Cortex-A510's erratum #2077057 causes SPSR_EL2 to be corrupted when
single-stepping authenticated ERET instructions. A single step is
expected, but a pointer authentication trap is taken instead. The
erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
Because the conditions require an ERET into active-not-pending state,
this is only a problem for the EL2 when EL2 is stepping EL1. In this case
the previous SPSR_EL2 value is preserved in struct kvm_vcpu, and can be
restored.
Cc: stable@vger.kernel.org # 53960faf2b: arm64: Add Cortex-A510 CPU part definition
Cc: stable@vger.kernel.org
Signed-off-by: James Morse <james.morse@arm.com>
[maz: fixup cpucaps ordering]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220127122052.1584324-5-james.morse@arm.com
TRBE implementations affected by Arm erratum #1902691 might corrupt trace
data or deadlock, when it's being written into the memory. So effectively
TRBE is broken and hence cannot be used to capture trace data. This adds
a new errata ARM64_ERRATUM_1902691 in arm64 errata framework.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Suzuki Poulose <suzuki.poulose@arm.com>
Cc: coresight@lists.linaro.org
Cc: linux-doc@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/1643120437-14352-5-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
TRBE implementations affected by Arm erratum #2038923 might get TRBE into
an inconsistent view on whether trace is prohibited within the CPU. As a
result, the trace buffer or trace buffer state might be corrupted. This
happens after TRBE buffer has been enabled by setting TRBLIMITR_EL1.E,
followed by just a single context synchronization event before execution
changes from a context, in which trace is prohibited to one where it isn't,
or vice versa. In these mentioned conditions, the view of whether trace is
prohibited is inconsistent between parts of the CPU, and the trace buffer
or the trace buffer state might be corrupted. This adds a new errata
ARM64_ERRATUM_2038923 in arm64 errata framework.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Suzuki Poulose <suzuki.poulose@arm.com>
Cc: coresight@lists.linaro.org
Cc: linux-doc@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/1643120437-14352-4-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
TRBE implementations affected by Arm erratum #2064142 might fail to write
into certain system registers after the TRBE has been disabled. Under some
conditions after TRBE has been disabled, writes into certain TRBE registers
TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1 and TRBTRG_EL1 will be
ignored and not be effected. This adds a new errata ARM64_ERRATUM_2064142
in arm64 errata framework.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Suzuki Poulose <suzuki.poulose@arm.com>
Cc: coresight@lists.linaro.org
Cc: linux-doc@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/1643120437-14352-3-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
* for-next/trbe-errata:
arm64: errata: Add detection for TRBE write to out-of-range
arm64: errata: Add workaround for TSB flush failures
arm64: errata: Add detection for TRBE overwrite in FILL mode
arm64: Add Neoverse-N2, Cortex-A710 CPU part definition
Arm Neoverse-N2 and Cortex-A710 cores are affected by an erratum where
the trbe, under some circumstances, might write upto 64bytes to an
address after the Limit as programmed by the TRBLIMITR_EL1.LIMIT.
This might -
- Corrupt a page in the ring buffer, which may corrupt trace from a
previous session, consumed by userspace.
- Hit the guard page at the end of the vmalloc area and raise a fault.
To keep the handling simpler, we always leave the last page from the
range, which TRBE is allowed to write. This can be achieved by ensuring
that we always have more than a PAGE worth space in the range, while
calculating the LIMIT for TRBE. And then the LIMIT pointer can be
adjusted to leave the PAGE (TRBLIMITR.LIMIT -= PAGE_SIZE), out of the
TRBE range while enabling it. This makes sure that the TRBE will only
write to an area within its allowed limit (i.e, [head-head+size]) and
we do not have to handle address faults within the driver.
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Leach <mike.leach@linaro.org>
Cc: Leo Yan <leo.yan@linaro.org>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20211019163153.3692640-5-suzuki.poulose@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Arm Neoverse-N2 (#2067961) and Cortex-A710 (#2054223) suffers
from errata, where a TSB (trace synchronization barrier)
fails to flush the trace data completely, when executed from
a trace prohibited region. In Linux we always execute it
after we have moved the PE to trace prohibited region. So,
we can apply the workaround every time a TSB is executed.
The work around is to issue two TSB consecutively.
NOTE: This errata is defined as LOCAL_CPU_ERRATUM, implying
that a late CPU could be blocked from booting if it is the
first CPU that requires the workaround. This is because we
do not allow setting a cpu_hwcaps after the SMP boot. The
other alternative is to use "this_cpu_has_cap()" instead
of the faster system wide check, which may be a bit of an
overhead, given we may have to do this in nvhe KVM host
before a guest entry.
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Leach <mike.leach@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20211019163153.3692640-4-suzuki.poulose@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Arm Neoverse-N2 and the Cortex-A710 cores are affected
by a CPU erratum where the TRBE will overwrite the trace buffer
in FILL mode. The TRBE doesn't stop (as expected in FILL mode)
when it reaches the limit and wraps to the base to continue
writing upto 3 cache lines. This will overwrite any trace that
was written previously.
Add the Neoverse-N2 erratum(#2139208) and Cortex-A710 erratum
(#2119858) to the detection logic.
This will be used by the TRBE driver in later patches to work
around the issue. The detection has been kept with the core
arm64 errata framework list to make sure :
- We don't duplicate the framework in TRBE driver
- The errata detection is advertised like the rest
of the CPU errata.
Note that the Kconfig entries are not fully active until the
TRBE driver implements the work around.
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Leach <mike.leach@linaro.org>
cc: Leo Yan <leo.yan@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20211019163153.3692640-3-suzuki.poulose@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Add a new capability to detect the Enhanced Counter Virtualization
feature (FEAT_ECV).
Reviewed-by: Oliver Upton <oupton@google.com>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211017124225.3018098-15-maz@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Add the cpufeature entries to detect the presence of Asymmetric MTE.
Note: The tag checking mode is initialized via cpu_enable_mte() ->
kasan_init_hw_tags() hence to enable it we require asymmetric mode
to be at least on the boot CPU. If the boot CPU does not have it, it is
fine for late CPUs to have it as long as the feature is not enabled
(ARM64_CPUCAP_BOOT_CPU_FEATURE).
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Suzuki K Poulose <Suzuki.Poulose@arm.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20211006154751.4463-4-vincenzo.frascino@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
When confronted with a mixture of CPUs, some of which support 32-bit
applications and others which don't, we quite sensibly treat the system
as 64-bit only for userspace and prevent execve() of 32-bit binaries.
Unfortunately, some crazy folks have decided to build systems like this
with the intention of running 32-bit applications, so relax our
sanitisation logic to continue to advertise 32-bit support to userspace
on these systems and track the real 32-bit capable cores in a cpumask
instead. For now, the default behaviour remains but will be tied to
a command-line option in a later patch.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20210608180313.11502-3-will@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
The arm64 code allocates an internal constant to every CPU feature it can
detect, distinct from the public hwcap numbers we use to expose some
features to userspace. Currently this is maintained manually which is an
irritating source of conflicts when working on new features, to avoid this
replace the header with a simple text file listing the names we've assigned
and sort it to minimise conflicts.
As part of doing this we also do the Kbuild hookup required to hook up
an arch tools directory and to generate header files in there.
This will result in a renumbering and reordering of the existing constants,
since they are all internal only the values should not be important. The
reordering will impact the order in which some steps in enumeration handle
features but the algorithm is not intended to depend on this and I haven't
seen any issues when testing. Due to the UAO cpucap having been removed in
the past we end up with ARM64_NCAPS being 1 smaller than it was before.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20210428121231.11219-1-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>