In split page table lock case, we embed spinlock_t into struct page.
For obvious reason, we don't want to increase size of struct page if
spinlock_t is too big, like with DEBUG_SPINLOCK or DEBUG_LOCK_ALLOC or
on -rt kernel. So we disable split page table lock, if spinlock_t is
too big.
This patchset allows to allocate the lock dynamically if spinlock_t is
big. In this page->ptl is used to store pointer to spinlock instead of
spinlock itself. It costs additional cache line for indirect access,
but fix page fault scalability for multi-threaded applications.
LOCK_STAT depends on DEBUG_SPINLOCK, so on current kernel enabling
LOCK_STAT to analyse scalability issues breaks scalability. ;)
The patchset mostly fixes this. Results for ./thp_memscale -c 80 -b 512M
on 4-socket machine:
baseline, no CONFIG_LOCK_STAT: 9.115460703 seconds time elapsed
baseline, CONFIG_LOCK_STAT=y: 53.890567123 seconds time elapsed
patched, no CONFIG_LOCK_STAT: 8.852250368 seconds time elapsed
patched, CONFIG_LOCK_STAT=y: 11.069770759 seconds time elapsed
Patch count is scary, but most of them trivial. Overview:
Patches 1-4 Few bug fixes. No dependencies to other patches.
Probably should applied as soon as possible.
Patch 5 Changes signature of pgtable_page_ctor(). We will use it
for dynamic lock allocation, so it can fail.
Patches 6-8 Add missing constructor/destructor calls on few archs.
It's fixes NR_PAGETABLE accounting and prepare to use
split ptl.
Patches 9-33 Add pgtable_page_ctor() fail handling to all archs.
Patches 34 Finally adds support of dynamically-allocated page->pte.
Also contains documentation for split page table lock.
This patch (of 34):
I've missed that we preallocate few pmds on pgd_alloc() if X86_PAE
enabled. Let's add missed constructor/destructor calls.
I haven't noticed it during testing since prep_new_page() clears
page->mapping and therefore page->ptl. It's effectively equal to
spin_lock_init(&page->ptl).
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen Liqin <liqin.chen@sunplusct.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Howells <dhowells@redhat.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Koichi Yasutake <yasutake.koichi@jp.panasonic.com>
Cc: Lennox Wu <lennox.wu@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Mikael Starvik <starvik@axis.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rob Herring <rob.herring@calxeda.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull two x86 fixes from Ingo Molnar.
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/microcode/amd: Tone down printk(), don't treat a missing firmware file as an error
x86/dumpstack: Fix printk_address for direct addresses
Pull x86/trace changes from Ingo Molnar:
"This adds page fault tracepoints which have zero runtime cost in the
disabled case via IDT trickery (no NOPs in the page fault hotpath)"
* 'x86-trace-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, trace: Change user|kernel_page_fault to page_fault_user|kernel
x86, trace: Add page fault tracepoints
x86, trace: Delete __trace_alloc_intr_gate()
x86, trace: Register exception handler to trace IDT
x86, trace: Remove __alloc_intr_gate()
The hot-Pluggable field in SRAT specifies which memory is hotpluggable.
As we mentioned before, if hotpluggable memory is used by the kernel, it
cannot be hot-removed. So memory hotplug users may want to set all
hotpluggable memory in ZONE_MOVABLE so that the kernel won't use it.
Memory hotplug users may also set a node as movable node, which has
ZONE_MOVABLE only, so that the whole node can be hot-removed.
But the kernel cannot use memory in ZONE_MOVABLE. By doing this, the
kernel cannot use memory in movable nodes. This will cause NUMA
performance down. And other users may be unhappy.
So we need a way to allow users to enable and disable this functionality.
In this patch, we introduce movable_node boot option to allow users to
choose to not to consume hotpluggable memory at early boot time and later
we can set it as ZONE_MOVABLE.
To achieve this, the movable_node boot option will control the memblock
allocation direction. That said, after memblock is ready, before SRAT is
parsed, we should allocate memory near the kernel image as we explained in
the previous patches. So if movable_node boot option is set, the kernel
does the following:
1. After memblock is ready, make memblock allocate memory bottom up.
2. After SRAT is parsed, make memblock behave as default, allocate memory
top down.
Users can specify "movable_node" in kernel commandline to enable this
functionality. For those who don't use memory hotplug or who don't want
to lose their NUMA performance, just don't specify anything. The kernel
will work as before.
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Suggested-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Suggested-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The Linux kernel cannot migrate pages used by the kernel. As a result,
kernel pages cannot be hot-removed. So we cannot allocate hotpluggable
memory for the kernel.
In a memory hotplug system, any numa node the kernel resides in should be
unhotpluggable. And for a modern server, each node could have at least
16GB memory. So memory around the kernel image is highly likely
unhotpluggable.
ACPI SRAT (System Resource Affinity Table) contains the memory hotplug
info. But before SRAT is parsed, memblock has already started to allocate
memory for the kernel. So we need to prevent memblock from doing this.
So direct memory mapping page tables setup is the case.
init_mem_mapping() is called before SRAT is parsed. To prevent page
tables being allocated within hotpluggable memory, we will use bottom-up
direction to allocate page tables from the end of kernel image to the
higher memory.
Note:
As for allocating page tables in lower memory, TJ said:
: This is an optional behavior which is triggered by a very specific kernel
: boot param, which I suspect is gonna need to stick around to support
: memory hotplug in the current setup unless we add another layer of address
: translation to support memory hotplug.
As for page tables may occupy too much lower memory if using 4K mapping
(CONFIG_DEBUG_PAGEALLOC and CONFIG_KMEMCHECK both disable using >4k
pages), TJ said:
: But as I said in the same paragraph, parsing SRAT earlier doesn't solve
: the problem in itself either. Ignoring the option if 4k mapping is
: required and memory consumption would be prohibitive should work, no?
: Something like that would be necessary if we're gonna worry about cases
: like this no matter how we implement it, but, frankly, I'm not sure this
: is something worth worrying about.
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Create a new function memory_map_top_down to factor out of the top-down
direct memory mapping pagetable setup. This is also a preparation for the
following patch, which will introduce the bottom-up memory mapping. That
said, we will put the two ways of pagetable setup into separate functions,
and choose to use which way in init_mem_mapping, which makes the code more
clear.
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Consider a kernel crash in a module, simulated the following way:
static int my_init(void)
{
char *map = (void *)0x5;
*map = 3;
return 0;
}
module_init(my_init);
When we turn off FRAME_POINTERs, the very first instruction in
that function causes a BUG. The problem is that we print IP in
the BUG report using %pB (from printk_address). And %pB
decrements the pointer by one to fix printing addresses of
functions with tail calls.
This was added in commit 71f9e59800 ("x86, dumpstack: Use
%pB format specifier for stack trace") to fix the call stack
printouts.
So instead of correct output:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000005
IP: [<ffffffffa01ac000>] my_init+0x0/0x10 [pb173]
We get:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000005
IP: [<ffffffffa0152000>] 0xffffffffa0151fff
To fix that, we use %pS only for stack addresses printouts (via
newly added printk_stack_address) and %pB for regs->ip (via
printk_address). I.e. we revert to the old behaviour for all
except call stacks. And since from all those reliable is 1, we
remove that parameter from printk_address.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Cc: Namhyung Kim <namhyung@gmail.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: joe@perches.com
Cc: jirislaby@gmail.com
Link: http://lkml.kernel.org/r/1382706418-8435-1-git-send-email-jslaby@suse.cz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 mm fixlet from Ingo Molnar:
"One cleanup that documents a particular detail in init_mem_mapping()"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Add 'step_size' comments to init_mem_mapping()
Tracepoints are named hierachially, and it makes more sense to keep a
general flow of information level from general to specific from left
to right, i.e.
x86_exceptions.page_fault_user|kernel
rather than
x86_exceptions.user|kernel_page_fault
Suggested-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Seiji Aguchi <seiji.aguchi@hds.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Link: http://lkml.kernel.org/r/20131111082955.GB12405@gmail.com
This patch registers exception handlers for tracing to a trace IDT.
To implemented it in set_intr_gate(), this patch does followings.
- Register the exception handlers to
the trace IDT by prepending "trace_" to the handler's names.
- Also, newly introduce trace_page_fault() to add tracepoints
in a subsequent patch.
Signed-off-by: Seiji Aguchi <seiji.aguchi@hds.com>
Link: http://lkml.kernel.org/r/52716DEC.5050204@hds.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Now that we can deal with nested NMI due to IRET re-enabling NMIs and
can deal with faults from NMI by making sure we preserve CR2 over NMIs
we can in fact simply access user-space memory from NMI context.
So rewrite copy_from_user_nmi() to use __copy_from_user_inatomic() and
rework the fault path to do the minimal required work before taking
the in_atomic() fault handler.
In particular avoid perf_sw_event() which would make perf recurse on
itself (it should be harmless as our recursion protections should be
able to deal with this -- but why tempt fate).
Also rename notify_page_fault() to kprobes_fault() as that is a much
better name; there is no notifier in it and its specific to kprobes.
Don measured that his worst case NMI path shrunk from ~300K cycles to
~150K cycles.
Cc: Stephane Eranian <eranian@google.com>
Cc: jmario@redhat.com
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: dave.hansen@linux.intel.com
Tested-by: Don Zickus <dzickus@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20131024105206.GM2490@laptop.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The x86 fault handler bails in the middle of error handling when the
task has a fatal signal pending. For a subsequent patch this is a
problem in OOM situations because it relies on pagefault_out_of_memory()
being called even when the task has been killed, to perform proper
per-task OOM state unwinding.
Shortcutting the fault like this is a rather minor optimization that
saves a few instructions in rare cases. Just remove it for
user-triggered faults.
Use the opportunity to split the fault retry handling from actual fault
errors and add locking documentation that reads suprisingly similar to
ARM's.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: azurIt <azurit@pobox.sk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Unlike global OOM handling, memory cgroup code will invoke the OOM killer
in any OOM situation because it has no way of telling faults occuring in
kernel context - which could be handled more gracefully - from
user-triggered faults.
Pass a flag that identifies faults originating in user space from the
architecture-specific fault handlers to generic code so that memcg OOM
handling can be improved.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: azurIt <azurit@pobox.sk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently hugepage migration works well only for pmd-based hugepages
(mainly due to lack of testing,) so we had better not enable migration of
other levels of hugepages until we are ready for it.
Some users of hugepage migration (mbind, move_pages, and migrate_pages) do
page table walk and check pud/pmd_huge() there, so they are safe. But the
other users (softoffline and memory hotremove) don't do this, so without
this patch they can try to migrate unexpected types of hugepages.
To prevent this, we introduce hugepage_migration_support() as an
architecture dependent check of whether hugepage are implemented on a pmd
basis or not. And on some architecture multiple sizes of hugepages are
available, so hugepage_migration_support() also checks hugepage size.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The previous patch doing vmstats for TLB flushes ("mm: vmstats: tlb flush
counters") effectively missed UP since arch/x86/mm/tlb.c is only compiled
for SMP.
UP systems do not do remote TLB flushes, so compile those counters out on
UP.
arch/x86/kernel/cpu/mtrr/generic.c calls __flush_tlb() directly. This is
probably an optimization since both the mtrr code and __flush_tlb() write
cr4. It would probably be safe to make that a flush_tlb_all() (and then
get these statistics), but the mtrr code is ancient and I'm hesitant to
touch it other than to just stick in the counters.
[akpm@linux-foundation.org: tweak comments]
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I was investigating some TLB flush scaling issues and realized that we do
not have any good methods for figuring out how many TLB flushes we are
doing.
It would be nice to be able to do these in generic code, but the
arch-independent calls don't explicitly specify whether we actually need
to do remote flushes or not. In the end, we really need to know if we
actually _did_ global vs. local invalidations, so that leaves us with few
options other than to muck with the counters from arch-specific code.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Current code uses macro to shift by 5, but there is no explanation
why there's no worry about an overflow there.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Jacob Shin <jacob.shin@amd.com>
Link: http://lkml.kernel.org/r/1378519629-10433-1-git-send-email-yinghai@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 mm changes from Ingo Molnar:
"Misc smaller fixes:
- a parse_setup_data() boot crash fix
- a memblock and an __early_ioremap cleanup
- turn the always-on CONFIG_ARCH_MEMORY_PROBE=y into a configurable
option and turn it off - it's an unrobust debug facility, it
shouldn't be enabled by default"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: avoid remapping data in parse_setup_data()
x86: Use memblock_set_current_limit() to set limit for memblock.
mm: Remove unused variable idx0 in __early_ioremap()
mm/hotplug, x86: Disable ARCH_MEMORY_PROBE by default
1) ACPI-based PCI hotplug (ACPIPHP) subsystem rework and introduction
of Intel Thunderbolt support on systems that use ACPI for signalling
Thunderbolt hotplug events. This also should make ACPIPHP work in
some cases in which it was known to have problems. From
Rafael J Wysocki, Mika Westerberg and Kirill A Shutemov.
2) ACPI core code cleanups and dock station support cleanups from
Jiang Liu and Rafael J Wysocki.
3) Fixes for locking problems related to ACPI device hotplug from
Rafael J Wysocki.
4) ACPICA update to version 20130725 includig fixes, cleanups, support
for more than 256 GPEs per GPE block and a change to make the ACPI
PM Timer optional (we've seen systems without the PM Timer in the
field already). One of the fixes, related to the DeRefOf operator,
is necessary to prevent some Windows 8 oriented AML from causing
problems to happen. From Bob Moore, Lv Zheng, and Jung-uk Kim.
5) Removal of the old and long deprecated /proc/acpi/event interface
and related driver changes from Thomas Renninger.
6) ACPI and Xen changes to make the reduced hardware sleep work with
the latter from Ben Guthro.
7) ACPI video driver cleanups and a blacklist of systems that should
not tell the BIOS that they are compatible with Windows 8 (or ACPI
backlight and possibly other things will not work on them). From
Felipe Contreras.
8) Assorted ACPI fixes and cleanups from Aaron Lu, Hanjun Guo,
Kuppuswamy Sathyanarayanan, Lan Tianyu, Sachin Kamat, Tang Chen,
Toshi Kani, and Wei Yongjun.
9) cpufreq ondemand governor target frequency selection change to
reduce oscillations between min and max frequencies (essentially,
it causes the governor to choose target frequencies proportional
to load) from Stratos Karafotis.
10) cpufreq fixes allowing sysfs attributes file permissions to be
preserved over suspend/resume cycles Srivatsa S Bhat.
11) Removal of Device Tree parsing for CPU device nodes from multiple
cpufreq drivers that required some changes related to
of_get_cpu_node() to be made in a few architectures and in the
driver core. From Sudeep KarkadaNagesha.
12) cpufreq core fixes and cleanups related to mutual exclusion and
driver module references from Viresh Kumar, Lukasz Majewski and
Rafael J Wysocki.
13) Assorted cpufreq fixes and cleanups from Amit Daniel Kachhap,
Bartlomiej Zolnierkiewicz, Hanjun Guo, Jingoo Han, Joseph Lo,
Julia Lawall, Li Zhong, Mark Brown, Sascha Hauer, Stephen Boyd,
Stratos Karafotis, and Viresh Kumar.
14) Fixes to prevent race conditions in coupled cpuidle from happening
from Colin Cross.
15) cpuidle core fixes and cleanups from Daniel Lezcano and
Tuukka Tikkanen.
16) Assorted cpuidle fixes and cleanups from Daniel Lezcano,
Geert Uytterhoeven, Jingoo Han, Julia Lawall, Linus Walleij,
and Sahara.
17) System sleep tracing changes from Todd E Brandt and Shuah Khan.
18) PNP subsystem conversion to using struct dev_pm_ops for power
management from Shuah Khan.
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.19 (GNU/Linux)
iQIcBAABCAAGBQJSJcKhAAoJEKhOf7ml8uNsplIQAJSOshxhkkemvFOuHZ+0YIbh
R9aufjXeDkMDBi8YtU+tB7ERth1j+0LUSM0NTnP51U7e+7eSGobA9s5jSZQj2l7r
HFtnSOegLuKAfqwgfSLK91xa1rTFdfW0Kych9G2nuHtBIt6P0Oc59Cb5M0oy6QXs
nVtaDEuU//tmO71+EF5HnMJHabRTrpvtn/7NbDUpU7LZYpWJrHJFT9xt1rXNab7H
YRCATPm3kXGRg58Doc3EZE4G3D7DLvq74jWMaI089X/m5Pg1G6upqArypOy6oxdP
p2FEzYVrb2bi8fakXp7BBeO1gCJTAqIgAkbSSZHLpGhFaeEMmb9/DWPXdm2TjzMV
c1EEucvsqZWoprXgy12i5Hk814xN8d8nBBLg/UYiRJ44nc/hevXfyE9ZYj6bkseJ
+GNHmZIa1QYC05nnGli4+W4kHns8EZf/gmvIxnPuco1RN2yMWagrud5/G6Dr9M2B
hzJV6qauLVzgZso4oe79zv9aVxe/dPHKANLD/sg23WBiJJbJF1ocBlnj2Xlbpqze
pmMUWGiO/gUiS0fmpW/lAJauza5jFmSCjE4E8R0Gyn0j4YXjmMhdEanaU6J3VuCi
yVgEzYEth4sowq4AflMMLKYN+WmozDnK7taZRGmT0t+EKRFKLT6EgnNrkQgs1vKl
oawD9LM4fZ8E0yroOEme
=CgqW
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-3.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI and power management updates from Rafael Wysocki:
1) ACPI-based PCI hotplug (ACPIPHP) subsystem rework and introduction
of Intel Thunderbolt support on systems that use ACPI for signalling
Thunderbolt hotplug events. This also should make ACPIPHP work in
some cases in which it was known to have problems. From
Rafael J Wysocki, Mika Westerberg and Kirill A Shutemov.
2) ACPI core code cleanups and dock station support cleanups from
Jiang Liu and Rafael J Wysocki.
3) Fixes for locking problems related to ACPI device hotplug from
Rafael J Wysocki.
4) ACPICA update to version 20130725 includig fixes, cleanups, support
for more than 256 GPEs per GPE block and a change to make the ACPI
PM Timer optional (we've seen systems without the PM Timer in the
field already). One of the fixes, related to the DeRefOf operator,
is necessary to prevent some Windows 8 oriented AML from causing
problems to happen. From Bob Moore, Lv Zheng, and Jung-uk Kim.
5) Removal of the old and long deprecated /proc/acpi/event interface
and related driver changes from Thomas Renninger.
6) ACPI and Xen changes to make the reduced hardware sleep work with
the latter from Ben Guthro.
7) ACPI video driver cleanups and a blacklist of systems that should
not tell the BIOS that they are compatible with Windows 8 (or ACPI
backlight and possibly other things will not work on them). From
Felipe Contreras.
8) Assorted ACPI fixes and cleanups from Aaron Lu, Hanjun Guo,
Kuppuswamy Sathyanarayanan, Lan Tianyu, Sachin Kamat, Tang Chen,
Toshi Kani, and Wei Yongjun.
9) cpufreq ondemand governor target frequency selection change to
reduce oscillations between min and max frequencies (essentially,
it causes the governor to choose target frequencies proportional
to load) from Stratos Karafotis.
10) cpufreq fixes allowing sysfs attributes file permissions to be
preserved over suspend/resume cycles Srivatsa S Bhat.
11) Removal of Device Tree parsing for CPU device nodes from multiple
cpufreq drivers that required some changes related to
of_get_cpu_node() to be made in a few architectures and in the
driver core. From Sudeep KarkadaNagesha.
12) cpufreq core fixes and cleanups related to mutual exclusion and
driver module references from Viresh Kumar, Lukasz Majewski and
Rafael J Wysocki.
13) Assorted cpufreq fixes and cleanups from Amit Daniel Kachhap,
Bartlomiej Zolnierkiewicz, Hanjun Guo, Jingoo Han, Joseph Lo,
Julia Lawall, Li Zhong, Mark Brown, Sascha Hauer, Stephen Boyd,
Stratos Karafotis, and Viresh Kumar.
14) Fixes to prevent race conditions in coupled cpuidle from happening
from Colin Cross.
15) cpuidle core fixes and cleanups from Daniel Lezcano and
Tuukka Tikkanen.
16) Assorted cpuidle fixes and cleanups from Daniel Lezcano,
Geert Uytterhoeven, Jingoo Han, Julia Lawall, Linus Walleij,
and Sahara.
17) System sleep tracing changes from Todd E Brandt and Shuah Khan.
18) PNP subsystem conversion to using struct dev_pm_ops for power
management from Shuah Khan.
* tag 'pm+acpi-3.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (217 commits)
cpufreq: Don't use smp_processor_id() in preemptible context
cpuidle: coupled: fix race condition between pokes and safe state
cpuidle: coupled: abort idle if pokes are pending
cpuidle: coupled: disable interrupts after entering safe state
ACPI / hotplug: Remove containers synchronously
driver core / ACPI: Avoid device hot remove locking issues
cpufreq: governor: Fix typos in comments
cpufreq: governors: Remove duplicate check of target freq in supported range
cpufreq: Fix timer/workqueue corruption due to double queueing
ACPI / EC: Add ASUSTEK L4R to quirk list in order to validate ECDT
ACPI / thermal: Add check of "_TZD" availability and evaluating result
cpufreq: imx6q: Fix clock enable balance
ACPI: blacklist win8 OSI for buggy laptops
cpufreq: tegra: fix the wrong clock name
cpuidle: Change struct menu_device field types
cpuidle: Add a comment warning about possible overflow
cpuidle: Fix variable domains in get_typical_interval()
cpuidle: Fix menu_device->intervals type
cpuidle: CodingStyle: Break up multiple assignments on single line
cpuidle: Check called function parameter in get_typical_interval()
...
Pull x86 boot fix from Peter Anvin:
"A single very small boot fix for very large memory systems (> 0.5T)"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Fix boot crash with DEBUG_PAGE_ALLOC=y and more than 512G RAM
This is the updated version of df54d6fa54 ("x86 get_unmapped_area():
use proper mmap base for bottom-up direction") that only randomizes the
mmap base address once.
Signed-off-by: Radu Caragea <sinaelgl@gmail.com>
Reported-and-tested-by: Jeff Shorey <shoreyjeff@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Adrian Sendroiu <molecula2788@gmail.com>
Cc: Greg KH <greg@kroah.com>
Cc: Kamal Mostafa <kamal@canonical.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit df54d6fa54.
The commit isn't necessarily wrong, but because it recalculates the
random mmap_base every time, it seems to confuse user memory allocators
that expect contiguous mmap allocations even when the mmap address isn't
specified.
In particular, the MATLAB Java runtime seems to be unhappy. See
https://bugzilla.kernel.org/show_bug.cgi?id=60774
So we'll want to apply the random offset only once, and Radu has a patch
for that. Revert this older commit in order to apply the other one.
Reported-by: Jeff Shorey <shoreyjeff@gmail.com>
Cc: Radu Caragea <sinaelgl@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dave Hansen reported that systems between 500G and 600G RAM
crash early if DEBUG_PAGEALLOC is selected.
> [ 0.000000] init_memory_mapping: [mem 0x00000000-0x000fffff]
> [ 0.000000] [mem 0x00000000-0x000fffff] page 4k
> [ 0.000000] BRK [0x02086000, 0x02086fff] PGTABLE
> [ 0.000000] BRK [0x02087000, 0x02087fff] PGTABLE
> [ 0.000000] BRK [0x02088000, 0x02088fff] PGTABLE
> [ 0.000000] init_memory_mapping: [mem 0xe80ee00000-0xe80effffff]
> [ 0.000000] [mem 0xe80ee00000-0xe80effffff] page 4k
> [ 0.000000] BRK [0x02089000, 0x02089fff] PGTABLE
> [ 0.000000] BRK [0x0208a000, 0x0208afff] PGTABLE
> [ 0.000000] Kernel panic - not syncing: alloc_low_page: ran out of memory
It turns out that we missed increasing needed pages in BRK to
mapping initial 2M and [0,1M) when we switched to use the #PF
handler to set memory mappings:
> commit 8170e6bed4
> Author: H. Peter Anvin <hpa@zytor.com>
> Date: Thu Jan 24 12:19:52 2013 -0800
>
> x86, 64bit: Use a #PF handler to materialize early mappings on demand
Before that, we had the maping from [0,512M) in head_64.S, and we
can spare two pages [0-1M). After that change, we can not reuse
pages anymore.
When we have more than 512M ram, we need an extra page for pgd page
with [512G, 1024g).
Increase pages in BRK for page table to solve the boot crash.
Reported-by: Dave Hansen <dave.hansen@intel.com>
Bisected-by: Dave Hansen <dave.hansen@intel.com>
Tested-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: <stable@vger.kernel.org> # v3.9 and later
Link: http://lkml.kernel.org/r/1376351004-4015-1-git-send-email-yinghai@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The Hot-Pluggable field in SRAT suggests if the memory could be
hotplugged while the system is running. Print it as well when
parsing SRAT will help users to know which memory is hotpluggable.
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
When the stack is set to unlimited, the bottomup direction is used for
mmap-ings but the mmap_base is not used and thus effectively renders
ASLR for mmapings along with PIE useless.
Cc: Michel Lespinasse <walken@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Adrian Sendroiu <molecula2788@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications. For example, the fix in
commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time")
is a good example of the nasty type of bugs that can be created
with improper use of the various __init prefixes.
After a discussion on LKML[1] it was decided that cpuinit should go
the way of devinit and be phased out. Once all the users are gone,
we can then finally remove the macros themselves from linux/init.h.
Note that some harmless section mismatch warnings may result, since
notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c)
are flagged as __cpuinit -- so if we remove the __cpuinit from
arch specific callers, we will also get section mismatch warnings.
As an intermediate step, we intend to turn the linux/init.h cpuinit
content into no-ops as early as possible, since that will get rid
of these warnings. In any case, they are temporary and harmless.
This removes all the arch/x86 uses of the __cpuinit macros from
all C files. x86 only had the one __CPUINIT used in assembly files,
and it wasn't paired off with a .previous or a __FINIT, so we can
delete it directly w/o any corresponding additional change there.
[1] https://lkml.org/lkml/2013/5/20/589
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Since all architectures have been converted to use vm_unmapped_area(),
there is no remaining use for the free_area_cache.
Signed-off-by: Michel Lespinasse <walken@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Richard Henderson <rth@twiddle.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The old codes accumulate addr to get right pmd, however, currently pmds
are preallocated and transfered as a parameter, there is unnecessary to
accumulate addr variable any more, this patch remove it.
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Concentrate code to modify totalram_pages into the mm core, so the arch
memory initialized code doesn't need to take care of it. With these
changes applied, only following functions from mm core modify global
variable totalram_pages: free_bootmem_late(), free_all_bootmem(),
free_all_bootmem_node(), adjust_managed_page_count().
With this patch applied, it will be much more easier for us to keep
totalram_pages and zone->managed_pages in consistence.
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Acked-by: David Howells <dhowells@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: <sworddragon2@aol.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Jianguo Wu <wujianguo@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michel Lespinasse <walken@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In order to simpilify management of totalram_pages and
zone->managed_pages, make __free_pages_bootmem() only available at boot
time. With this change applied, __free_pages_bootmem() will only be
used by bootmem.c and nobootmem.c at boot time, so mark it as __init.
Other callers of __free_pages_bootmem() have been converted to use
free_reserved_page(), which handles totalram_pages and
zone->managed_pages in a safer way.
This patch also fix a bug in free_pagetable() for x86_64, which should
increase zone->managed_pages instead of zone->present_pages when freeing
reserved pages.
And now we have managed_pages_count_lock to protect totalram_pages and
zone->managed_pages, so remove the redundant ppb_lock lock in
put_page_bootmem(). This greatly simplifies the locking rules.
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan@kernel.org>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: <sworddragon2@aol.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Jianguo Wu <wujianguo@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Tejun Heo <tj@kernel.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit "mm: introduce new field 'managed_pages' to struct zone" assumes
that all highmem pages will be freed into the buddy system by function
mem_init(). But that's not always true, some architectures may reserve
some highmem pages during boot. For example PPC may allocate highmem
pages for giagant HugeTLB pages, and several architectures have code to
check PageReserved flag to exclude highmem pages allocated during boot
when freeing highmem pages into the buddy system.
So treat highmem pages in the same way as normal pages, that is to:
1) reset zone->managed_pages to zero in mem_init().
2) recalculate managed_pages when freeing pages into the buddy system.
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: <sworddragon2@aol.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Jianguo Wu <wujianguo@huawei.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- KVM and Xen ports to AArch64
- Hugetlbfs and transparent huge pages support for arm64
- Applied Micro X-Gene Kconfig entry and dts file
- Cache flushing improvements
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.9 (GNU/Linux)
iQIcBAABAgAGBQJR0bZAAAoJEGvWsS0AyF7xTEEP/R/aRoqWwbVAMlwAhujq616O
t4RzIyBXZXqxS9I+raokCX4mgYxdeisJlzN2hoq73VEX2BQlXZoYh8vmfY9WeNSM
2pdfif2HF7oo9ymCRyqfuhbumPrTyJhpbguzOYrxPqpp2f1hv2D8hbUJEFj429yL
UjqTFoONngfouZmAlwrPGZQKhBI95vvN53yvDMH0PWfvpm07DKGIQMYp20y0pj8j
slhLH3bh2kfpS1cf23JtH6IICwWD2pXW0POo569CfZry6bI74xve+Trcsm7iPnsO
PSI1P046ME1mu3SBbKwiPIdN/FQqWwTHW07fvMmH/xuXu3Zs/mxgzi7vDzDrVvTg
PJSbKWD6N/IPPwKS/gCUmWWDASO0bXx3KlDuRZqAjbRojs0UPUOTUhzJM/BHUms1
vY2QS9lAm02LmZZrk1LeKKP85gB+qKQvHuOVhIOldWeLGKtsNufz1kynz6YTqsLq
uUB55KwbhQ7q8+aoY6lWujqiTXMoLkBgGdjHs2I407PAv7ZjlhRWk2fIry7xJifp
rKu2cIlWsRe4CGvGI410NvIJFrGvJAV4wA43sgBDjPumyILgT/5jw9r3RpJEBZZs
akw/Bl1CbL+gMjyoPUWgcWZdRkUCE0eLrgyMOmaYfst8cOTaWw4dWLvUG/bBZg+Y
mGnuEQUQtAPadk8P/Sv3
=PZ/e
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/linux-aarch64
Pull ARM64 updates from Catalin Marinas:
"Main features:
- KVM and Xen ports to AArch64
- Hugetlbfs and transparent huge pages support for arm64
- Applied Micro X-Gene Kconfig entry and dts file
- Cache flushing improvements
For arm64 huge pages support, there are x86 changes moving part of
arch/x86/mm/hugetlbpage.c into mm/hugetlb.c to be re-used by arm64"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/linux-aarch64: (66 commits)
arm64: Add initial DTS for APM X-Gene Storm SOC and APM Mustang board
arm64: Add defines for APM ARMv8 implementation
arm64: Enable APM X-Gene SOC family in the defconfig
arm64: Add Kconfig option for APM X-Gene SOC family
arm64/Makefile: provide vdso_install target
ARM64: mm: THP support.
ARM64: mm: Raise MAX_ORDER for 64KB pages and THP.
ARM64: mm: HugeTLB support.
ARM64: mm: Move PTE_PROT_NONE bit.
ARM64: mm: Make PAGE_NONE pages read only and no-execute.
ARM64: mm: Restore memblock limit when map_mem finished.
mm: thp: Correct the HPAGE_PMD_ORDER check.
x86: mm: Remove general hugetlb code from x86.
mm: hugetlb: Copy general hugetlb code from x86 to mm.
x86: mm: Remove x86 version of huge_pmd_share.
mm: hugetlb: Copy huge_pmd_share from x86 to mm.
arm64: KVM: document kernel object mappings in HYP
arm64: KVM: MAINTAINERS update
arm64: KVM: userspace API documentation
arm64: KVM: enable initialization of a 32bit vcpu
...
Pull x86 mm changes from Ingo Molnar:
"Misc improvements:
- Fix /proc/mtrr reporting
- Fix ioremap printout
- Remove the unused pvclock fixmap entry on 32-bit
- misc cleanups"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/ioremap: Correct function name output
x86: Fix /proc/mtrr with base/size more than 44bits
ix86: Don't waste fixmap entries
x86/mm: Drop unneeded include <asm/*pgtable, page*_types.h>
x86_64: Correct phys_addr in cleanup_highmap comment
huge_pte_alloc, huge_pte_offset and follow_huge_p[mu]d have
already been copied over to mm.
This patch removes the x86 copies of these functions and activates
the general ones by enabling:
CONFIG_ARCH_WANT_GENERAL_HUGETLB
Signed-off-by: Steve Capper <steve.capper@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
The huge_pmd_share code has been copied over to mm/hugetlb.c to
make it accessible to other architectures.
Remove the x86 copy of the huge_pmd_share code and enable the
ARCH_WANT_HUGE_PMD_SHARE config flag. That way we reference the
general one.
Signed-off-by: Steve Capper <steve.capper@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Commit
8d57470d x86, mm: setup page table in top-down
causes a kernel panic while setting mem=2G.
[mem 0x00000000-0x000fffff] page 4k
[mem 0x7fe00000-0x7fffffff] page 1G
[mem 0x7c000000-0x7fdfffff] page 1G
[mem 0x00100000-0x001fffff] page 4k
[mem 0x00200000-0x7bffffff] page 2M
for last entry is not what we want, we should have
[mem 0x00200000-0x3fffffff] page 2M
[mem 0x40000000-0x7bffffff] page 1G
Actually we merge the continuous ranges with same page size too early.
in this case, before merging we have
[mem 0x00200000-0x3fffffff] page 2M
[mem 0x40000000-0x7bffffff] page 2M
after merging them, will get
[mem 0x00200000-0x7bffffff] page 2M
even we can use 1G page to map
[mem 0x40000000-0x7bffffff]
that will cause problem, because we already map
[mem 0x7fe00000-0x7fffffff] page 1G
[mem 0x7c000000-0x7fdfffff] page 1G
with 1G page, aka [0x40000000-0x7fffffff] is mapped with 1G page already.
During phys_pud_init() for [0x40000000-0x7bffffff], it will not
reuse existing that pud page, and allocate new one then try to use
2M page to map it instead, as page_size_mask does not include
PG_LEVEL_1G. At end will have [7c000000-0x7fffffff] not mapped, loop
in phys_pmd_init stop mapping at 0x7bffffff.
That is right behavoir, it maps exact range with exact page size that
we ask, and we should explicitly call it to map [7c000000-0x7fffffff]
before or after mapping 0x40000000-0x7bffffff.
Anyway we need to make sure ranges' page_size_mask correct and consistent
after split_mem_range for each range.
Fix that by calling adjust_range_size_mask before merging range
with same page size.
-v2: update change log.
-v3: add more explanation why [7c000000-0x7fffffff] is not mapped, and
it causes panic.
Bisected-by: "Xie, ChanglongX" <changlongx.xie@intel.com>
Bisected-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
Reported-and-tested-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1370015587-20835-1-git-send-email-yinghai@kernel.org
Cc: <stable@vger.kernel.org> v3.9
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
For x86_64, we have phys_base, which means the delta between the
the address kernel is actually running at and the address kernel
is compiled to run at. Not phys_addr so correct it.
Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Link: http://lkml.kernel.org/r/5192F9BF.2000802@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Two sets of comments were lost during patch-series shuffling:
- comments for init_range_memory_mapping()
- comments in init_mem_mapping that is helpful for reminding people
that the pagetable is setup top-down
The comments were written by Yinghai in his patch in:
https://lkml.org/lkml/2012/11/28/620
This patch reintroduces them.
Originally-From: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/518BC776.7010506@gmail.com
[ Tidied it all up a bit. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull VFS updates from Al Viro,
Misc cleanups all over the place, mainly wrt /proc interfaces (switch
create_proc_entry to proc_create(), get rid of the deprecated
create_proc_read_entry() in favor of using proc_create_data() and
seq_file etc).
7kloc removed.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (204 commits)
don't bother with deferred freeing of fdtables
proc: Move non-public stuff from linux/proc_fs.h to fs/proc/internal.h
proc: Make the PROC_I() and PDE() macros internal to procfs
proc: Supply a function to remove a proc entry by PDE
take cgroup_open() and cpuset_open() to fs/proc/base.c
ppc: Clean up scanlog
ppc: Clean up rtas_flash driver somewhat
hostap: proc: Use remove_proc_subtree()
drm: proc: Use remove_proc_subtree()
drm: proc: Use minor->index to label things, not PDE->name
drm: Constify drm_proc_list[]
zoran: Don't print proc_dir_entry data in debug
reiserfs: Don't access the proc_dir_entry in r_open(), r_start() r_show()
proc: Supply an accessor for getting the data from a PDE's parent
airo: Use remove_proc_subtree()
rtl8192u: Don't need to save device proc dir PDE
rtl8187se: Use a dir under /proc/net/r8180/
proc: Add proc_mkdir_data()
proc: Move some bits from linux/proc_fs.h to linux/{of.h,signal.h,tty.h}
proc: Move PDE_NET() to fs/proc/proc_net.c
...
Pull x86 mm changes from Ingo Molnar:
"Misc smaller changes all over the map"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/iommu/dmar: Remove warning for HPET scope type
x86/mm/gart: Drop unnecessary check
x86/mm/hotplug: Put kernel_physical_mapping_remove() declaration in CONFIG_MEMORY_HOTREMOVE
x86/mm/fixmap: Remove unused FIX_CYCLONE_TIMER
x86/mm/numa: Simplify some bit mangling
x86/mm: Re-enable DEBUG_TLBFLUSH for X86_32
x86/mm/cpa: Cleanup split_large_page() and its callee
x86: Drop always empty .text..page_aligned section
Pull scheduler changes from Ingo Molnar:
"The main changes in this development cycle were:
- full dynticks preparatory work by Frederic Weisbecker
- factor out the cpu time accounting code better, by Li Zefan
- multi-CPU load balancer cleanups and improvements by Joonsoo Kim
- various smaller fixes and cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (45 commits)
sched: Fix init NOHZ_IDLE flag
sched: Prevent to re-select dst-cpu in load_balance()
sched: Rename load_balance_tmpmask to load_balance_mask
sched: Move up affinity check to mitigate useless redoing overhead
sched: Don't consider other cpus in our group in case of NEWLY_IDLE
sched: Explicitly cpu_idle_type checking in rebalance_domains()
sched: Change position of resched_cpu() in load_balance()
sched: Fix wrong rq's runnable_avg update with rt tasks
sched: Document task_struct::personality field
sched/cpuacct/UML: Fix header file dependency bug on the UML build
cgroup: Kill subsys.active flag
sched/cpuacct: No need to check subsys active state
sched/cpuacct: Initialize cpuacct subsystem earlier
sched/cpuacct: Initialize root cpuacct earlier
sched/cpuacct: Allocate per_cpu cpuusage for root cpuacct statically
sched/cpuacct: Clean up cpuacct.h
sched/cpuacct: Remove redundant NULL checks in cpuacct_acount_field()
sched/cpuacct: Remove redundant NULL checks in cpuacct_charge()
sched/cpuacct: Add cpuacct_acount_field()
sched/cpuacct: Add cpuacct_init()
...
Use preferable function name which implies using a pseudo-random
number generator.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>