mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-28 05:24:47 +08:00
0bf1bafb17
169 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Benjamin Block
|
d0dff2ac98 |
scsi: zfcp: Move allocation of the shost object to after xconf- and xport-data
At the moment we allocate and register the Scsi_Host object corresponding to a zfcp adapter (FCP device) very early in the life cycle of the adapter - even before we fully discover and initialize the underlying firmware/hardware. This had the advantage that we could already use the Scsi_Host object, and fill in all its information during said discover and initialize. Due to commit |
||
Benjamin Block
|
52e61fde5e |
scsi: zfcp: Move fc_host updates during xport data handling into fenced function
When executing exchange port data for a FCP device for the first time, or after an adapter recovery, we update several properties of the fibre channel host object which represents that FCP device. When moving the scsi host object allocation and registration - and thus also the fibre channel host object allocation - to after the first exchange config and exchange port data, this is not possible for the former case. Move all these update into separate, and fenced function that first checks whether the scsi host object already exists or not, before making the updates. During the first ever exchange port data in the adapter life cycle this will make the exchange port data handler skip over this update step, but we can repeat it later, after we allocated the scsi host object. For any further recovery of that adapter the work flow is only changed slightly because then the scsi host object already exists and we don't free it until we release the adapter completely at the end of its life cycle. Link: https://lore.kernel.org/r/ae454c2dc6da0b02907c489af91d0b211d331825.1588956679.git.bblock@linux.ibm.com Reviewed-by: Steffen Maier <maier@linux.ibm.com> Signed-off-by: Benjamin Block <bblock@linux.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com> |
||
Benjamin Block
|
bd1684817d |
scsi: zfcp: Move shost updates during xconfig data handling into fenced function
When executing exchange config data for a FCP device for the first time, or after an adapter recovery, we update several properties of the scsi host or fibre channel host object that represent that FCP device. When moving the scsi host object allocation and registration - and thus also the fibre channel host object allocation - to after the first exchange config and exchange port data, this is not possible for the former case. Move all these update into separate, and fenced function that first checks whether the scsi host object already exists or not, before making the updates. During the first ever exchange config data in the adapter life cycle this will make the exchange config data handler skip over this update step, but we can repeat it later, after we allocated the scsi host object. For any further recovery of that adapter the work flow is only changed slightly because then the scsi host object already exists and we don't free it until we release the adapter completely at the end of its life cycle. Link: https://lore.kernel.org/r/5fc3f4d38d4334f7aa595497c6f7865fb1102e0f.1588956679.git.bblock@linux.ibm.com Reviewed-by: Steffen Maier <maier@linux.ibm.com> Signed-off-by: Benjamin Block <bblock@linux.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com> |
||
Steffen Maier
|
538c6e910b |
scsi: zfcp: wire previously driver-specific sysfs attributes also to fc_host
Manufacturer, HBA model, firmware version, and hardware version. Use the same value format as for the driver-specific attributes. Keep the driver-specific attributes for stable user space sysfs API. Link: https://lore.kernel.org/r/20200312174505.51294-4-maier@linux.ibm.com Reviewed-by: Jens Remus <jremus@linux.ibm.com> Reviewed-by: Benjamin Block <bblock@linux.ibm.com> Signed-off-by: Steffen Maier <maier@linux.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com> |
||
Steffen Maier
|
e05a10a055 |
scsi: zfcp: expose fabric name as common fc_host sysfs attribute
FICON Express8S or older, as well as card features newer than FICON Express16S+ have no certain firmware level requirement. FICON Express16S or FICON Express16S+ have the following minimum firmware level requirements to show a proper fabric name value: z13 machine FICON Express16S , MCL P08424.005 , LIC version 0x00000721 z14 machine FICON Express16S , MCL P42611.008 , LIC version 0x10200069 FICON Express16S+ , MCL P42625.010 , LIC version 0x10300147 Otherwise, the read value is not the fabric name. Each FCP channel of these card features might need one SAN fabric re-login after concurrent microcode update in order to show the proper fabric name. Possible ways to trigger a SAN fabric re-login are one of: Pull fibres between FCP channel port and SAN switch port on either side and re-plug, disable SAN switch port adjacent to FCP channel port and re-enable switch port, or at Service Element toggle off all CHPIDs of FCP channel over all LPARs and toggle CHPIDs on again. Zfcp operating subchannels (FCP devices) on such FCP channel recovers a fabric re-login. Initialize fabric name for any topology and have it an invalid WWPN 0x0 for anything but fabric topology. Otherwise for e.g. point-to-point topology one could see the initial -1 from fc_host_setup() and after a link unplug our fabric name would turn to 0x0 (with subsequent commit ("zfcp: fix fc_host attributes that should be unknown on local link down") and stay 0x0 on link replug. I did not initialize to 0x0 somewhere even earlier in the code path such that it would not flap from real to 0x0 to real on e.g. an exchange config data with fabric topology. Link: https://lore.kernel.org/r/20200312174505.51294-3-maier@linux.ibm.com Reviewed-by: Benjamin Block <bblock@linux.ibm.com> Reviewed-by: Jens Remus <jremus@linux.ibm.com> Signed-off-by: Steffen Maier <maier@linux.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com> |
||
Benjamin Block
|
92953c6e0a |
scsi: zfcp: signal incomplete or error for sync exchange config/port data
Adds a new FSF-Request status flag (ZFCP_STATUS_FSFREQ_XDATAINCOMPLETE) that signal that the data received using Exchange Config Data or Exchange Port Data was incomplete. This new flags is set in the respective handlers during the response path. With this patch, only the synchronous FSF-functions for each command got support for the new flag, otherwise it is transparent. Together with this new flag and already existing status flags the synchronous FSF-functions are extended to now detect whether the received data is complete, incomplete or completely invalid (this includes cases where a command ran into a timeout). This is now signaled back to the caller, where previously only failures on the request path would result in a bad return-code. For complete data the return-code remains 0. For incomplete data a new return-code -EAGAIN is added to the function-interface. For completely invalid data the already existing return-code -EIO is reused - formerly this was used to signal failures on the request path. Existing callers of the FSF-functions are adjusted so that they behave as before for return-code 0 and -EAGAIN, to not change the user-interface. As -EIO existed all along, it was already exposed to the user - and needed handling - and will now also be exposed in this new special case. Link: https://lore.kernel.org/r/e14f0702fa2b00a4d1f37c7981a13f2dd1ea2c83.1572018130.git.bblock@linux.ibm.com Reviewed-by: Steffen Maier <maier@linux.ibm.com> Signed-off-by: Benjamin Block <bblock@linux.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com> |
||
Steffen Maier
|
ef4021fe5f |
scsi: zfcp: fix to prevent port_remove with pure auto scan LUNs (only sdevs)
When the user tries to remove a zfcp port via sysfs, we only rejected it if there are zfcp unit children under the port. With purely automatically scanned LUNs there are no zfcp units but only SCSI devices. In such cases, the port_remove erroneously continued. We close the port and this implicitly closes all LUNs under the port. The SCSI devices survive with their private zfcp_scsi_dev still holding a reference to the "removed" zfcp_port (still allocated but invisible in sysfs) [zfcp_get_port_by_wwpn in zfcp_scsi_slave_alloc]. This is not a problem as long as the fc_rport stays blocked. Once (auto) port scan brings back the removed port, we unblock its fc_rport again by design. However, there is no mechanism that would recover (open) the LUNs under the port (no "ersfs_3" without zfcp_unit [zfcp_erp_strategy_followup_success]). Any pending or new I/O to such LUN leads to repeated: Done: NEEDS_RETRY Result: hostbyte=DID_IMM_RETRY driverbyte=DRIVER_OK See also v4.10 commit |
||
Steffen Maier
|
242ec14551 |
scsi: zfcp: fix scsi_eh host reset with port_forced ERP for non-NPIV FCP devices
Suppose more than one non-NPIV FCP device is active on the same channel.
Send I/O to storage and have some of the pending I/O run into a SCSI
command timeout, e.g. due to bit errors on the fibre. Now the error
situation stops. However, we saw FCP requests continue to timeout in the
channel. The abort will be successful, but the subsequent TUR fails.
Scsi_eh starts. The LUN reset fails. The target reset fails. The host
reset only did an FCP device recovery. However, for non-NPIV FCP devices,
this does not close and reopen ports on the SAN-side if other non-NPIV FCP
device(s) share the same open ports.
In order to resolve the continuing FCP request timeouts, we need to
explicitly close and reopen ports on the SAN-side.
This was missing since the beginning of zfcp in v2.6.0 history commit
ea127f975424 ("[PATCH] s390 (7/7): zfcp host adapter.").
Note: The FSF requests for forced port reopen could run into FSF request
timeouts due to other reasons. This would trigger an internal FCP device
recovery. Pending forced port reopen recoveries would get dismissed. So
some ports might not get fully reopened during this host reset handler.
However, subsequent I/O would trigger the above described escalation and
eventually all ports would be forced reopen to resolve any continuing FCP
request timeouts due to earlier bit errors.
Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Fixes:
|
||
Steffen Maier
|
b63195698d |
scsi: zfcp: fix sysfs block queue limit output for max_segment_size
Since v2.6.35 commit |
||
Christoph Hellwig
|
2a3d4eb8e2 |
scsi: flip the default on use_clustering
Most SCSI drivers want to enable "clustering", that is merging of segments so that they might span more than a single page. Remove the ENABLE_CLUSTERING define, and require drivers to explicitly set DISABLE_CLUSTERING to disable this feature. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com> |
||
Fedor Loshakov
|
636db60b8e |
scsi: zfcp: make DIX experimental, disabled, and independent of DIF
Introduce separate zfcp module parameters to individually select support for: DIF which should work (zfcp.dif, which used to be DIF+DIX, disabled) or DIX+DIF which can cause trouble (zfcp.dix, new, disabled). If DIX is enabled, we warn on zfcp driver initialization. As before, this also reduces the maximum I/O request size to half, to support the worst case of merged single sector requests with one protection data scatter gather element per sector. This can impact the maximum throughput. In DIF-only mode (zfcp.dif=1 zfcp.dix=0), we can use the full maximum I/O request size as there is no protection data for zfcp. Signed-off-by: Steffen Maier <maier@linux.ibm.com> Signed-off-by: Fedor Loshakov <loshakov@linux.ibm.com> Reviewed-by: Jens Remus <jremus@linux.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com> |
||
Steffen Maier
|
f9eca02276 |
scsi: zfcp: drop duplicate fsf_command from zfcp_fsf_req which is also in QTCB header
Status read buffers (SRBs, unsolicited notifications) never use a QTCB [zfcp_fsf_req_create()]. zfcp_fsf_req_send() already uses this to distinguish SRBs from other FSF request types. We can re-use this method in zfcp_fsf_req_complete(). Introduce a helper function to make the check for req->qtcb less magic. SRBs always are FSF_QTCB_UNSOLICITED_STATUS, so we can hard-code this for the two trace functions dealing with SRBs. All other FSF request types have a QTCB and we can get the fsf_command from there. zfcp_dbf_hba_fsf_response() and thus zfcp_dbf_hba_fsf_res() are only called for non-SRB requests so it's safe to dereference the QTCB [zfcp_fsf_req_complete() returns early on SRB, else calls zfcp_fsf_protstatus_eval() which calls zfcp_dbf_hba_fsf_response()]. In zfcp_scsi_forget_cmnd() we guard the QTCB dereference with a preceding NULL check and rely on boolean shortcut evaluation. As a side effect, this causes an alignment hole which we can close in a later patch after having cleaned up all fields of struct zfcp_fsf_req. Before: $ pahole -C zfcp_fsf_req drivers/s390/scsi/zfcp.ko ... u32 status; /* 136 4 */ u32 fsf_command; /* 140 4 */ struct fsf_qtcb * qtcb; /* 144 8 */ ... After: $ pahole -C zfcp_fsf_req drivers/s390/scsi/zfcp.ko ... u32 status; /* 136 4 */ /* XXX 4 bytes hole, try to pack */ struct fsf_qtcb * qtcb; /* 144 8 */ ... Signed-off-by: Steffen Maier <maier@linux.ibm.com> Reviewed-by: Benjamin Block <bblock@linux.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com> |
||
Linus Torvalds
|
5f85942c2e |
SCSI misc on 20180610
This is mostly updates to the usual drivers: ufs, qedf, mpt3sas, lpfc, xfcp, hisi_sas, cxlflash, qla2xxx. In the absence of Nic, we're also taking target updates which are mostly minor except for the tcmu refactor. The only real core change to worry about is the removal of high page bouncing (in sas, storvsc and iscsi). This has been well tested and no problems have shown up so far. Signed-off-by: James E.J. Bottomley <jejb@linux.vnet.ibm.com> -----BEGIN PGP SIGNATURE----- iJwEABMIAEQWIQTnYEDbdso9F2cI+arnQslM7pishQUCWx1pbCYcamFtZXMuYm90 dG9tbGV5QGhhbnNlbnBhcnRuZXJzaGlwLmNvbQAKCRDnQslM7pishUucAP42pccS ziKyiOizuxv9fZ4Q+nXd1A9zhI5tqqpkHjcQegEA40qiZSi3EKGKR8W0UpX7Ntmo tqrZJGojx9lnrAM2RbQ= =NMXg -----END PGP SIGNATURE----- Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi Pull SCSI updates from James Bottomley: "This is mostly updates to the usual drivers: ufs, qedf, mpt3sas, lpfc, xfcp, hisi_sas, cxlflash, qla2xxx. In the absence of Nic, we're also taking target updates which are mostly minor except for the tcmu refactor. The only real core change to worry about is the removal of high page bouncing (in sas, storvsc and iscsi). This has been well tested and no problems have shown up so far" * tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi: (268 commits) scsi: lpfc: update driver version to 12.0.0.4 scsi: lpfc: Fix port initialization failure. scsi: lpfc: Fix 16gb hbas failing cq create. scsi: lpfc: Fix crash in blk_mq layer when executing modprobe -r lpfc scsi: lpfc: correct oversubscription of nvme io requests for an adapter scsi: lpfc: Fix MDS diagnostics failure (Rx < Tx) scsi: hisi_sas: Mark PHY as in reset for nexus reset scsi: hisi_sas: Fix return value when get_free_slot() failed scsi: hisi_sas: Terminate STP reject quickly for v2 hw scsi: hisi_sas: Add v2 hw force PHY function for internal ATA command scsi: hisi_sas: Include TMF elements in struct hisi_sas_slot scsi: hisi_sas: Try wait commands before before controller reset scsi: hisi_sas: Init disks after controller reset scsi: hisi_sas: Create a scsi_host_template per HW module scsi: hisi_sas: Reset disks when discovered scsi: hisi_sas: Add LED feature for v3 hw scsi: hisi_sas: Change common allocation mode of device id scsi: hisi_sas: change slot index allocation mode scsi: hisi_sas: Introduce hisi_sas_phy_set_linkrate() scsi: hisi_sas: fix a typo in hisi_sas_task_prep() ... |
||
Steffen Maier
|
35e9111a1e |
scsi: zfcp: support SCSI_ADAPTER_RESET via scsi_host sysfs attribute host_reset
Make use of feature introduced with v3.2 commit |
||
Steffen Maier
|
b24bf22d72 |
scsi: zfcp: explicitly support initiator in scsi_host_template
While the default did already correctly print "Initiator" let's make it explicit and convert zfcp to the feature. $ cat /sys/class/scsi_host/host0/supported_mode Initiator $ cat /sys/class/scsi_host/host0/active_mode Initiator The default worked, because not setting the field has it initialized to zero == MODE_UNKNOWN. scsi_host_alloc() sets shost->active_mode = MODE_INITIATOR in this case. The sysfs accessor function show_shost_supported_mode() assumes MODE_INITIATOR in this case. This default behavior was introduced with v2.6.24 commit |
||
Steffen Maier
|
d39eda54b7 |
scsi: zfcp: consistently use function name space prefix
I've been mixing up zfcp_task_mgmt_function() [SCSI] and zfcp_fsf_fcp_task_mgmt() [FSF] so often lately that I wanted to fix this. SCSI changes complement v2.6.27 commit |
||
Steffen Maier
|
5c750d58e9 |
scsi: zfcp: workqueue: set description for port work items with their WWPN as context
As a prerequisite, complement commit |
||
Steffen Maier
|
674595d851 |
scsi: zfcp: decouple our scsi_eh callbacks from scsi_cmnd
Note: zfcp_scsi_eh_host_reset_handler() will be converted in a later patch. zfcp_scsi_eh_device_reset_handler() now only depends on scsi_device. zfcp_scsi_eh_target_reset_handler() now only depends on scsi_target. All derive other objects from these intended callback arguments. zfcp_scsi_eh_target_reset_handler() is special: The FCP channel requires a valid LUN handle so we try to find ourselves a stand-in scsi_device as suggested by Hannes Reinecke. If it cannot find a stand-in scsi device, trace a record like the following (formatted with zfcpdbf from s390-tools): Timestamp : ... Area : SCSI Subarea : 00 Level : 1 Exception : - CPU ID : .. Caller : 0x... Record ID : 1 Tag : tr_nosd target reset, no SCSI device Request ID : 0x0000000000000000 none (invalid) SCSI ID : 0x00000000 SCSI ID/target denoting scope SCSI LUN : 0xffffffff none (invalid) SCSI LUN high : 0xffffffff none (invalid) SCSI result : 0x00002003 field re-used for midlayer value: FAILED SCSI retries : 0xff none (invalid) SCSI allowed : 0xff none (invalid) SCSI scribble : 0xffffffffffffffff none (invalid) SCSI opcode : ffffffff ffffffff ffffffff ffffffff none (invalid) FCP rsp inf cod: 0xff none (invalid) FCP rsp IU : 00000000 00000000 00000000 00000000 none (invalid) 00000000 00000000 Actually change the signature of zfcp_task_mgmt_function() used by zfcp_scsi_eh_device_reset_handler() & zfcp_scsi_eh_target_reset_handler(). Since it was prepared in a previous patch, we only need to delete a local auto variable which is now the intended argument. Suggested-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Steffen Maier <maier@linux.ibm.com> Reviewed-by: Benjamin Block <bblock@linux.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com> |
||
Steffen Maier
|
42afc6527d |
scsi: zfcp: decouple TMFs from scsi_cmnd by using fc_block_rport
Intentionally retrieve the rport by walking SCSI common code objects rather than zfcp_sdev->port->rport. The latter is used for pairing the calls to fc_remote_port_add() and fc_remote_port_delete(). [see v2.6.31 commit |
||
Steffen Maier
|
26f5fa9d47 |
scsi: zfcp: decouple SCSI setup of TMF from scsi_cmnd
Actually change the signature of zfcp_fsf_fcp_task_mgmt(). Since it was prepared in the previous patch, we only need to delete a local auto variable which is now the intended argument. Prepare zfcp_fsf_fcp_task_mgmt's caller zfcp_task_mgmt_function() to have its function body only depend on a scsi_device and derived objects. Signed-off-by: Steffen Maier <maier@linux.ibm.com> Reviewed-by: Benjamin Block <bblock@linux.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com> |
||
Steffen Maier
|
8221211863 |
scsi: zfcp: decouple SCSI traces for scsi_eh / TMF from scsi_cmnd
The SCSI command pointer passed to scsi_eh callbacks is just one arbitrary command of potentially many that are in the eh queue to be processed. The command is only used to indirectly pass the TMF scope in terms of SCSI ID/target and SCSI LUN for LUN reset. Hence, zfcp had filled in SCSI trace record fields which do not really belong to the TMF. This was confusing. Therefore, refactor the TMF tracing to work without SCSI command. Since the FCP channel always requires a valid LUN handle, we use SCSI device as common context for any TMF (even target reset). To make it even clearer, we set all bits to 1 for the fields, which do not belong to the TMF, to indicate that these fields are invalid. The old zfcp_dbf_scsi() became zfcp_dbf_scsi_common() to now handle both SCSI commands and TMFs. The old argument scsi_cmnd is now optional and can be NULL with TMFs. The new argument scsi_device is mandatory to carry context, as well as SCSI ID/target and SCSI LUN in case of TMFs. New example trace record formatted with zfcpdbf from s390-tools: Timestamp : ... Area : SCSI Subarea : 00 Level : 1 Exception : - CPU ID : .. Caller : 0x... Record ID : 1 Tag : [lt]r_.... Request ID : 0x<reqid> ID of FSF FCP request with TM flag For cases without FSF request: 0x0 for none (invalid) SCSI ID : 0x<scsi_id> SCSI ID/target denoting scope SCSI LUN : 0x<scsi_lun> SCSI LUN denoting scope SCSI LUN high : 0x<scsi_lun_high> SCSI LUN denoting scope SCSI result : 0xffffffff none (invalid) SCSI retries : 0xff none (invalid) SCSI allowed : 0xff none (invalid) SCSI scribble : 0xffffffffffffffff none (invalid) SCSI opcode : ffffffff ffffffff ffffffff ffffffff none (invalid) FCP rsp inf cod: 0x00 FCP_RSP info code of TMF FCP rsp IU : 00000000 00000000 00000100 00000000 ext FCP_RSP IU 00000000 00000008 ext FCP_RSP IU FCP rsp IU len : 32 FCP_RSP IU length Payload time : ... FCP rsp IU all : 00000000 00000000 00000100 00000000 full FCP_RSP IU 00000000 00000008 00000000 00000000 full FCP_RSP IU Signed-off-by: Steffen Maier <maier@linux.ibm.com> Reviewed-by: Benjamin Block <bblock@linux.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com> |
||
Steffen Maier
|
96d9270499 |
scsi: zfcp: fix missing REC trigger trace on terminate_rport_io early return
get_device() and its internally used kobject_get() only return NULL if they get passed NULL as argument. zfcp_get_port_by_wwpn() loops over adapter->port_list so the iteration variable port is always non-NULL. Struct device is embedded in struct zfcp_port so &port->dev is always non-NULL. This is the argument to get_device(). However, if we get an fc_rport in terminate_rport_io() for which we cannot find a match within zfcp_get_port_by_wwpn(), the latter can return NULL. v2.6.30 commit |
||
Steffen Maier
|
81979ae63e |
scsi: zfcp: fix missing SCSI trace for retry of abort / scsi_eh TMF
We already have a SCSI trace for the end of abort and scsi_eh TMF. Due to zfcp_erp_wait() and fc_block_scsi_eh() time can pass between the start of our eh callback and an actual send/recv of an abort / TMF request. In order to see the temporal sequence including any abort / TMF send retries, add a trace before the above two blocking functions. This supports problem determination with scsi_eh and parallel zfcp ERP. No need to explicitly trace the beginning of our eh callback, since we typically can send an abort / TMF and see its HBA response (in the worst case, it's a pseudo response on dismiss all of adapter recovery, e.g. due to an FSF request timeout [fsrth_1] of the abort / TMF). If we cannot send, we now get a trace record for the first "abrt_wt" or "[lt]r_wait" which denotes almost the beginning of the callback. No need to explicitly trace the wakeup after the above two blocking functions because the next retry loop causes another trace in any case and that is sufficient. Example trace records formatted with zfcpdbf from s390-tools: Timestamp : ... Area : SCSI Subarea : 00 Level : 1 Exception : - CPU ID : .. Caller : 0x... Record ID : 1 Tag : abrt_wt abort, before zfcp_erp_wait() Request ID : 0x0000000000000000 none (invalid) SCSI ID : 0x<scsi_id> SCSI LUN : 0x<scsi_lun> SCSI LUN high : 0x<scsi_lun_high> SCSI result : 0x<scsi_result_of_cmd_to_be_aborted> SCSI retries : 0x<retries_of_cmd_to_be_aborted> SCSI allowed : 0x<allowed_retries_of_cmd_to_be_aborted> SCSI scribble : 0x<req_id_of_cmd_to_be_aborted> SCSI opcode : <CDB_of_cmd_to_be_aborted> FCP rsp inf cod: 0x.. none (invalid) FCP rsp IU : ... none (invalid) Timestamp : ... Area : SCSI Subarea : 00 Level : 1 Exception : - CPU ID : .. Caller : 0x... Record ID : 1 Tag : lr_wait LUN reset, before zfcp_erp_wait() Request ID : 0x0000000000000000 none (invalid) SCSI ID : 0x<scsi_id> SCSI LUN : 0x<scsi_lun> SCSI LUN high : 0x<scsi_lun_high> SCSI result : 0x... unrelated SCSI retries : 0x.. unrelated SCSI allowed : 0x.. unrelated SCSI scribble : 0x... unrelated SCSI opcode : ... unrelated FCP rsp inf cod: 0x.. none (invalid) FCP rsp IU : ... none (invalid) Signed-off-by: Steffen Maier <maier@linux.ibm.com> Fixes: |
||
Steffen Maier
|
df30781699 |
scsi: zfcp: fix missing SCSI trace for result of eh_host_reset_handler
For problem determination we need to see whether and why we were successful or not. This allows deduction of scsi_eh escalation. Example trace record formatted with zfcpdbf from s390-tools: Timestamp : ... Area : SCSI Subarea : 00 Level : 1 Exception : - CPU ID : .. Caller : 0x... Record ID : 1 Tag : schrh_r SCSI host reset handler result Request ID : 0x0000000000000000 none (invalid) SCSI ID : 0xffffffff none (invalid) SCSI LUN : 0xffffffff none (invalid) SCSI LUN high : 0xffffffff none (invalid) SCSI result : 0x00002002 field re-used for midlayer value: SUCCESS or in other cases: 0x2009 == FAST_IO_FAIL SCSI retries : 0xff none (invalid) SCSI allowed : 0xff none (invalid) SCSI scribble : 0xffffffffffffffff none (invalid) SCSI opcode : ffffffff ffffffff ffffffff ffffffff none (invalid) FCP rsp inf cod: 0xff none (invalid) FCP rsp IU : 00000000 00000000 00000000 00000000 none (invalid) 00000000 00000000 v2.6.35 commit |
||
Jens Remus
|
fa89adba19 |
scsi: zfcp: fix infinite iteration on ERP ready list
zfcp_erp_adapter_reopen() schedules blocking of all of the adapter's rports via zfcp_scsi_schedule_rports_block() and enqueues a reopen adapter ERP action via zfcp_erp_action_enqueue(). Both are separately processed asynchronously and concurrently. Blocking of rports is done in a kworker by zfcp_scsi_rport_work(). It calls zfcp_scsi_rport_block(), which then traces a DBF REC "scpdely" via zfcp_dbf_rec_trig(). zfcp_dbf_rec_trig() acquires the DBF REC spin lock and then iterates with list_for_each() over the adapter's ERP ready list without holding the ERP lock. This opens a race window in which the current list entry can be moved to another list, causing list_for_each() to iterate forever on the wrong list, as the erp_ready_head is never encountered as terminal condition. Meanwhile the ERP action can be processed in the ERP thread by zfcp_erp_thread(). It calls zfcp_erp_strategy(), which acquires the ERP lock and then calls zfcp_erp_action_to_running() to move the ERP action from the ready to the running list. zfcp_erp_action_to_running() can move the ERP action using list_move() just during the aforementioned race window. It then traces a REC RUN "erator1" via zfcp_dbf_rec_run(). zfcp_dbf_rec_run() tries to acquire the DBF REC spin lock. If this is held by the infinitely looping kworker, it effectively spins forever. Example Sequence Diagram: Process ERP Thread rport_work ------------------- ------------------- ------------------- zfcp_erp_adapter_reopen() zfcp_erp_adapter_block() zfcp_scsi_schedule_rports_block() lock ERP zfcp_scsi_rport_work() zfcp_erp_action_enqueue(ZFCP_ERP_ACTION_REOPEN_ADAPTER) list_add_tail() on ready !(rport_task==RPORT_ADD) wake_up() ERP thread zfcp_scsi_rport_block() zfcp_dbf_rec_trig() zfcp_erp_strategy() zfcp_dbf_rec_trig() unlock ERP lock DBF REC zfcp_erp_wait() lock ERP | zfcp_erp_action_to_running() | list_for_each() ready | list_move() current entry | ready to running | zfcp_dbf_rec_run() endless loop over running | zfcp_dbf_rec_run_lvl() | lock DBF REC spins forever Any adapter recovery can trigger this, such as setting the device offline or reboot. V4.9 commit |
||
Linus Torvalds
|
ead751507d |
License cleanup: add SPDX license identifiers to some files
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> -----BEGIN PGP SIGNATURE----- iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCWfswbQ8cZ3JlZ0Brcm9h aC5jb20ACgkQMUfUDdst+ykvEwCfXU1MuYFQGgMdDmAZXEc+xFXZvqgAoKEcHDNA 6dVh26uchcEQLN/XqUDt =x306 -----END PGP SIGNATURE----- Merge tag 'spdx_identifiers-4.14-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core Pull initial SPDX identifiers from Greg KH: "License cleanup: add SPDX license identifiers to some files Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>" * tag 'spdx_identifiers-4.14-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: License cleanup: add SPDX license identifier to uapi header files with a license License cleanup: add SPDX license identifier to uapi header files with no license License cleanup: add SPDX GPL-2.0 license identifier to files with no license |
||
Greg Kroah-Hartman
|
b24413180f |
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Steffen Maier
|
ab31fd0ce6 |
scsi: zfcp: fix erp_action use-before-initialize in REC action trace
v4.10 commit |
||
Steffen Maier
|
1a5d999ebf |
scsi: zfcp: fix missing trace records for early returns in TMF eh handlers
For problem determination we need to see that we were in scsi_eh as well as whether and why we were successful or not. The following commits introduced new early returns without adding a trace record: v2.6.35 commit |
||
Steffen Maier
|
9fe5d2b2fd |
scsi: zfcp: fix passing fsf_req to SCSI trace on TMF to correlate with HBA
Without this fix we get SCSI trace records on task management functions which cannot be correlated to HBA trace records because all fields related to the FSF request are empty (zero). Also, the FCP_RSP_IU is missing as well as any sense data if available. This was caused by v2.6.14 commit |
||
Benjamin Block
|
5156934bd6 |
scsi: zfcp: convert bool-definitions to use 'true' instead of '1'
Better form and cleans remaining warnings. Found with scripts/coccinelle/misc/boolinit.cocci. Signed-off-by: Benjamin Block <bblock@linux.vnet.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com> |
||
Christoph Hellwig
|
b6a05c823f |
scsi: remove eh_timed_out methods in the transport template
Instead define the timeout behavior purely based on the host_template eh_timed_out method and wire up the existing transport implementations in the host templates. This also clears up the confusion that the transport template method overrides the host template one, so some drivers have to re-override the transport template one. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Tyrel Datwyler <tyreld@linux.vnet.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com> |
||
Steffen Maier
|
6f2ce1c6af |
scsi: zfcp: fix rport unblock race with LUN recovery
It is unavoidable that zfcp_scsi_queuecommand() has to finish requests with DID_IMM_RETRY (like fc_remote_port_chkready()) during the time window when zfcp detected an unavailable rport but fc_remote_port_delete(), which is asynchronous via zfcp_scsi_schedule_rport_block(), has not yet blocked the rport. However, for the case when the rport becomes available again, we should prevent unblocking the rport too early. In contrast to other FCP LLDDs, zfcp has to open each LUN with the FCP channel hardware before it can send I/O to a LUN. So if a port already has LUNs attached and we unblock the rport just after port recovery, recoveries of LUNs behind this port can still be pending which in turn force zfcp_scsi_queuecommand() to unnecessarily finish requests with DID_IMM_RETRY. This also opens a time window with unblocked rport (until the followup LUN reopen recovery has finished). If a scsi_cmnd timeout occurs during this time window fc_timed_out() cannot work as desired and such command would indeed time out and trigger scsi_eh. This prevents a clean and timely path failover. This should not happen if the path issue can be recovered on FC transport layer such as path issues involving RSCNs. Fix this by only calling zfcp_scsi_schedule_rport_register(), to asynchronously trigger fc_remote_port_add(), after all LUN recoveries as children of the rport have finished and no new recoveries of equal or higher order were triggered meanwhile. Finished intentionally includes any recovery result no matter if successful or failed (still unblock rport so other successful LUNs work). For simplicity, we check after each finished LUN recovery if there is another LUN recovery pending on the same port and then do nothing. We handle the special case of a successful recovery of a port without LUN children the same way without changing this case's semantics. For debugging we introduce 2 new trace records written if the rport unblock attempt was aborted due to still unfinished or freshly triggered recovery. The records are only written above the default trace level. Benjamin noticed the important special case of new recovery that can be triggered between having given up the erp_lock and before calling zfcp_erp_action_cleanup() within zfcp_erp_strategy(). We must avoid the following sequence: ERP thread rport_work other context ------------------------- -------------- -------------------------------- port is unblocked, rport still blocked, due to pending/running ERP action, so ((port->status & ...UNBLOCK) != 0) and (port->rport == NULL) unlock ERP zfcp_erp_action_cleanup() case ZFCP_ERP_ACTION_REOPEN_LUN: zfcp_erp_try_rport_unblock() ((status & ...UNBLOCK) != 0) [OLD!] zfcp_erp_port_reopen() lock ERP zfcp_erp_port_block() port->status clear ...UNBLOCK unlock ERP zfcp_scsi_schedule_rport_block() port->rport_task = RPORT_DEL queue_work(rport_work) zfcp_scsi_rport_work() (port->rport_task != RPORT_ADD) port->rport_task = RPORT_NONE zfcp_scsi_rport_block() if (!port->rport) return zfcp_scsi_schedule_rport_register() port->rport_task = RPORT_ADD queue_work(rport_work) zfcp_scsi_rport_work() (port->rport_task == RPORT_ADD) port->rport_task = RPORT_NONE zfcp_scsi_rport_register() (port->rport == NULL) rport = fc_remote_port_add() port->rport = rport; Now the rport was erroneously unblocked while the zfcp_port is blocked. This is another situation we want to avoid due to scsi_eh potential. This state would at least remain until the new recovery from the other context finished successfully, or potentially forever if it failed. In order to close this race, we take the erp_lock inside zfcp_erp_try_rport_unblock() when checking the status of zfcp_port or LUN. With that, the possible corresponding rport state sequences would be: (unblock[ERP thread],block[other context]) if the ERP thread gets erp_lock first and still sees ((port->status & ...UNBLOCK) != 0), (block[other context],NOP[ERP thread]) if the ERP thread gets erp_lock after the other context has already cleard ...UNBLOCK from port->status. Since checking fields of struct erp_action is unsafe because they could have been overwritten (re-used for new recovery) meanwhile, we only check status of zfcp_port and LUN since these are only changed under erp_lock elsewhere. Regarding the check of the proper status flags (port or port_forced are similar to the shown adapter recovery): [zfcp_erp_adapter_shutdown()] zfcp_erp_adapter_reopen() zfcp_erp_adapter_block() * clear UNBLOCK ---------------------------------------+ zfcp_scsi_schedule_rports_block() | write_lock_irqsave(&adapter->erp_lock, flags);-------+ | zfcp_erp_action_enqueue() | | zfcp_erp_setup_act() | | * set ERP_INUSE -----------------------------------|--|--+ write_unlock_irqrestore(&adapter->erp_lock, flags);--+ | | .context-switch. | | zfcp_erp_thread() | | zfcp_erp_strategy() | | write_lock_irqsave(&adapter->erp_lock, flags);------+ | | ... | | | zfcp_erp_strategy_check_target() | | | zfcp_erp_strategy_check_adapter() | | | zfcp_erp_adapter_unblock() | | | * set UNBLOCK -----------------------------------|--+ | zfcp_erp_action_dequeue() | | * clear ERP_INUSE ---------------------------------|-----+ ... | write_unlock_irqrestore(&adapter->erp_lock, flags);-+ Hence, we should check for both UNBLOCK and ERP_INUSE because they are interleaved. Also we need to explicitly check ERP_FAILED for the link down case which currently does not clear the UNBLOCK flag in zfcp_fsf_link_down_info_eval(). Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com> Fixes: |
||
Benjamin Block
|
dac37e15b7 |
scsi: zfcp: fix use-after-"free" in FC ingress path after TMF
When SCSI EH invokes zFCP's callbacks for eh_device_reset_handler() and eh_target_reset_handler(), it expects us to relent the ownership over the given scsi_cmnd and all other scsi_cmnds within the same scope - LUN or target - when returning with SUCCESS from the callback ('release' them). SCSI EH can then reuse those commands. We did not follow this rule to release commands upon SUCCESS; and if later a reply arrived for one of those supposed to be released commands, we would still make use of the scsi_cmnd in our ingress tasklet. This will at least result in undefined behavior or a kernel panic because of a wrong kernel pointer dereference. To fix this, we NULLify all pointers to scsi_cmnds (struct zfcp_fsf_req *)->data in the matching scope if a TMF was successful. This is done under the locks (struct zfcp_adapter *)->abort_lock and (struct zfcp_reqlist *)->lock to prevent the requests from being removed from the request-hashtable, and the ingress tasklet from making use of the scsi_cmnd-pointer in zfcp_fsf_fcp_cmnd_handler(). For cases where a reply arrives during SCSI EH, but before we get a chance to NULLify the pointer - but before we return from the callback -, we assume that the code is protected from races via the CAS operation in blk_complete_request() that is called in scsi_done(). The following stacktrace shows an example for a crash resulting from the previous behavior: Unable to handle kernel pointer dereference at virtual kernel address fffffee17a672000 Oops: 0038 [#1] SMP CPU: 2 PID: 0 Comm: swapper/2 Not tainted task: 00000003f7ff5be0 ti: 00000003f3d38000 task.ti: 00000003f3d38000 Krnl PSW : 0404d00180000000 00000000001156b0 (smp_vcpu_scheduled+0x18/0x40) R:0 T:1 IO:0 EX:0 Key:0 M:1 W:0 P:0 AS:3 CC:1 PM:0 EA:3 Krnl GPRS: 000000200000007e 0000000000000000 fffffee17a671fd8 0000000300000015 ffffffff80000000 00000000005dfde8 07000003f7f80e00 000000004fa4e800 000000036ce8d8f8 000000036ce8d9c0 00000003ece8fe00 ffffffff969c9e93 00000003fffffffd 000000036ce8da10 00000000003bf134 00000003f3b07918 Krnl Code: 00000000001156a2: a7190000 lghi %r1,0 00000000001156a6: a7380015 lhi %r3,21 #00000000001156aa: e32050000008 ag %r2,0(%r5) >00000000001156b0: 482022b0 lh %r2,688(%r2) 00000000001156b4: ae123000 sigp %r1,%r2,0(%r3) 00000000001156b8: b2220020 ipm %r2 00000000001156bc: 8820001c srl %r2,28 00000000001156c0: c02700000001 xilf %r2,1 Call Trace: ([<0000000000000000>] 0x0) [<000003ff807bdb8e>] zfcp_fsf_fcp_cmnd_handler+0x3de/0x490 [zfcp] [<000003ff807be30a>] zfcp_fsf_req_complete+0x252/0x800 [zfcp] [<000003ff807c0a48>] zfcp_fsf_reqid_check+0xe8/0x190 [zfcp] [<000003ff807c194e>] zfcp_qdio_int_resp+0x66/0x188 [zfcp] [<000003ff80440c64>] qdio_kick_handler+0xdc/0x310 [qdio] [<000003ff804463d0>] __tiqdio_inbound_processing+0xf8/0xcd8 [qdio] [<0000000000141fd4>] tasklet_action+0x9c/0x170 [<0000000000141550>] __do_softirq+0xe8/0x258 [<000000000010ce0a>] do_softirq+0xba/0xc0 [<000000000014187c>] irq_exit+0xc4/0xe8 [<000000000046b526>] do_IRQ+0x146/0x1d8 [<00000000005d6a3c>] io_return+0x0/0x8 [<00000000005d6422>] vtime_stop_cpu+0x4a/0xa0 ([<0000000000000000>] 0x0) [<0000000000103d8a>] arch_cpu_idle+0xa2/0xb0 [<0000000000197f94>] cpu_startup_entry+0x13c/0x1f8 [<0000000000114782>] smp_start_secondary+0xda/0xe8 [<00000000005d6efe>] restart_int_handler+0x56/0x6c [<0000000000000000>] 0x0 Last Breaking-Event-Address: [<00000000003bf12e>] arch_spin_lock_wait+0x56/0xb0 Suggested-by: Steffen Maier <maier@linux.vnet.ibm.com> Signed-off-by: Benjamin Block <bblock@linux.vnet.ibm.com> Fixes: ea127f9754 ("[PATCH] s390 (7/7): zfcp host adapter.") (tglx/history.git) Cc: <stable@vger.kernel.org> #2.6.32+ Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com> |
||
Steffen Maier
|
4eeaa4f3f1 |
zfcp: close window with unblocked rport during rport gone
On a successful end of reopen port forced, zfcp_erp_strategy_followup_success() re-uses the port erp_action and the subsequent zfcp_erp_action_cleanup() now sees ZFCP_ERP_SUCCEEDED with erp_action->action==ZFCP_ERP_ACTION_REOPEN_PORT instead of ZFCP_ERP_ACTION_REOPEN_PORT_FORCED but must not perform zfcp_scsi_schedule_rport_register(). We can detect this because the fresh port reopen erp_action is in its very first step ZFCP_ERP_STEP_UNINITIALIZED. Otherwise this opens a time window with unblocked rport (until the followup port reopen recovery would block it again). If a scsi_cmnd timeout occurs during this time window fc_timed_out() cannot work as desired and such command would indeed time out and trigger scsi_eh. This prevents a clean and timely path failover. This should not happen if the path issue can be recovered on FC transport layer such as path issues involving RSCNs. Also, unnecessary and repeated DID_IMM_RETRY for pending and undesired new requests occur because internally zfcp still has its zfcp_port blocked. As follow-on errors with scsi_eh, it can cause, in the worst case, permanently lost paths due to one of: sd <scsidev>: [<scsidisk>] Medium access timeout failure. Offlining disk! sd <scsidev>: Device offlined - not ready after error recovery For fix validation and to aid future debugging with other recoveries we now also trace (un)blocking of rports. Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com> Fixes: |
||
Hannes Reinecke
|
b84b1d522f |
scsi: Do not set cmd_per_lun to 1 in the host template
'0' is now used as the default cmd_per_lun value, so there's no need to explicitly set it to '1' in the host template. Signed-off-by: Hannes Reinecke <hare@suse.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: James Bottomley <JBottomley@Odin.com> |
||
Christoph Hellwig
|
db5ed4dfd5 |
scsi: drop reason argument from ->change_queue_depth
Drop the now unused reason argument from the ->change_queue_depth method. Also add a return value to scsi_adjust_queue_depth, and rename it to scsi_change_queue_depth now that it can be used as the default ->change_queue_depth implementation. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Mike Christie <michaelc@cs.wisc.edu> Reviewed-by: Hannes Reinecke <hare@suse.de> |
||
Christoph Hellwig
|
c40ecc12cf |
scsi: avoid ->change_queue_depth indirection for queue full tracking
All drivers use the implementation for ramping the queue up and down, so instead of overloading the change_queue_depth method call the implementation diretly if the driver opts into it by setting the track_queue_depth flag in the host template. Note that a few drivers validated the new queue depth in their change_queue_depth method, but as we never go over the queue depth set during slave_configure or the sysfs file this isn't nessecary and can safely be removed. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Mike Christie <michaelc@cs.wisc.edu> Reviewed-by: Hannes Reinecke <hare@suse.de> Reviewed-by: Venkatesh Srinivas <venkateshs@google.com> |
||
Christoph Hellwig
|
c8b09f6fb6 |
scsi: don't set tagging state from scsi_adjust_queue_depth
Remove the tagged argument from scsi_adjust_queue_depth, and just let it handle the queue depth. For most drivers those two are fairly separate, given that most modern drivers don't care about the SCSI "tagged" status of a command at all, and many old drivers allow queuing of multiple untagged commands in the driver. Instead we start out with the ->simple_tags flag set before calling ->slave_configure, which is how all drivers actually looking at ->simple_tags except for one worke anyway. The one other case looks broken, but I've kept the behavior as-is for now. Except for that we only change ->simple_tags from the ->change_queue_type, and when rejecting a tag message in a single driver, so keeping this churn out of scsi_adjust_queue_depth is a clear win. Now that the usage of scsi_adjust_queue_depth is more obvious we can also remove all the trivial instances in ->slave_alloc or ->slave_configure that just set it to the cmd_per_lun default. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Mike Christie <michaelc@cs.wisc.edu> Reviewed-by: Hannes Reinecke <hare@suse.de> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> |
||
Steffen Maier
|
5fea4291de |
[SCSI] zfcp: block queue limits with data router
Commit
|
||
Heiko Carstens
|
a53c8fab3f |
s390/comments: unify copyright messages and remove file names
Remove the file name from the comment at top of many files. In most cases the file name was wrong anyway, so it's rather pointless. Also unify the IBM copyright statement. We did have a lot of sightly different statements and wanted to change them one after another whenever a file gets touched. However that never happened. Instead people start to take the old/"wrong" statements to use as a template for new files. So unify all of them in one go. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> |
||
Steffen Maier
|
44f747fff6 |
[SCSI] zfcp: return early from slave_destroy if slave_alloc returned early
zfcp_scsi_slave_destroy erroneously always tried to finish its task even if the corresponding previous zfcp_scsi_slave_alloc returned early. This can lead to kernel page faults on accessing uninitialized fields of struct zfcp_scsi_dev in zfcp_erp_lun_shutdown_wait. Take the port field of the struct to determine if slave_alloc returned early. This zfcp bug is exposed by |
||
Heiko Carstens
|
3a4c5d5964 |
s390: add missing module.h/export.h includes
Fix several compile errors on s390 caused by splitting module.h. Some include additions [e.g. qdio_setup.c, zfcp_qdio.c] are in anticipation of pending changes queued for s390 that increase the modular use footprint. [PG: added additional obvious changes since Heiko's original patch] Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> |
||
Swen Schillig
|
86a9668a8d |
[SCSI] zfcp: support for hardware data router
FICON Express8S supports hardware data router, which requires an adapted qdio request format. This part 2/2 exploits the functionality in zfcp. Signed-off-by: Swen Schillig <swen@vnet.ibm.com> Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com> Signed-off-by: James Bottomley <JBottomley@Parallels.com> |
||
Steffen Maier
|
cc405acee2 |
[SCSI] zfcp: non-experimental support for DIF/DIX
DIF/DIX support for zfcp is no longer experimental, and config option is no longer necessary. Return error from queuecommand for unsupported data directions. Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com> Signed-off-by: James Bottomley <JBottomley@Parallels.com> |
||
Arun Sharma
|
60063497a9 |
atomic: use <linux/atomic.h>
This allows us to move duplicated code in <asm/atomic.h> (atomic_inc_not_zero() for now) to <linux/atomic.h> Signed-off-by: Arun Sharma <asharma@fb.com> Reviewed-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: David Miller <davem@davemloft.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Acked-by: Mike Frysinger <vapier@gentoo.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Christof Schmitt
|
038d9446a9 |
[SCSI] zfcp: Add information to symbolic port name when running in NPIV mode
Query the FC symbolic port name for reporting in the fc_host sysfs and enable the symbolic_name attribute in the fc_host sysfs. When running in NPIV mode, extend the symbolic port name with the devno and the hostname. This allows better identification of Linux systems for SAN and storage administrators. Signed-off-by: Christof Schmitt <christof.schmitt@de.ibm.com> Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com> Signed-off-by: James Bottomley <James.Bottomley@suse.de> |
||
Christof Schmitt
|
1947c72a12 |
[SCSI] zfcp: Move SCSI host and transport templates out of struct zfcp_data
The SCSI host and transport templates are the only members left in the global zfcp_data struct. Move them out of zfcp_data and remove the now unused zfcp_data struct. Also update the names of the register and unregister functions to use the zfcp_scsi prefix. Signed-off-by: Christof Schmitt <christof.schmitt@de.ibm.com> Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com> Signed-off-by: James Bottomley <James.Bottomley@suse.de> |
||
Christof Schmitt
|
0d81b4e8dc |
[SCSI] zfcp: Add allow_lun_scan module parameter
The zfcpdump tool requires a method to attach exactly one LUN. The easiest way to achieve this is to add a new zfcp module parameter. When allow_lun_scan is set to "false", zfcp only accepts LUNs that have been configured through the unit_add sysfs interface. Reviewed-by: Swen Schillig <swen@vnet.ibm.com> Signed-off-by: Christof Schmitt <christof.schmitt@de.ibm.com> Signed-off-by: James Bottomley <James.Bottomley@suse.de> |
||
Swen Schillig
|
ea4a3a6ac4 |
[SCSI] zfcp: Redesign of the debug tracing final cleanup.
This patch is the final cleanup of the redesign from the zfcp tracing. Structures and elements which were used by multiple areas of the former debug tracing are now changed to the new scheme. Signed-off-by: Swen Schillig <swen@vnet.ibm.com> Signed-off-by: Christof Schmitt <christof.schmitt@de.ibm.com> Signed-off-by: James Bottomley <James.Bottomley@suse.de> |