hayes Wang.
2) Handle full sized 802.1ad frames in bnx2 and tg3 drivers properly,
from Vlad Yasevich.
3) Don't sleep while holding tx_clean_lock in netxen driver, fix from
Manish Chopra.
4) Certain kinds of ipv6 routes can end up endlessly failing the route
validation test, causing it to be re-looked up over and over again.
This particularly kills input route caching in TCP sockets. Fix
from Hannes Frederic Sowa.
5) netvsc_start_xmit() has a use-after-free access to skb->len, fix
from K Y Srinivasan.
6) Fix matching of inverted containers in ematch module, from Ignacy
Gawędzki.
7) Aggregation of GRO frames via SKB ->frag_list for linear skbs isn't
handled properly, regression fix from Eric Dumazet.
8) Don't test return value of ipv4_neigh_lookup(), which returns an
error pointer, against NULL. From WANG Cong.
9) Fix an old regression where we mistakenly allow a double add of the
same tunnel. Fixes from Steffen Klassert.
10) macvtap device delete and open can run in parallel and corrupt lists
etc., fix from Vlad Yasevich.
11) Fix build error with IPV6=m NETFILTER_XT_TARGET_TPROXY=y, from Pablo
Neira Ayuso.
12) rhashtable_destroy() triggers lockdep splats, fix also from Pablo.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (32 commits)
bna: Update Maintainer Email
r8152: disable power cut for RTL8153
r8152: remove clearing bp
bnx2: Correctly receive full sized 802.1ad fragmes
tg3: Allow for recieve of full-size 8021AD frames
r8152: fix setting RTL8152_UNPLUG
netxen: Fix bug in Tx completion path.
netxen: Fix BUG "sleeping function called from invalid context"
ipv6: remove rt6i_genid
hyperv: Fix a bug in netvsc_start_xmit()
net: stmmac: fix stmmac_pci_probe failed when CONFIG_HAVE_CLK is selected
ematch: Fix matching of inverted containers.
gro: fix aggregation for skb using frag_list
neigh: check error pointer instead of NULL for ipv4_neigh_lookup()
ip6_gre: Return an error when adding an existing tunnel.
ip6_vti: Return an error when adding an existing tunnel.
ip6_tunnel: Return an error when adding an existing tunnel.
ip6gre: add a rtnl link alias for ip6gretap
net/mlx4_core: Allow not to specify probe_vf in SRIOV IB mode
r8152: fix the carrier off when autoresuming
...
Signed-off-by: Petri Gynther <pgynther@google.com>
Acked-by: Florian Fainelli <f.fainelli@gmai.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This fixes the following crash:
[ 63.976822] general protection fault: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
[ 63.980094] CPU: 1 PID: 15 Comm: ksoftirqd/1 Not tainted 3.17.0-rc6+ #648
[ 63.980094] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011
[ 63.980094] task: ffff880117dea690 ti: ffff880117dfc000 task.ti: ffff880117dfc000
[ 63.980094] RIP: 0010:[<ffffffff817e6d07>] [<ffffffff817e6d07>] u32_destroy_key+0x27/0x6d
[ 63.980094] RSP: 0018:ffff880117dffcc0 EFLAGS: 00010202
[ 63.980094] RAX: ffff880117dea690 RBX: ffff8800d02e0820 RCX: 0000000000000000
[ 63.980094] RDX: 0000000000000001 RSI: 0000000000000002 RDI: 6b6b6b6b6b6b6b6b
[ 63.980094] RBP: ffff880117dffcd0 R08: 0000000000000000 R09: 0000000000000000
[ 63.980094] R10: 00006c0900006ba8 R11: 00006ba100006b9d R12: 0000000000000001
[ 63.980094] R13: ffff8800d02e0898 R14: ffffffff817e6d4d R15: ffff880117387a30
[ 63.980094] FS: 0000000000000000(0000) GS:ffff88011a800000(0000) knlGS:0000000000000000
[ 63.980094] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[ 63.980094] CR2: 00007f07e6732fed CR3: 000000011665b000 CR4: 00000000000006e0
[ 63.980094] Stack:
[ 63.980094] ffff88011a9cd300 ffffffff82051ac0 ffff880117dffce0 ffffffff817e6d68
[ 63.980094] ffff880117dffd70 ffffffff810cb4c7 ffffffff810cb3cd ffff880117dfffd8
[ 63.980094] ffff880117dea690 ffff880117dea690 ffff880117dfffd8 000000000000000a
[ 63.980094] Call Trace:
[ 63.980094] [<ffffffff817e6d68>] u32_delete_key_freepf_rcu+0x1b/0x1d
[ 63.980094] [<ffffffff810cb4c7>] rcu_process_callbacks+0x3bb/0x691
[ 63.980094] [<ffffffff810cb3cd>] ? rcu_process_callbacks+0x2c1/0x691
[ 63.980094] [<ffffffff817e6d4d>] ? u32_destroy_key+0x6d/0x6d
[ 63.980094] [<ffffffff810780a4>] __do_softirq+0x142/0x323
[ 63.980094] [<ffffffff810782a8>] run_ksoftirqd+0x23/0x53
[ 63.980094] [<ffffffff81092126>] smpboot_thread_fn+0x203/0x221
[ 63.980094] [<ffffffff81091f23>] ? smpboot_unpark_thread+0x33/0x33
[ 63.980094] [<ffffffff8108e44d>] kthread+0xc9/0xd1
[ 63.980094] [<ffffffff819e00ea>] ? do_wait_for_common+0xf8/0x125
[ 63.980094] [<ffffffff8108e384>] ? __kthread_parkme+0x61/0x61
[ 63.980094] [<ffffffff819e43ec>] ret_from_fork+0x7c/0xb0
[ 63.980094] [<ffffffff8108e384>] ? __kthread_parkme+0x61/0x61
tp could be freed in call_rcu callback too, the order is not guaranteed.
John Fastabend says:
====================
Its worth noting why this is safe. Any running schedulers will either
read the valid class field or it will be zeroed.
All schedulers today when the class is 0 do a lookup using the
same call used by the tcf_exts_bind(). So even if we have a running
classifier hit the null class pointer it will do a lookup and get
to the same result. This is particularly fragile at the moment because
the only way to verify this is to audit the schedulers call sites.
====================
Cc: John Fastabend <john.r.fastabend@intel.com>
Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com>
Acked-by: John Fastabend <john.r.fastabend@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
skb_udp_segment is the function called from udp4_ufo_fragment to
segment a UDP tunnel packet. This function currently assumes
segmentation is transparent Ethernet bridging (i.e. VXLAN
encapsulation). This patch generalizes the function to
operate on either Ethertype or IP protocol.
The inner_protocol field must be set to the protocol of the inner
header. This can now be either an Ethertype or an IP protocol
(in a union). A new flag in the skbuff indicates which type is
effective. skb_set_inner_protocol and skb_set_inner_ipproto
helper functions were added to set the inner_protocol. These
functions are called from the point where the tunnel encapsulation
is occuring.
When skb_udp_tunnel_segment is called, the function to segment the
inner packet is selected based on the inner IP or Ethertype. In the
case of an IP protocol encapsulation, the function is derived from
inet[6]_offloads. In the case of Ethertype, skb->protocol is
set to the inner_protocol and skb_mac_gso_segment is called. (GRE
currently does this, but it might be possible to lookup the protocol
in offload_base and call the appropriate segmenation function
directly).
Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Lets use a proper structure to clearly document and implement
skb fast clones.
Then, we might experiment more easily alternative layouts.
This patch adds a new skb_fclone_busy() helper, used by tcp and xfrm,
to stop leaking of implementation details.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
No caller uses the return value, so make this function return void.
Signed-off-by: Li RongQing <roy.qing.li@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In the new flow, we separate the pci initialization and teardown
from the initialization and teardown of the other resources.
__mlx4_init_one handles the pci resources initialization. It then
calls mlx4_load_one to initialize the remainder of the resources.
When removing a device, mlx4_remove_one is invoked. However, now
mlx4_remove_one calls mlx4_unload_one to free all the resources except the pci
resources. When mlx4_unload_one returns, mlx4_remove_one then frees the
pci resources.
The above separation will allow us to implement 'reset flow' in the future.
It will also enable more EQs for VFs and is a pre-step to the modern API to
enable/disable SRIOV.
Also added nvfs; an integer array of size MLX4_MAX_PORTS + 1; to the mlx4_dev
struct. This new field is used to avoid parsing the num_vfs module parameter
each time the mlx4_restart_one is called.
Signed-off-by: Majd Dibbiny <majd@mellanox.com>
Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Eric Dumazet noticed that all no-nonexthop or no-gateway routes which
are already marked DST_HOST (e.g. input routes routes) will always be
invalidated during sk_dst_check. Thus per-socket dst caching absolutely
had no effect and early demuxing had no effect.
Thus this patch removes rt6i_genid: fn_sernum already gets modified during
add operations, so we only must ensure we mutate fn_sernum during ipv6
address remove operations. This is a fairly cost extensive operations,
but address removal should not happen that often. Also our mtu update
functions do the same and we heard no complains so far. xfrm policy
changes also cause a call into fib6_flush_trees. Also plug a hole in
rt6_info (no cacheline changes).
I verified via tracing that this change has effect.
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: YOSHIFUJI Hideaki <hideaki@yoshifuji.org>
Cc: Vlad Yasevich <vyasevich@gmail.com>
Cc: Nicolas Dichtel <nicolas.dichtel@6wind.com>
Cc: Martin Lau <kafai@fb.com>
Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This driver is used by the bcm53xx ARM SoC code. Now it is possible to
give the address of the chipcommon core in device tree and bcma will
search for all the other cores.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
After previous patches to simplify qstats the qstats can be
made per cpu with a packed union in Qdisc struct.
Signed-off-by: John Fastabend <john.r.fastabend@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This removes the use of qstats->qlen variable from the classifiers
and makes it an explicit argument to gnet_stats_copy_queue().
The qlen represents the qdisc queue length and is packed into
the qstats at the last moment before passnig to user space. By
handling it explicitely we avoid, in the percpu stats case, having
to figure out which per_cpu variable to put it in.
It would probably be best to remove it from qstats completely
but qstats is a user space ABI and can't be broken. A future
patch could make an internal only qstats structure that would
avoid having to allocate an additional u32 variable on the
Qdisc struct. This would make the qstats struct 128bits instead
of 128+32.
Signed-off-by: John Fastabend <john.r.fastabend@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This adds helpers to manipulate qstats logic and replaces locations
that touch the counters directly. This simplifies future patches
to push qstats onto per cpu counters.
Signed-off-by: John Fastabend <john.r.fastabend@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In order to run qdisc's without locking statistics and estimators
need to be handled correctly.
To resolve bstats make the statistics per cpu. And because this is
only needed for qdiscs that are running without locks which is not
the case for most qdiscs in the near future only create percpu
stats when qdiscs set the TCQ_F_CPUSTATS flag.
Next because estimators use the bstats to calculate packets per
second and bytes per second the estimator code paths are updated
to use the per cpu statistics.
Signed-off-by: John Fastabend <john.r.fastabend@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds a new mode of operation to macvlan, called "source".
It allows one to set a list of allowed mac address, which is used
to match against source mac address from received frames on underlying
interface.
This enables creating mac based VLAN associations, instead of standard
port or tag based. The feature is useful to deploy 802.1x mac based
behavior, where drivers of underlying interfaces doesn't allows that.
Configuration is done through the netlink interface using e.g.:
ip link add link eth0 name macvlan0 type macvlan mode source
ip link add link eth0 name macvlan1 type macvlan mode source
ip link set link dev macvlan0 type macvlan macaddr add 00:11:11:11:11:11
ip link set link dev macvlan0 type macvlan macaddr add 00:22:22:22:22:22
ip link set link dev macvlan0 type macvlan macaddr add 00:33:33:33:33:33
ip link set link dev macvlan1 type macvlan macaddr add 00:33:33:33:33:33
ip link set link dev macvlan1 type macvlan macaddr add 00:44:44:44:44:44
This allows clients with MAC addresses 00:11:11:11:11:11,
00:22:22:22:22:22 to be part of only VLAN associated with macvlan0
interface. Clients with MAC addresses 00:44:44:44:44:44 with only VLAN
associated with macvlan1 interface. And client with MAC address
00:33:33:33:33:33 to be associated with both VLANs.
Based on work of Stefan Gula <steweg@gmail.com>
v8: last version of Stefan Gula for Kernel 3.2.1
v9: rework onto linux-next 2014-03-12 by Michael Braun
add MACADDR_SET command, enable to configure mac for source mode
while creating interface
v10:
- reduce indention level
- rename source_list to source_entry
- use aligned 64bit ether address
- use hash_64 instead of addr[5]
v11:
- rebase for 3.14 / linux-next 20.04.2014
v12
- rebase for linux-next 2014-09-25
Signed-off-by: Michael Braun <michael-dev@fami-braun.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
Pablo Neira Ayuso says:
====================
pull request: netfilter/ipvs updates for net-next
The following patchset contains Netfilter/IPVS updates for net-next,
most relevantly they are:
1) Four patches to make the new nf_tables masquerading support
independent of the x_tables infrastructure. This also resolves a
compilation breakage if the masquerade target is disabled but the
nf_tables masq expression is enabled.
2) ipset updates via Jozsef Kadlecsik. This includes the addition of the
skbinfo extension that allows you to store packet metainformation in the
elements. This can be used to fetch and restore this to the packets through
the iptables SET target, patches from Anton Danilov.
3) Add the hash:mac set type to ipset, from Jozsef Kadlecsick.
4) Add simple weighted fail-over scheduler via Simon Horman. This provides
a fail-over IPVS scheduler (unlike existing load balancing schedulers).
Connections are directed to the appropriate server based solely on
highest weight value and server availability, patch from Kenny Mathis.
5) Support IPv6 real servers in IPv4 virtual-services and vice versa.
Simon Horman informs that the motivation for this is to allow more
flexibility in the choice of IP version offered by both virtual-servers
and real-servers as they no longer need to match: An IPv4 connection
from an end-user may be forwarded to a real-server using IPv6 and
vice versa. No ip_vs_sync support yet though. Patches from Alex Gartrell
and Julian Anastasov.
6) Add global generation ID to the nf_tables ruleset. When dumping from
several different object lists, we need a way to identify that an update
has ocurred so userspace knows that it needs to refresh its lists. This
also includes a new command to obtain the 32-bits generation ID. The
less significant 16-bits of this ID is also exposed through res_id field
in the nfnetlink header to quickly detect the interference and retry when
there is no risk of ID wraparound.
7) Move br_netfilter out of the bridge core. The br_netfilter code is
built in the bridge core by default. This causes problems of different
kind to people that don't want this: Jesper reported performance drop due
to the inconditional hook registration and I remember to have read complains
on netdev from people regarding the unexpected behaviour of our bridging
stack when br_netfilter is enabled (fragmentation handling, layer 3 and
upper inspection). People that still need this should easily undo the
damage by modprobing the new br_netfilter module.
8) Dump the set policy nf_tables that allows set parameterization. So
userspace can keep user-defined preferences when saving the ruleset.
From Arturo Borrero.
9) Use __seq_open_private() helper function to reduce boiler plate code
in x_tables, From Rob Jones.
10) Safer default behaviour in case that you forget to load the protocol
tracker. Daniel Borkmann and Florian Westphal detected that if your
ruleset is stateful, you allow traffic to at least one single SCTP port
and the SCTP protocol tracker is not loaded, then any SCTP traffic may
be pass through unfiltered. After this patch, the connection tracking
classifies SCTP/DCCP/UDPlite/GRE packets as invalid if your kernel has
been compiled with support for these modules.
====================
Trivially resolved conflict in include/linux/skbuff.h, Eric moved some
netfilter skbuff members around, and the netfilter tree adjusted the
ifdef guards for the bridging info pointer.
Signed-off-by: David S. Miller <davem@davemloft.net>
After Octavian Purdilas tcp ipv4/ipv6 unification work this helper only
has a single callsite.
While at it, convert name to lowercase, suggested by Stephen.
Suggested-by: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
The com20020-pci driver is currently designed to instance
one netdev with one pci device. This patch adds support to
instance many cards with one pci device, depending on the device
data in the private data.
Signed-off-by: Michael Grzeschik <m.grzeschik@pengutronix.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds metadata for the com20020 to prepare for devices with
multiple io address areas with multi card interfaces.
Signed-off-by: Michael Grzeschik <m.grzeschik@pengutronix.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
With proliferation of bit fields in sk_buff, __copy_skb_header() became
quite expensive, showing as the most expensive function in a GSO
workload.
__copy_skb_header() performance is also critical for non GSO TCP
operations, as it is used from skb_clone()
This patch carefully moves all the fields that were not copied in a
separate zone : cloned, nohdr, fclone, peeked, head_frag, xmit_more
Then I moved all other fields and all other copied fields in a section
delimited by headers_start[0]/headers_end[0] section so that we
can use a single memcpy() call, inlined by compiler using long
word load/stores.
I also tried to make all copies in the natural orders of sk_buff,
to help hardware prefetching.
I made sure sk_buff size did not change.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We want to know in which cases the user explicitly sets the policy
options. In that case, we also want to dump back the info.
Signed-off-by: Arturo Borrero Gonzalez <arturo.borrero.glez@gmail.com>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
This work adds the DataCenter TCP (DCTCP) congestion control
algorithm [1], which has been first published at SIGCOMM 2010 [2],
resp. follow-up analysis at SIGMETRICS 2011 [3] (and also, more
recently as an informational IETF draft available at [4]).
DCTCP is an enhancement to the TCP congestion control algorithm for
data center networks. Typical data center workloads are i.e.
i) partition/aggregate (queries; bursty, delay sensitive), ii) short
messages e.g. 50KB-1MB (for coordination and control state; delay
sensitive), and iii) large flows e.g. 1MB-100MB (data update;
throughput sensitive). DCTCP has therefore been designed for such
environments to provide/achieve the following three requirements:
* High burst tolerance (incast due to partition/aggregate)
* Low latency (short flows, queries)
* High throughput (continuous data updates, large file
transfers) with commodity, shallow buffered switches
The basic idea of its design consists of two fundamentals: i) on the
switch side, packets are being marked when its internal queue
length > threshold K (K is chosen so that a large enough headroom
for marked traffic is still available in the switch queue); ii) the
sender/host side maintains a moving average of the fraction of marked
packets, so each RTT, F is being updated as follows:
F := X / Y, where X is # of marked ACKs, Y is total # of ACKs
alpha := (1 - g) * alpha + g * F, where g is a smoothing constant
The resulting alpha (iow: probability that switch queue is congested)
is then being used in order to adaptively decrease the congestion
window W:
W := (1 - (alpha / 2)) * W
The means for receiving marked packets resp. marking them on switch
side in DCTCP is the use of ECN.
RFC3168 describes a mechanism for using Explicit Congestion Notification
from the switch for early detection of congestion, rather than waiting
for segment loss to occur.
However, this method only detects the presence of congestion, not
the *extent*. In the presence of mild congestion, it reduces the TCP
congestion window too aggressively and unnecessarily affects the
throughput of long flows [4].
DCTCP, as mentioned, enhances Explicit Congestion Notification (ECN)
processing to estimate the fraction of bytes that encounter congestion,
rather than simply detecting that some congestion has occurred. DCTCP
then scales the TCP congestion window based on this estimate [4],
thus it can derive multibit feedback from the information present in
the single-bit sequence of marks in its control law. And thus act in
*proportion* to the extent of congestion, not its *presence*.
Switches therefore set the Congestion Experienced (CE) codepoint in
packets when internal queue lengths exceed threshold K. Resulting,
DCTCP delivers the same or better throughput than normal TCP, while
using 90% less buffer space.
It was found in [2] that DCTCP enables the applications to handle 10x
the current background traffic, without impacting foreground traffic.
Moreover, a 10x increase in foreground traffic did not cause any
timeouts, and thus largely eliminates TCP incast collapse problems.
The algorithm itself has already seen deployments in large production
data centers since then.
We did a long-term stress-test and analysis in a data center, short
summary of our TCP incast tests with iperf compared to cubic:
This test measured DCTCP throughput and latency and compared it with
CUBIC throughput and latency for an incast scenario. In this test, 19
senders sent at maximum rate to a single receiver. The receiver simply
ran iperf -s.
The senders ran iperf -c <receiver> -t 30. All senders started
simultaneously (using local clocks synchronized by ntp).
This test was repeated multiple times. Below shows the results from a
single test. Other tests are similar. (DCTCP results were extremely
consistent, CUBIC results show some variance induced by the TCP timeouts
that CUBIC encountered.)
For this test, we report statistics on the number of TCP timeouts,
flow throughput, and traffic latency.
1) Timeouts (total over all flows, and per flow summaries):
CUBIC DCTCP
Total 3227 25
Mean 169.842 1.316
Median 183 1
Max 207 5
Min 123 0
Stddev 28.991 1.600
Timeout data is taken by measuring the net change in netstat -s
"other TCP timeouts" reported. As a result, the timeout measurements
above are not restricted to the test traffic, and we believe that it
is likely that all of the "DCTCP timeouts" are actually timeouts for
non-test traffic. We report them nevertheless. CUBIC will also include
some non-test timeouts, but they are drawfed by bona fide test traffic
timeouts for CUBIC. Clearly DCTCP does an excellent job of preventing
TCP timeouts. DCTCP reduces timeouts by at least two orders of
magnitude and may well have eliminated them in this scenario.
2) Throughput (per flow in Mbps):
CUBIC DCTCP
Mean 521.684 521.895
Median 464 523
Max 776 527
Min 403 519
Stddev 105.891 2.601
Fairness 0.962 0.999
Throughput data was simply the average throughput for each flow
reported by iperf. By avoiding TCP timeouts, DCTCP is able to
achieve much better per-flow results. In CUBIC, many flows
experience TCP timeouts which makes flow throughput unpredictable and
unfair. DCTCP, on the other hand, provides very clean predictable
throughput without incurring TCP timeouts. Thus, the standard deviation
of CUBIC throughput is dramatically higher than the standard deviation
of DCTCP throughput.
Mean throughput is nearly identical because even though cubic flows
suffer TCP timeouts, other flows will step in and fill the unused
bandwidth. Note that this test is something of a best case scenario
for incast under CUBIC: it allows other flows to fill in for flows
experiencing a timeout. Under situations where the receiver is issuing
requests and then waiting for all flows to complete, flows cannot fill
in for timed out flows and throughput will drop dramatically.
3) Latency (in ms):
CUBIC DCTCP
Mean 4.0088 0.04219
Median 4.055 0.0395
Max 4.2 0.085
Min 3.32 0.028
Stddev 0.1666 0.01064
Latency for each protocol was computed by running "ping -i 0.2
<receiver>" from a single sender to the receiver during the incast
test. For DCTCP, "ping -Q 0x6 -i 0.2 <receiver>" was used to ensure
that traffic traversed the DCTCP queue and was not dropped when the
queue size was greater than the marking threshold. The summary
statistics above are over all ping metrics measured between the single
sender, receiver pair.
The latency results for this test show a dramatic difference between
CUBIC and DCTCP. CUBIC intentionally overflows the switch buffer
which incurs the maximum queue latency (more buffer memory will lead
to high latency.) DCTCP, on the other hand, deliberately attempts to
keep queue occupancy low. The result is a two orders of magnitude
reduction of latency with DCTCP - even with a switch with relatively
little RAM. Switches with larger amounts of RAM will incur increasing
amounts of latency for CUBIC, but not for DCTCP.
4) Convergence and stability test:
This test measured the time that DCTCP took to fairly redistribute
bandwidth when a new flow commences. It also measured DCTCP's ability
to remain stable at a fair bandwidth distribution. DCTCP is compared
with CUBIC for this test.
At the commencement of this test, a single flow is sending at maximum
rate (near 10 Gbps) to a single receiver. One second after that first
flow commences, a new flow from a distinct server begins sending to
the same receiver as the first flow. After the second flow has sent
data for 10 seconds, the second flow is terminated. The first flow
sends for an additional second. Ideally, the bandwidth would be evenly
shared as soon as the second flow starts, and recover as soon as it
stops.
The results of this test are shown below. Note that the flow bandwidth
for the two flows was measured near the same time, but not
simultaneously.
DCTCP performs nearly perfectly within the measurement limitations
of this test: bandwidth is quickly distributed fairly between the two
flows, remains stable throughout the duration of the test, and
recovers quickly. CUBIC, in contrast, is slow to divide the bandwidth
fairly, and has trouble remaining stable.
CUBIC DCTCP
Seconds Flow 1 Flow 2 Seconds Flow 1 Flow 2
0 9.93 0 0 9.92 0
0.5 9.87 0 0.5 9.86 0
1 8.73 2.25 1 6.46 4.88
1.5 7.29 2.8 1.5 4.9 4.99
2 6.96 3.1 2 4.92 4.94
2.5 6.67 3.34 2.5 4.93 5
3 6.39 3.57 3 4.92 4.99
3.5 6.24 3.75 3.5 4.94 4.74
4 6 3.94 4 5.34 4.71
4.5 5.88 4.09 4.5 4.99 4.97
5 5.27 4.98 5 4.83 5.01
5.5 4.93 5.04 5.5 4.89 4.99
6 4.9 4.99 6 4.92 5.04
6.5 4.93 5.1 6.5 4.91 4.97
7 4.28 5.8 7 4.97 4.97
7.5 4.62 4.91 7.5 4.99 4.82
8 5.05 4.45 8 5.16 4.76
8.5 5.93 4.09 8.5 4.94 4.98
9 5.73 4.2 9 4.92 5.02
9.5 5.62 4.32 9.5 4.87 5.03
10 6.12 3.2 10 4.91 5.01
10.5 6.91 3.11 10.5 4.87 5.04
11 8.48 0 11 8.49 4.94
11.5 9.87 0 11.5 9.9 0
SYN/ACK ECT test:
This test demonstrates the importance of ECT on SYN and SYN-ACK packets
by measuring the connection probability in the presence of competing
flows for a DCTCP connection attempt *without* ECT in the SYN packet.
The test was repeated five times for each number of competing flows.
Competing Flows 1 | 2 | 4 | 8 | 16
------------------------------
Mean Connection Probability 1 | 0.67 | 0.45 | 0.28 | 0
Median Connection Probability 1 | 0.65 | 0.45 | 0.25 | 0
As the number of competing flows moves beyond 1, the connection
probability drops rapidly.
Enabling DCTCP with this patch requires the following steps:
DCTCP must be running both on the sender and receiver side in your
data center, i.e.:
sysctl -w net.ipv4.tcp_congestion_control=dctcp
Also, ECN functionality must be enabled on all switches in your
data center for DCTCP to work. The default ECN marking threshold (K)
heuristic on the switch for DCTCP is e.g., 20 packets (30KB) at
1Gbps, and 65 packets (~100KB) at 10Gbps (K > 1/7 * C * RTT, [4]).
In above tests, for each switch port, traffic was segregated into two
queues. For any packet with a DSCP of 0x01 - or equivalently a TOS of
0x04 - the packet was placed into the DCTCP queue. All other packets
were placed into the default drop-tail queue. For the DCTCP queue,
RED/ECN marking was enabled, here, with a marking threshold of 75 KB.
More details however, we refer you to the paper [2] under section 3).
There are no code changes required to applications running in user
space. DCTCP has been implemented in full *isolation* of the rest of
the TCP code as its own congestion control module, so that it can run
without a need to expose code to the core of the TCP stack, and thus
nothing changes for non-DCTCP users.
Changes in the CA framework code are minimal, and DCTCP algorithm
operates on mechanisms that are already available in most Silicon.
The gain (dctcp_shift_g) is currently a fixed constant (1/16) from
the paper, but we leave the option that it can be chosen carefully
to a different value by the user.
In case DCTCP is being used and ECN support on peer site is off,
DCTCP falls back after 3WHS to operate in normal TCP Reno mode.
ss {-4,-6} -t -i diag interface:
... dctcp wscale:7,7 rto:203 rtt:2.349/0.026 mss:1448 cwnd:2054
ssthresh:1102 ce_state 0 alpha 15 ab_ecn 0 ab_tot 735584
send 10129.2Mbps pacing_rate 20254.1Mbps unacked:1822 retrans:0/15
reordering:101 rcv_space:29200
... dctcp-reno wscale:7,7 rto:201 rtt:0.711/1.327 ato:40 mss:1448
cwnd:10 ssthresh:1102 fallback_mode send 162.9Mbps pacing_rate
325.5Mbps rcv_rtt:1.5 rcv_space:29200
More information about DCTCP can be found in [1-4].
[1] http://simula.stanford.edu/~alizade/Site/DCTCP.html
[2] http://simula.stanford.edu/~alizade/Site/DCTCP_files/dctcp-final.pdf
[3] http://simula.stanford.edu/~alizade/Site/DCTCP_files/dctcp_analysis-full.pdf
[4] http://tools.ietf.org/html/draft-bensley-tcpm-dctcp-00
Joint work with Florian Westphal and Glenn Judd.
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Glenn Judd <glenn.judd@morganstanley.com>
Acked-by: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
DataCenter TCP (DCTCP) determines cwnd growth based on ECN information
and ACK properties, e.g. ACK that updates window is treated differently
than DUPACK.
Also DCTCP needs information whether ACK was delayed ACK. Furthermore,
DCTCP also implements a CE state machine that keeps track of CE markings
of incoming packets.
Therefore, extend the congestion control framework to provide these
event types, so that DCTCP can be properly implemented as a normal
congestion algorithm module outside of the core stack.
Joint work with Daniel Borkmann and Glenn Judd.
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: Glenn Judd <glenn.judd@morganstanley.com>
Acked-by: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
The congestion control ops "cwnd_event" currently supports
CA_EVENT_FAST_ACK and CA_EVENT_SLOW_ACK events (among others).
Both FAST and SLOW_ACK are only used by Westwood congestion
control algorithm.
This removes both flags from cwnd_event and adds a new
in_ack_event callback for this. The goal is to be able to
provide more detailed information about ACKs, such as whether
ECE flag was set, or whether the ACK resulted in a window
update.
It is required for DataCenter TCP (DCTCP) congestion control
algorithm as it makes a different choice depending on ECE being
set or not.
Joint work with Daniel Borkmann and Glenn Judd.
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: Glenn Judd <glenn.judd@morganstanley.com>
Acked-by: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds a flag to TCP congestion algorithms that allows
for requesting to mark IPv4/IPv6 sockets with transport as ECN
capable, that is, ECT(0), when required by a congestion algorithm.
It is currently used and needed in DataCenter TCP (DCTCP), as it
requires both peers to assert ECT on all IP packets sent - it
uses ECN feedback (i.e. CE, Congestion Encountered information)
from switches inside the data center to derive feedback to the
end hosts.
Therefore, simply add a new flag to icsk_ca_ops. Note that DCTCP's
algorithm/behaviour slightly diverges from RFC3168, therefore this
is only (!) enabled iff the assigned congestion control ops module
has requested this. By that, we can tightly couple this logic really
only to the provided congestion control ops.
Joint work with Florian Westphal and Glenn Judd.
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Glenn Judd <glenn.judd@morganstanley.com>
Acked-by: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: David S. Miller <davem@davemloft.net>