Commit Graph

10 Commits

Author SHA1 Message Date
M Chetan Kumar
607d574aba net: wwan: iosm: fw flashing & cd collection infrastructure changes
IOSM Makefile & WWAN Kconfig changes to support fw flashing & cd
collection module compliation.

Signed-off-by: M Chetan Kumar <m.chetan.kumar@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-09-20 10:03:37 +01:00
Jakub Kicinski
d1ab2647de Revert "net: wwan: iosm: firmware flashing and coredump collection"
The devlink parameters are not the right mechanism to pass
extra parameters to device flashing. The params added are
also undocumented.

This reverts commit 13bb8429ca ("net: wwan: iosm: firmware
flashing and coredump collection").

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-09-16 14:32:53 +01:00
M Chetan Kumar
13bb8429ca net: wwan: iosm: firmware flashing and coredump collection
This patch brings-in support for M.2 7560 Device firmware flashing &
coredump collection using devlink.
- Driver Registers with Devlink framework.
- Register devlink params callback for configuring device params
  required in flashing or coredump flow.
- Implements devlink ops flash_update callback that programs modem
  firmware.
- Creates region & snapshot required for device coredump log collection.

On early detection of device in boot rom stage. Driver registers with
Devlink framework and establish transport channel for PSI (Primary Signed
Image) injection. Once PSI is injected to device, the device execution
stage details are read to determine whether device is in flash or
exception mode. The collected information is reported to devlink user
space application & based on this informationi, application proceeds with
either modem firmware flashing or coredump collection.

Signed-off-by: M Chetan Kumar <m.chetan.kumar@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-09-13 15:21:10 +01:00
Loic Poulain
aa730a9905 net: wwan: Add MHI MBIM network driver
Add new wwan driver for MBIM over MHI. MBIM is a transport protocol
for IP packets, allowing packet aggregation and muxing. Initially
designed for USB bus, it is also exposed through MHI bus for QCOM
based PCIe wwan modems.

This driver supports the new wwan rtnetlink interface for multi-link
management and has been tested with Quectel EM120R-GL M2 module.

Signed-off-by: Loic Poulain <loic.poulain@linaro.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-04 10:10:12 +01:00
Stephan Gerhold
5e90abf49c net: wwan: Add RPMSG WWAN CTRL driver
The remote processor messaging (rpmsg) subsystem provides an interface
to communicate with other remote processors. On many Qualcomm SoCs this
is used to communicate with an integrated modem DSP that implements most
of the modem functionality and provides high-level protocols like
QMI or AT to allow controlling the modem.

For QMI, most older Qualcomm SoCs (e.g. MSM8916/MSM8974) have
a standalone "DATA5_CNTL" channel that allows exchanging QMI messages.
Note that newer SoCs (e.g. SDM845) only allow exchanging QMI messages
via a shared QRTR channel that is available via a socket API on Linux.

For AT, the "DATA4" channel accepts at least a limited set of AT
commands, on many older and newer Qualcomm SoCs, although QMI is
typically the preferred control protocol.

Often there are additional QMI/AT channels (usually named DATA*_CNTL
for QMI and DATA* for AT), but it is not clear if those are really
functional on all devices. Also, at the moment there is no use case
for having multiple QMI/AT ports. If needed more channels could be
added later after more testing.

Note that the data path (network interface) is entirely separate
from the control path and varies between Qualcomm SoCs, e.g. "IPA"
on newer Qualcomm SoCs or "BAM-DMUX" on some older ones.

The RPMSG WWAN CTRL driver exposes the QMI/AT control ports via the
WWAN subsystem, and therefore allows userspace like ModemManager to
set up the modem. Until now, ModemManager had to use the RPMSG-specific
rpmsg-char where the channels must be explicitly exposed as a char
device first and don't show up directly in sysfs.

The driver is a fairly simple glue layer between WWAN and RPMSG
and is mostly based on the existing mhi_wwan_ctrl.c and rpmsg_char.c.

Cc: Loic Poulain <loic.poulain@linaro.org>
Cc: Bjorn Andersson <bjorn.andersson@linaro.org>
Signed-off-by: Stephan Gerhold <stephan@gerhold.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-18 13:13:40 -07:00
Loic Poulain
89212e160b net: wwan: Fix WWAN config symbols
There is not strong reason to have both WWAN and WWAN_CORE symbols,
Let's build the WWAN core framework when WWAN is selected, in the
same way as for other subsystems.

This fixes issue with mhi_net selecting WWAN_CORE without WWAN and
reported by kernel test robot:

Kconfig warnings: (for reference only)
   WARNING: unmet direct dependencies detected for WWAN_CORE
   Depends on NETDEVICES && WWAN
   Selected by
   - MHI_NET && NETDEVICES && NET_CORE && MHI_BUS

Fixes: 9a44c1cc63 ("net: Add a WWAN subsystem")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Loic Poulain <loic.poulain@linaro.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-14 13:17:10 -07:00
M Chetan Kumar
f7af616c63 net: iosm: infrastructure
1) Kconfig & Makefile changes for IOSM Driver compilation.
2) Add IOSM Driver documentation.
3) Modified MAINTAINER file for IOSM Driver addition.

Signed-off-by: M Chetan Kumar <m.chetan.kumar@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-13 13:49:39 -07:00
Sergey Ryazanov
f36a111a74 wwan_hwsim: WWAN device simulator
This driver simulates a set of WWAN device with a set of AT control
ports. It can be used to test WWAN kernel framework as well as user
space tools.

Signed-off-by: Sergey Ryazanov <ryazanov.s.a@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-08 14:33:43 -07:00
Loic Poulain
fa588eba63 net: Add Qcom WWAN control driver
The MHI WWWAN control driver allows MHI QCOM-based modems to expose
different modem control protocols/ports via the WWAN framework, so that
userspace modem tools or daemon (e.g. ModemManager) can control WWAN
config and state (APN config, SMS, provider selection...). A QCOM-based
modem can expose one or several of the following protocols:
- AT: Well known AT commands interactive protocol (microcom, minicom...)
- MBIM: Mobile Broadband Interface Model (libmbim, mbimcli)
- QMI: QCOM MSM/Modem Interface (libqmi, qmicli)
- QCDM: QCOM Modem diagnostic interface (libqcdm)
- FIREHOSE: XML-based protocol for Modem firmware management
        (qmi-firmware-update)

Note that this patch is mostly a rework of the earlier MHI UCI
tentative that was a generic interface for accessing MHI bus from
userspace. As suggested, this new version is WWAN specific and is
dedicated to only expose channels used for controlling a modem, and
for which related opensource userpace support exist.

Signed-off-by: Loic Poulain <loic.poulain@linaro.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-04-16 15:31:02 -07:00
Loic Poulain
9a44c1cc63 net: Add a WWAN subsystem
This change introduces initial support for a WWAN framework. Given the
complexity and heterogeneity of existing WWAN hardwares and interfaces,
there is no strict definition of what a WWAN device is and how it should
be represented. It's often a collection of multiple devices that perform
the global WWAN feature (netdev, tty, chardev, etc).

One usual way to expose modem controls and configuration is via high
level protocols such as the well known AT command protocol, MBIM or
QMI. The USB modems started to expose them as character devices, and
user daemons such as ModemManager learnt to use them.

This initial version adds the concept of WWAN port, which is a logical
pipe to a modem control protocol. The protocols are rawly exposed to
user via character device, allowing straigthforward support in existing
tools (ModemManager, ofono...). The WWAN core takes care of the generic
part, including character device management, and relies on port driver
operations to receive/submit protocol data.

Since the different devices exposing protocols for a same WWAN hardware
do not necessarily know about each others (e.g. two different USB
interfaces, PCI/MHI channel devices...) and can be created/removed in
different orders, the WWAN core ensures that all WAN ports contributing
to the 'whole' WWAN feature are grouped under the same virtual WWAN
device, relying on the provided parent device (e.g. mhi controller,
USB device). It's a 'trick' I copied from Johannes's earlier WWAN
subsystem proposal.

This initial version is purposely minimalist, it's essentially moving
the generic part of the previously proposed mhi_wwan_ctrl driver inside
a common WWAN framework, but the implementation is open and flexible
enough to allow extension for further drivers.

Signed-off-by: Loic Poulain <loic.poulain@linaro.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-04-16 15:31:02 -07:00