The results of "access_ok()" can be mis-speculated. The result is that
you can end speculatively:
if (access_ok(from, size))
// Right here
even for bad from/size combinations. On first glance, it would be ideal
to just add a speculation barrier to "access_ok()" so that its results
can never be mis-speculated.
But there are lots of system calls just doing access_ok() via
"copy_to_user()" and friends (example: fstat() and friends). Those are
generally not problematic because they do not _consume_ data from
userspace other than the pointer. They are also very quick and common
system calls that should not be needlessly slowed down.
"copy_from_user()" on the other hand uses a user-controller pointer and
is frequently followed up with code that might affect caches. Take
something like this:
if (!copy_from_user(&kernelvar, uptr, size))
do_something_with(kernelvar);
If userspace passes in an evil 'uptr' that *actually* points to a kernel
addresses, and then do_something_with() has cache (or other)
side-effects, it could allow userspace to infer kernel data values.
Add a barrier to the common copy_from_user() code to prevent
mis-speculated values which happen after the copy.
Also add a stub for architectures that do not define barrier_nospec().
This makes the macro usable in generic code.
Since the barrier is now usable in generic code, the x86 #ifdef in the
BPF code can also go away.
Reported-by: Jordy Zomer <jordyzomer@google.com>
Suggested-by: Linus Torvalds <torvalds@linuxfoundation.org>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Daniel Borkmann <daniel@iogearbox.net> # BPF bits
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce instrument_copy_from_user_before() and
instrument_copy_from_user_after() hooks to be invoked before and after the
call to copy_from_user().
KASAN and KCSAN will be only using instrument_copy_from_user_before(), but
for KMSAN we'll need to insert code after copy_from_user().
Link: https://lkml.kernel.org/r/20220915150417.722975-4-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Ilya Leoshkevich <iii@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
To test fault-tolerance of user memory access functions, introduce fault
injection to usercopy functions.
If a failure is expected return either -EFAULT or the total amount of
bytes that were not copied.
Signed-off-by: Albert van der Linde <alinde@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Akinobu Mita <akinobu.mita@gmail.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20200831171733.955393-3-alinde@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge the state of the locking kcsan branch before the read/write_once()
and the atomics modifications got merged.
Squash the fallout of the rebase on top of the read/write once and atomic
fallback work into the merge. The history of the original branch is
preserved in tag locking-kcsan-2020-06-02.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This replaces the KASAN instrumentation with generic instrumentation,
implicitly adding KCSAN instrumentation support.
For KASAN no functional change is intended.
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A common pattern for syscall extensions is increasing the size of a
struct passed from userspace, such that the zero-value of the new fields
result in the old kernel behaviour (allowing for a mix of userspace and
kernel vintages to operate on one another in most cases).
While this interface exists for communication in both directions, only
one interface is straightforward to have reasonable semantics for
(userspace passing a struct to the kernel). For kernel returns to
userspace, what the correct semantics are (whether there should be an
error if userspace is unaware of a new extension) is very
syscall-dependent and thus probably cannot be unified between syscalls
(a good example of this problem is [1]).
Previously there was no common lib/ function that implemented
the necessary extension-checking semantics (and different syscalls
implemented them slightly differently or incompletely[2]). Future
patches replace common uses of this pattern to make use of
copy_struct_from_user().
Some in-kernel selftests that insure that the handling of alignment and
various byte patterns are all handled identically to memchr_inv() usage.
[1]: commit 1251201c0d ("sched/core: Fix uclamp ABI bug, clean up and
robustify sched_read_attr() ABI logic and code")
[2]: For instance {sched_setattr,perf_event_open,clone3}(2) all do do
similar checks to copy_struct_from_user() while rt_sigprocmask(2)
always rejects differently-sized struct arguments.
Suggested-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Aleksa Sarai <cyphar@cyphar.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Christian Brauner <christian.brauner@ubuntu.com>
Link: https://lore.kernel.org/r/20191001011055.19283-2-cyphar@cyphar.com
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument
of the user address range verification function since we got rid of the
old racy i386-only code to walk page tables by hand.
It existed because the original 80386 would not honor the write protect
bit when in kernel mode, so you had to do COW by hand before doing any
user access. But we haven't supported that in a long time, and these
days the 'type' argument is a purely historical artifact.
A discussion about extending 'user_access_begin()' to do the range
checking resulted this patch, because there is no way we're going to
move the old VERIFY_xyz interface to that model. And it's best done at
the end of the merge window when I've done most of my merges, so let's
just get this done once and for all.
This patch was mostly done with a sed-script, with manual fix-ups for
the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form.
There were a couple of notable cases:
- csky still had the old "verify_area()" name as an alias.
- the iter_iov code had magical hardcoded knowledge of the actual
values of VERIFY_{READ,WRITE} (not that they mattered, since nothing
really used it)
- microblaze used the type argument for a debug printout
but other than those oddities this should be a total no-op patch.
I tried to fix up all architectures, did fairly extensive grepping for
access_ok() uses, and the changes are trivial, but I may have missed
something. Any missed conversion should be trivially fixable, though.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Destination is a kernel pointer and source - a userland one
in _copy_from_user(); _copy_to_user() is the other way round.
Fixes: d597580d37 ("generic ...copy_..._user primitives")
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
There are three usercopy warnings which are currently being silenced for
gcc 4.6 and newer:
1) "copy_from_user() buffer size is too small" compile warning/error
This is a static warning which happens when object size and copy size
are both const, and copy size > object size. I didn't see any false
positives for this one. So the function warning attribute seems to
be working fine here.
Note this scenario is always a bug and so I think it should be
changed to *always* be an error, regardless of
CONFIG_DEBUG_STRICT_USER_COPY_CHECKS.
2) "copy_from_user() buffer size is not provably correct" compile warning
This is another static warning which happens when I enable
__compiletime_object_size() for new compilers (and
CONFIG_DEBUG_STRICT_USER_COPY_CHECKS). It happens when object size
is const, but copy size is *not*. In this case there's no way to
compare the two at build time, so it gives the warning. (Note the
warning is a byproduct of the fact that gcc has no way of knowing
whether the overflow function will be called, so the call isn't dead
code and the warning attribute is activated.)
So this warning seems to only indicate "this is an unusual pattern,
maybe you should check it out" rather than "this is a bug".
I get 102(!) of these warnings with allyesconfig and the
__compiletime_object_size() gcc check removed. I don't know if there
are any real bugs hiding in there, but from looking at a small
sample, I didn't see any. According to Kees, it does sometimes find
real bugs. But the false positive rate seems high.
3) "Buffer overflow detected" runtime warning
This is a runtime warning where object size is const, and copy size >
object size.
All three warnings (both static and runtime) were completely disabled
for gcc 4.6 with the following commit:
2fb0815c9e ("gcc4: disable __compiletime_object_size for GCC 4.6+")
That commit mistakenly assumed that the false positives were caused by a
gcc bug in __compiletime_object_size(). But in fact,
__compiletime_object_size() seems to be working fine. The false
positives were instead triggered by #2 above. (Though I don't have an
explanation for why the warnings supposedly only started showing up in
gcc 4.6.)
So remove warning #2 to get rid of all the false positives, and re-enable
warnings #1 and #3 by reverting the above commit.
Furthermore, since #1 is a real bug which is detected at compile time,
upgrade it to always be an error.
Having done all that, CONFIG_DEBUG_STRICT_USER_COPY_CHECKS is no longer
needed.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Nilay Vaish <nilayvaish@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The help text for this config is duplicated across the x86, parisc, and
s390 Kconfig.debug files. Arnd Bergman noted that the help text was
slightly misleading and should be fixed to state that enabling this
option isn't a problem when using pre 4.4 gcc.
To simplify the rewording, consolidate the text into lib/Kconfig.debug
and modify it there to be more explicit about when you should say N to
this config.
Also, make the text a bit more generic by stating that this option
enables compile time checks so we can cover architectures which emit
warnings vs. ones which emit errors. The details of how an
architecture decided to implement the checks isn't as important as the
concept of compile time checking of copy_from_user() calls.
While we're doing this, remove all the copy_from_user_overflow() code
that's duplicated many times and place it into lib/ so that any
architecture supporting this option can get the function for free.
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Helge Deller <deller@gmx.de>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>