The per-CPU rcu_data structure's ->cpu_no_qs.b.exp field is updated
only on the instance corresponding to the current CPU, but can be read
more widely. Unmarked accesses are OK from the corresponding CPU, but
only if interrupts are disabled, given that interrupt handlers can and
do modify this field.
Unfortunately, although the load from rcu_preempt_deferred_qs() is always
carried out from the corresponding CPU, interrupts are not necessarily
disabled. This commit therefore upgrades this load to READ_ONCE.
Similarly, the diagnostic access from synchronize_rcu_expedited_wait()
might run with interrupts disabled and from some other CPU. This commit
therefore marks this load with data_race().
Finally, the C-language access in rcu_preempt_ctxt_queue() is OK as
is because interrupts are disabled and this load is always from the
corresponding CPU. This commit adds a comment giving the rationale for
this access being safe.
This data race was reported by KCSAN. Not appropriate for backporting
due to failure being unlikely.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Once either rcutree_online_cpu() or rcutree_dead_cpu() is invoked
concurrently, the following rcu_boost_kthread_setaffinity() race can
occur:
CPU 1 CPU2
mask = rcu_rnp_online_cpus(rnp);
...
mask = rcu_rnp_online_cpus(rnp);
...
set_cpus_allowed_ptr(t, cm);
set_cpus_allowed_ptr(t, cm);
This results in CPU2's update being overwritten by that of CPU1, and
thus the possibility of ->boost_kthread_task continuing to run on a
to-be-offlined CPU.
This commit therefore eliminates this race by relying on the pre-existing
acquisition of ->boost_kthread_mutex to serialize the full process of
changing the affinity of ->boost_kthread_task.
Signed-off-by: Pingfan Liu <kernelfans@gmail.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Userspace execution is a valid quiescent state for RCU Tasks Trace,
but the scheduling-clock interrupt does not currently report such
quiescent states.
Of course, the scheduling-clock interrupt is not strictly speaking
userspace execution. However, the only way that this code is not
in a quiescent state is if something invoked rcu_read_lock_trace(),
and that would be reflected in the ->trc_reader_nesting field in
the task_struct structure. Furthermore, this field is checked by
rcu_tasks_trace_qs(), which is invoked by rcu_tasks_qs() which is in
turn invoked by rcu_note_voluntary_context_switch() in kernels building
at least one of the RCU Tasks flavors. It is therefore safe to invoke
rcu_tasks_trace_qs() from the rcu_sched_clock_irq().
But rcu_tasks_qs() also invokes rcu_tasks_classic_qs() for RCU
Tasks, which lacks the read-side markers provided by RCU Tasks Trace.
This raises the possibility that an RCU Tasks grace period could start
after the interrupt from userspace execution, but before the call to
rcu_sched_clock_irq(). However, it turns out that this is safe because
the RCU Tasks grace period waits for an RCU grace period, which will
wait for the entire scheduling-clock interrupt handler, including any
RCU Tasks read-side critical section that this handler might contain.
This commit therefore updates the rcu_sched_clock_irq() function's
check for usermode execution and its call to rcu_tasks_classic_qs()
to instead check for both usermode execution and interrupt from idle,
and to instead call rcu_note_voluntary_context_switch(). This
consolidates code and provides more faster RCU Tasks Trace
reporting of quiescent states in kernels that do scheduling-clock
interrupts for userspace execution.
[ paulmck: Consolidate checks into rcu_sched_clock_irq(). ]
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The rcu_boost_kthread_setaffinity() function removes the outgoing CPU
from the set_cpus_allowed() mask for the corresponding leaf rcu_node
structure's rcub priority-boosting kthread. Except that if the outgoing
CPU will leave that structure without any online CPUs, the mask is set
to the housekeeping CPU mask from housekeeping_cpumask(). Which is fine
unless the outgoing CPU happens to be a housekeeping CPU.
This commit therefore removes the outgoing CPU from the housekeeping mask.
This would of course be problematic if the outgoing CPU was the last
online housekeeping CPU, but in that case you are in a world of hurt
anyway. If someone comes up with a valid use case for a system needing
all the housekeeping CPUs to be offline, further adjustments can be made.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Kernels built with PREEMPT_RCU=y and RCU_STRICT_GRACE_PERIOD=y trigger
irq-work from rcu_read_unlock(), and the resulting irq-work handler
invokes rcu_preempt_deferred_qs_handle(). The point of this triggering
is to force grace periods to end quickly in order to give tools like KASAN
a better chance of detecting RCU usage bugs such as leaking RCU-protected
pointers out of an RCU read-side critical section.
However, this irq-work triggering is unconditional. This works, but
there is no point in doing this irq-work unless the current grace period
is waiting on the running CPU or task, which is not the common case.
After all, in the common case there are many rcu_read_unlock() calls
per CPU per grace period.
This commit therefore triggers the irq-work only when the current grace
period is waiting on the running CPU or task.
This change was tested as follows on a four-CPU system:
echo rcu_preempt_deferred_qs_handler > /sys/kernel/debug/tracing/set_ftrace_filter
echo 1 > /sys/kernel/debug/tracing/function_profile_enabled
insmod rcutorture.ko
sleep 20
rmmod rcutorture.ko
echo 0 > /sys/kernel/debug/tracing/function_profile_enabled
echo > /sys/kernel/debug/tracing/set_ftrace_filter
This procedure produces results in this per-CPU set of files:
/sys/kernel/debug/tracing/trace_stat/function*
Sample output from one of these files is as follows:
Function Hit Time Avg s^2
-------- --- ---- --- ---
rcu_preempt_deferred_qs_handle 838746 182650.3 us 0.217 us 0.004 us
The baseline sum of the "Hit" values (the number of calls to this
function) was 3,319,015. With this commit, that sum was 1,140,359,
for a 2.9x reduction. The worst-case variance across the CPUs was less
than 25%, so this large effect size is statistically significant.
The raw data is available in the Link: URL.
Link: https://lore.kernel.org/all/20220808022626.12825-1-qiang1.zhang@intel.com/
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Given that rcu_all_qs() is in non-preemptible kernels, why on earth should
it invoke preempt_disable()? This commit adds the reason, which is to
work nicely with debugging enabled in CONFIG_PREEMPT_COUNT=y kernels.
Reported-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Reported-by: Boqun Feng <boqun.feng@gmail.com>
Reported-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
In non-premptible kernels, tasks never do context switches within
RCU read-side critical sections. Therefore, in such kernels, each
leaf rcu_node structure's ->blkd_tasks list will always be empty.
The comment on the non-preemptible version of rcu_preempt_deferred_qs()
confuses this point, so this commit therefore fixes it.
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Kernels built with CONFIG_PREEMPT=n and CONFIG_RCU_STRICT_GRACE_PERIOD=y
report the quiescent state directly from the outermost rcu_read_unlock().
However, the current CPU's rcu_data structure's ->cpu_no_qs.b.norm
might still be set, in which case rcu_report_qs_rdp() will exit early,
thus failing to report quiescent state.
This commit therefore causes rcu_read_unlock_strict() to clear
CPU's rcu_data structure's ->cpu_no_qs.b.norm field before invoking
rcu_report_qs_rdp().
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Callbacks are invoked in RCU kthreads when calbacks are offloaded
(rcu_nocbs boot parameter) or when RCU's softirq handler has been
offloaded to rcuc kthreads (use_softirq==0). The current code allows
for the rcu_nocbs case but not the use_softirq case. This commit adds
support for the use_softirq case.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
The intent of the CONFIG_RCU_STRICT_GRACE_PERIOD Konfig option is to
cause normal grace periods to complete quickly in order to better catch
errors resulting from improperly leaking pointers from RCU read-side
critical sections. However, kernels built with this option enabled still
wait for some hundreds of milliseconds before boosting RCU readers that
have been preempted within their current critical section. The value
of this delay is set by the CONFIG_RCU_BOOST_DELAY Kconfig option,
which defaults to 500 milliseconds.
This commit therefore causes kernels build with strict grace periods
to ignore CONFIG_RCU_BOOST_DELAY. This causes rcu_initiate_boost()
to start boosting immediately after all CPUs on a given leaf rcu_node
structure have passed through their quiescent states.
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Stop-machine recently started calling additional functions while waiting:
----------------------------------------------------------------
Former stop machine wait loop:
do {
cpu_relax(); => macro
...
} while (curstate != STOPMACHINE_EXIT);
-----------------------------------------------------------------
Current stop machine wait loop:
do {
stop_machine_yield(cpumask); => function (notraced)
...
touch_nmi_watchdog(); => function (notraced, inside calls also notraced)
...
rcu_momentary_dyntick_idle(); => function (notraced, inside calls traced)
} while (curstate != MULTI_STOP_EXIT);
------------------------------------------------------------------
These functions (and the functions that they call) must be marked
notrace to prevent them from being updated while they are executing.
The consequences of failing to mark these functions can be severe:
rcu: INFO: rcu_preempt detected stalls on CPUs/tasks:
rcu: 1-...!: (0 ticks this GP) idle=14f/1/0x4000000000000000 softirq=3397/3397 fqs=0
rcu: 3-...!: (0 ticks this GP) idle=ee9/1/0x4000000000000000 softirq=5168/5168 fqs=0
(detected by 0, t=8137 jiffies, g=5889, q=2 ncpus=4)
Task dump for CPU 1:
task:migration/1 state:R running task stack: 0 pid: 19 ppid: 2 flags:0x00000000
Stopper: multi_cpu_stop+0x0/0x18c <- stop_machine_cpuslocked+0x128/0x174
Call Trace:
Task dump for CPU 3:
task:migration/3 state:R running task stack: 0 pid: 29 ppid: 2 flags:0x00000000
Stopper: multi_cpu_stop+0x0/0x18c <- stop_machine_cpuslocked+0x128/0x174
Call Trace:
rcu: rcu_preempt kthread timer wakeup didn't happen for 8136 jiffies! g5889 f0x0 RCU_GP_WAIT_FQS(5) ->state=0x402
rcu: Possible timer handling issue on cpu=2 timer-softirq=594
rcu: rcu_preempt kthread starved for 8137 jiffies! g5889 f0x0 RCU_GP_WAIT_FQS(5) ->state=0x402 ->cpu=2
rcu: Unless rcu_preempt kthread gets sufficient CPU time, OOM is now expected behavior.
rcu: RCU grace-period kthread stack dump:
task:rcu_preempt state:I stack: 0 pid: 14 ppid: 2 flags:0x00000000
Call Trace:
schedule+0x56/0xc2
schedule_timeout+0x82/0x184
rcu_gp_fqs_loop+0x19a/0x318
rcu_gp_kthread+0x11a/0x140
kthread+0xee/0x118
ret_from_exception+0x0/0x14
rcu: Stack dump where RCU GP kthread last ran:
Task dump for CPU 2:
task:migration/2 state:R running task stack: 0 pid: 24 ppid: 2 flags:0x00000000
Stopper: multi_cpu_stop+0x0/0x18c <- stop_machine_cpuslocked+0x128/0x174
Call Trace:
This commit therefore marks these functions notrace:
rcu_preempt_deferred_qs()
rcu_preempt_need_deferred_qs()
rcu_preempt_deferred_qs_irqrestore()
[ paulmck: Apply feedback from Neeraj Upadhyay. ]
Signed-off-by: Patrick Wang <patrick.wang.shcn@gmail.com>
Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Move the core RCU eqs/dynticks functions to context tracking so that
we can later merge all that code within context tracking.
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Nicolas Saenz Julienne <nsaenz@kernel.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Xiongfeng Wang <wangxiongfeng2@huawei.com>
Cc: Yu Liao <liaoyu15@huawei.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Paul Gortmaker<paul.gortmaker@windriver.com>
Cc: Alex Belits <abelits@marvell.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Tested-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
This commit makes rcu_note_context_switch() unconditionally invoke the
rcu_tasks_qs() function, as opposed to doing so only when RCU (as opposed
to RCU Tasks Trace) urgently needs a grace period to end.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Martin KaFai Lau <kafai@fb.com>
Cc: KP Singh <kpsingh@kernel.org>
When booting kernels built with both CONFIG_RCU_STRICT_GRACE_PERIOD=y
and CONFIG_PREEMPT_RT=y, the rcu_read_unlock_special() function's
invocation of irq_work_queue_on() the init_irq_work() causes the
rcu_preempt_deferred_qs_handler() function to work execute in SCHED_FIFO
irq_work kthreads. Because rcu_read_unlock_special() is invoked on each
rcu_read_unlock() in such kernels, the amount of work just keeps piling
up, resulting in a boot-time hang.
This commit therefore avoids this hang by using IRQ_WORK_INIT_HARD()
instead of init_irq_work(), but only in kernels built with both
CONFIG_PREEMPT_RT=y and CONFIG_RCU_STRICT_GRACE_PERIOD=y.
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
For the spawning of the priority-boost kthreads can fail, improbable
though this might seem. This commit therefore refrains from attemoting
to initiate RCU priority boosting when The ->boost_kthread_task pointer
is NULL.
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Suppose we have a kernel built with both CONFIG_RCU_STRICT_GRACE_PERIOD=y
and CONFIG_PREEMPT=y. Suppose further that an RCU reader from which RCU
core needs a quiescent state ends in rcu_preempt_deferred_qs_irqrestore().
This function will then invoke rcu_report_qs_rdp() in order to immediately
report that quiescent state. Unfortunately, it will not have cleared
that reader's CPU's rcu_data structure's ->cpu_no_qs.b.norm field.
As a result, rcu_report_qs_rdp() will take an early exit because it
will believe that this CPU has not yet encountered a quiescent state,
and there will be no reporting of the current quiescent state.
This commit therefore causes rcu_preempt_deferred_qs_irqrestore() to
clear the ->cpu_no_qs.b.norm field before invoking rcu_report_qs_rdp().
Kudos to Boqun Feng and Neeraj Upadhyay for helping with analysis of
this issue!
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The rcu_spawn_gp_kthread() function is called as an early initcall,
which means that SMP initialization hasn't happened yet and only the
boot CPU is online. Therefore, create only the boost kthread for the
leaf node of the boot CPU.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
- Cleanups for SCHED_DEADLINE
- Tracing updates/fixes
- CPU Accounting fixes
- First wave of changes to optimize the overhead of the scheduler build,
from the fast-headers tree - including placeholder *_api.h headers for
later header split-ups.
- Preempt-dynamic using static_branch() for ARM64
- Isolation housekeeping mask rework; preperatory for further changes
- NUMA-balancing: deal with CPU-less nodes
- NUMA-balancing: tune systems that have multiple LLC cache domains per node (eg. AMD)
- Updates to RSEQ UAPI in preparation for glibc usage
- Lots of RSEQ/selftests, for same
- Add Suren as PSI co-maintainer
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmI5rg8RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1hGrw/+M3QOk6fH7G48wjlNnBvcOife6ls+Ni4k
ixOAcF4JKoixO8HieU5vv0A7yf/83tAa6fpeXeMf1hkCGc0NSlmLtuIux+WOmoAL
LzCyDEYfiP8KnVh0A1Tui/lK0+AkGo21O6ADhQE2gh8o2LpslOHQMzvtyekSzeeb
mVxMYQN+QH0m518xdO2D8IQv9ctOYK0eGjmkqdNfntOlytypPZHeNel/tCzwklP/
dElJUjNiSKDlUgTBPtL3DfpoLOI/0mHF2p6NEXvNyULxSOqJTu8pv9Z2ADb2kKo1
0D56iXBDngMi9MHIJLgvzsA8gKzHLFSuPbpODDqkTZCa28vaMB9NYGhJ643NtEie
IXTJEvF1rmNkcLcZlZxo0yjL0fjvPkczjw4Vj27gbrUQeEBfb4mfuI4BRmij63Ep
qEkgQTJhduCqqrQP1rVyhwWZRk1JNcVug+F6N42qWW3fg1xhj0YSrLai2c9nPez6
3Zt98H8YGS1Z/JQomSw48iGXVqfTp/ETI7uU7jqHK8QcjzQ4lFK5H4GZpwuqGBZi
NJJ1l97XMEas+rPHiwMEN7Z1DVhzJLCp8omEj12QU+tGLofxxwAuuOVat3CQWLRk
f80Oya3TLEgd22hGIKDRmHa22vdWnNQyS0S15wJotawBzQf+n3auS9Q3/rh979+t
ES/qvlGxTIs=
=Z8uT
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2022-03-22' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Cleanups for SCHED_DEADLINE
- Tracing updates/fixes
- CPU Accounting fixes
- First wave of changes to optimize the overhead of the scheduler
build, from the fast-headers tree - including placeholder *_api.h
headers for later header split-ups.
- Preempt-dynamic using static_branch() for ARM64
- Isolation housekeeping mask rework; preperatory for further changes
- NUMA-balancing: deal with CPU-less nodes
- NUMA-balancing: tune systems that have multiple LLC cache domains per
node (eg. AMD)
- Updates to RSEQ UAPI in preparation for glibc usage
- Lots of RSEQ/selftests, for same
- Add Suren as PSI co-maintainer
* tag 'sched-core-2022-03-22' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (81 commits)
sched/headers: ARM needs asm/paravirt_api_clock.h too
sched/numa: Fix boot crash on arm64 systems
headers/prep: Fix header to build standalone: <linux/psi.h>
sched/headers: Only include <linux/entry-common.h> when CONFIG_GENERIC_ENTRY=y
cgroup: Fix suspicious rcu_dereference_check() usage warning
sched/preempt: Tell about PREEMPT_DYNAMIC on kernel headers
sched/topology: Remove redundant variable and fix incorrect type in build_sched_domains
sched/deadline,rt: Remove unused parameter from pick_next_[rt|dl]_entity()
sched/deadline,rt: Remove unused functions for !CONFIG_SMP
sched/deadline: Use __node_2_[pdl|dle]() and rb_first_cached() consistently
sched/deadline: Merge dl_task_can_attach() and dl_cpu_busy()
sched/deadline: Move bandwidth mgmt and reclaim functions into sched class source file
sched/deadline: Remove unused def_dl_bandwidth
sched/tracing: Report TASK_RTLOCK_WAIT tasks as TASK_UNINTERRUPTIBLE
sched/tracing: Don't re-read p->state when emitting sched_switch event
sched/rt: Plug rt_mutex_setprio() vs push_rt_task() race
sched/cpuacct: Remove redundant RCU read lock
sched/cpuacct: Optimize away RCU read lock
sched/cpuacct: Fix charge percpu cpuusage
sched/headers: Reorganize, clean up and optimize kernel/sched/sched.h dependencies
...
Refer to housekeeping APIs using single feature types instead of flags.
This prevents from passing multiple isolation features at once to
housekeeping interfaces, which soon won't be possible anymore as each
isolation features will have their own cpumask.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Juri Lelli <juri.lelli@redhat.com>
Reviewed-by: Phil Auld <pauld@redhat.com>
Link: https://lore.kernel.org/r/20220207155910.527133-5-frederic@kernel.org
In some places, RCU code calls cpumask_weight() to check if any bit of a
given cpumask is set. We can do it more efficiently with cpumask_empty()
because cpumask_empty() stops traversing the cpumask as soon as it finds
first set bit, while cpumask_weight() counts all bits unconditionally.
Signed-off-by: Yury Norov <yury.norov@gmail.com>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
As we handle parallel CPU bringup, we will need to take care to avoid
spawning multiple boost threads, or race conditions when setting their
affinity. Spotted by Paul McKenney.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The pattern "rdp->grpmask & rcu_rnp_online_cpus(rnp)" occurs frequently
in RCU code in order to determine whether rdp->cpu is online from an
RCU perspective. This commit therefore creates an rcu_rdp_cpu_online()
function to replace it.
[ paulmck: Apply kernel test robot unused-variable feedback. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
When the rcutree.use_softirq kernel boot parameter is set to zero, all
RCU_SOFTIRQ processing is carried out by the per-CPU rcuc kthreads.
If these kthreads are being starved, quiescent states will not be
reported, which in turn means that the grace period will not end, which
can in turn trigger RCU CPU stall warnings. This commit therefore dumps
stack traces of stalled CPUs' rcuc kthreads, which can help identify
what is preventing those kthreads from running.
Suggested-by: Ammar Faizi <ammarfaizi2@gnuweeb.org>
Reviewed-by: Ammar Faizi <ammarfaizi2@gnuweeb.org>
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Currently rcu_preempt_deferred_qs_irqrestore() releases rnp->boost_mtx
before reporting the expedited quiescent state. Under heavy real-time
load, this can result in this function being preempted before the
quiescent state is reported, which can in turn prevent the expedited grace
period from completing. Tim Murray reports that the resulting expedited
grace periods can take hundreds of milliseconds and even more than one
second, when they should normally complete in less than a millisecond.
This was fine given that there were no particular response-time
constraints for synchronize_rcu_expedited(), as it was designed
for throughput rather than latency. However, some users now need
sub-100-millisecond response-time constratints.
This patch therefore follows Neeraj's suggestion (seconded by Tim and
by Uladzislau Rezki) of simply reversing the two operations.
Reported-by: Tim Murray <timmurray@google.com>
Reported-by: Joel Fernandes <joelaf@google.com>
Reported-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Reviewed-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Tested-by: Tim Murray <timmurray@google.com>
Cc: Todd Kjos <tkjos@google.com>
Cc: Sandeep Patil <sspatil@google.com>
Cc: <stable@vger.kernel.org> # 5.4.x
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
In non-preemptible kernels, an unfortunately timed expedited grace period
can result in the rcu_exp_handler() IPI handler setting the rcu_data
structure's cpu_no_qs.b.exp field just as the target CPU enters idle.
There are situations in which this field will not be checked until after
that CPU exits idle. The resulting grace-period latency does not qualify
as "expedited".
This commit therefore checks this field upon non-preemptible idle entry in
the rcu_preempt_deferred_qs() function. It also qualifies the rcu_core()
preempt_count() check with IS_ENABLED(CONFIG_PREEMPT_COUNT) to prevent
false-positive quiescent states from count-free kernels.
Reported-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Having two fields for the same purpose with subtle differences on
different RCU flavours is confusing, especially when both fields always
exist on both RCU flavours.
Fortunately, it is now safe for preemptible RCU to rely on the rcu_data
structure's ->cpu_no_qs.b.exp field, just like non-preemptible RCU.
This commit therefore removes the ad-hoc ->exp_deferred_qs field.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
On non-preemptible RCU, move clearing of the rcu_data structure's
->cpu_no_qs.b.exp filed to the actual expedited quiescent state report
function, matching hw preemptible RCU handles the ->exp_deferred_qs field.
This prepares for removing ->exp_deferred_qs in favor of ->cpu_no_qs.b.exp
for both preemptible and non-preemptible RCU.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Preemptible RCU does not use the rcu_data structure's ->cpu_no_qs.b.exp,
instead using a separate ->exp_deferred_qs field to record the need for
an expedited quiescent state.
In fact ->cpu_no_qs.b.exp should never be set in preemptible RCU because
preemptible RCU's expedited grace periods use other mechanisms to record
quiescent states.
This commit therefore removes the implicit rcu_qs() reference to
->cpu_no_qs.b.exp in favor of a direct reference to ->cpu_no_qs.b.norm.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
When the boost kthreads are created on systems with nohz_full CPUs,
the cpus_allowed_ptr is set to housekeeping_cpumask(HK_FLAG_KTHREAD).
However, when the rcu_boost_kthread_setaffinity() is called, the original
affinity will be changed and these kthreads can subsequently run on
nohz_full CPUs. This commit makes rcu_boost_kthread_setaffinity()
restrict these boost kthreads to housekeeping CPUs.
Signed-off-by: Zqiang <qiang.zhang1211@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit cleans up some comments and code in kernel/rcu/tree_plugin.h.
Signed-off-by: Zhouyi Zhou <zhouzhouyi@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit replaces the obsolete and ambiguous macro in_irq() with its
shiny new in_hardirq() equivalent.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Now that RCU_FAST_NO_HZ is no more, there is but one implementation of
the rcu_needs_cpu() function. This commit therefore moves this function
from kernel/rcu/tree_plugin.c to kernel/rcu/tree.c.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
All of the uses of CONFIG_RCU_FAST_NO_HZ=y that I have seen involve
systems with RCU callbacks offloaded. In this situation, all that this
Kconfig option does is slow down idle entry/exit with an additional
allways-taken early exit. If this is the only use case, then this
Kconfig option nothing but an attractive nuisance that needs to go away.
This commit therefore removes the RCU_FAST_NO_HZ Kconfig option.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
RCU managed to grow a few noinstr violations:
vmlinux.o: warning: objtool: rcu_dynticks_eqs_enter()+0x0: call to rcu_dynticks_task_trace_enter() leaves .noinstr.text section
vmlinux.o: warning: objtool: rcu_dynticks_eqs_exit()+0xe: call to rcu_dynticks_task_trace_exit() leaves .noinstr.text section
Fix them by adding __always_inline to the relevant trivial functions.
Also replace the noinstr with __always_inline for the existing
rcu_dynticks_task_*() functions since noinstr would force noinline
them, even when empty, which seems silly.
Fixes: 7d0c9c50c5 ("rcu-tasks: Avoid IPIing userspace/idle tasks if kernel is so built")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Since commit aa40c138cc ("rcu: Report QS for outermost PREEMPT=n
rcu_read_unlock() for strict GPs") the function rcu_read_unlock_strict()
is invoked by the inlined rcu_read_unlock() function. However,
rcu_read_unlock_strict() is an empty function in production kernels,
which are built with CONFIG_RCU_STRICT_GRACE_PERIOD=n.
There is a mention of rcu_read_unlock_strict() in the BPF verifier,
but this is in a deny-list, meaning that BPF does not care whether
rcu_read_unlock_strict() is ever called.
This commit therefore provides a slight performance improvement
by hoisting the check of CONFIG_RCU_STRICT_GRACE_PERIOD from
rcu_read_unlock_strict() into rcu_read_unlock(), thus avoiding the
pointless call to an empty function.
Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The regular pile:
- A few improvements to the mutex code
- Documentation updates for atomics to clarify the difference between
cmpxchg() and try_cmpxchg() and to explain the forward progress
expectations.
- Simplification of the atomics fallback generator
- The addition of arch_atomic_long*() variants and generic arch_*()
bitops based on them.
- Add the missing might_sleep() invocations to the down*() operations of
semaphores.
The PREEMPT_RT locking core:
- Scheduler updates to support the state preserving mechanism for
'sleeping' spin- and rwlocks on RT. This mechanism is carefully
preserving the state of the task when blocking on a 'sleeping' spin- or
rwlock and takes regular wake-ups targeted at the same task into
account. The preserved or updated (via a regular wakeup) state is
restored when the lock has been acquired.
- Restructuring of the rtmutex code so it can be utilized and extended
for the RT specific lock variants.
- Restructuring of the ww_mutex code to allow sharing of the ww_mutex
specific functionality for rtmutex based ww_mutexes.
- Header file disentangling to allow substitution of the regular lock
implementations with the PREEMPT_RT variants without creating an
unmaintainable #ifdef mess.
- Shared base code for the PREEMPT_RT specific rw_semaphore and rwlock
implementations. Contrary to the regular rw_semaphores and rwlocks the
PREEMPT_RT implementation is writer unfair because it is infeasible to
do priority inheritance on multiple readers. Experience over the years
has shown that real-time workloads are not the typical workloads which
are sensitive to writer starvation. The alternative solution would be
to allow only a single reader which has been tried and discarded as it
is a major bottleneck especially for mmap_sem. Aside of that many of
the writer starvation critical usage sites have been converted to a
writer side mutex/spinlock and RCU read side protections in the past
decade so that the issue is less prominent than it used to be.
- The actual rtmutex based lock substitutions for PREEMPT_RT enabled
kernels which affect mutex, ww_mutex, rw_semaphore, spinlock_t and
rwlock_t. The spin/rw_lock*() functions disable migration across the
critical section to preserve the existing semantics vs. per CPU
variables.
- Rework of the futex REQUEUE_PI mechanism to handle the case of early
wake-ups which interleave with a re-queue operation to prevent the
situation that a task would be blocked on both the rtmutex associated
to the outer futex and the rtmutex based hash bucket spinlock.
While this situation cannot happen on !RT enabled kernels the changes
make the underlying concurrency problems easier to understand in
general. As a result the difference between !RT and RT kernels is
reduced to the handling of waiting for the critical section. !RT
kernels simply spin-wait as before and RT kernels utilize rcu_wait().
- The substitution of local_lock for PREEMPT_RT with a spinlock which
protects the critical section while staying preemptible. The CPU
locality is established by disabling migration.
The underlying concepts of this code have been in use in PREEMPT_RT for
way more than a decade. The code has been refactored several times over
the years and this final incarnation has been optimized once again to be
as non-intrusive as possible, i.e. the RT specific parts are mostly
isolated.
It has been extensively tested in the 5.14-rt patch series and it has
been verified that !RT kernels are not affected by these changes.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmEsnuMTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoaeWD/wLNMoAZXslS0prfr64ANjRgLXIqMFA
r6xgioiwxxaxbmZ/GNPraoLC//ENo6mwobuUovq8yKljv2oBu6AmlUkBwrmMBc8Q
nnm7jjGM3bZ1REup7rWERnjdOZfdGVSL5CUAAfthyC744XmXaepwrrrqfXG22GxJ
QwLXBTAwXFVDxKfUjDKzEo5zgLNHRvHbzc0DpTYYn6WcuDJOmlyWnhfDTu2mNG9Z
rqjqy+OgOUEUprQDgitk5hedfeic2kPm1mxxZrXkpkuPef5be2inQq2siC7GxR4g
0AKeUsMFgFmSqiD4iJTALJ+8WXkgMnD9VgooeWHk4OaqZfaGzi/iwRSnrlnf7+OV
GTmrsmX+TX/Wz2BDjB+3zylQnYqYh3quE5w4UO6uUyJXfdhlnvsjVc8bEajDFjeM
yUapaWxdAri7k2n+vjXQthAngxtYPgXtFbZPoOl109JcDcG6jJsCdM5TdenegaRs
WeUh05JqrH8+qI+Nwzc4rO+PmKHQ8on2wKdgLp11dviiPOf8OguH65nDQSGZ/fGv
7cnD9A1/MUd0sdrvc52AqkIYxh+Rp9GnCs1xA82JsTXgAPcXqAWjjR2JFPHL4neV
eW2upZekl8lMR7hkfcQbhe4MVjQIjff3iFOkQXittxMzfzFdi0tly8xB8AzpTHOx
h91MycvmMR2zRw==
=IEqE
-----END PGP SIGNATURE-----
Merge tag 'locking-core-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking and atomics updates from Thomas Gleixner:
"The regular pile:
- A few improvements to the mutex code
- Documentation updates for atomics to clarify the difference between
cmpxchg() and try_cmpxchg() and to explain the forward progress
expectations.
- Simplification of the atomics fallback generator
- The addition of arch_atomic_long*() variants and generic arch_*()
bitops based on them.
- Add the missing might_sleep() invocations to the down*() operations
of semaphores.
The PREEMPT_RT locking core:
- Scheduler updates to support the state preserving mechanism for
'sleeping' spin- and rwlocks on RT.
This mechanism is carefully preserving the state of the task when
blocking on a 'sleeping' spin- or rwlock and takes regular wake-ups
targeted at the same task into account. The preserved or updated
(via a regular wakeup) state is restored when the lock has been
acquired.
- Restructuring of the rtmutex code so it can be utilized and
extended for the RT specific lock variants.
- Restructuring of the ww_mutex code to allow sharing of the ww_mutex
specific functionality for rtmutex based ww_mutexes.
- Header file disentangling to allow substitution of the regular lock
implementations with the PREEMPT_RT variants without creating an
unmaintainable #ifdef mess.
- Shared base code for the PREEMPT_RT specific rw_semaphore and
rwlock implementations.
Contrary to the regular rw_semaphores and rwlocks the PREEMPT_RT
implementation is writer unfair because it is infeasible to do
priority inheritance on multiple readers. Experience over the years
has shown that real-time workloads are not the typical workloads
which are sensitive to writer starvation.
The alternative solution would be to allow only a single reader
which has been tried and discarded as it is a major bottleneck
especially for mmap_sem. Aside of that many of the writer
starvation critical usage sites have been converted to a writer
side mutex/spinlock and RCU read side protections in the past
decade so that the issue is less prominent than it used to be.
- The actual rtmutex based lock substitutions for PREEMPT_RT enabled
kernels which affect mutex, ww_mutex, rw_semaphore, spinlock_t and
rwlock_t. The spin/rw_lock*() functions disable migration across
the critical section to preserve the existing semantics vs per-CPU
variables.
- Rework of the futex REQUEUE_PI mechanism to handle the case of
early wake-ups which interleave with a re-queue operation to
prevent the situation that a task would be blocked on both the
rtmutex associated to the outer futex and the rtmutex based hash
bucket spinlock.
While this situation cannot happen on !RT enabled kernels the
changes make the underlying concurrency problems easier to
understand in general. As a result the difference between !RT and
RT kernels is reduced to the handling of waiting for the critical
section. !RT kernels simply spin-wait as before and RT kernels
utilize rcu_wait().
- The substitution of local_lock for PREEMPT_RT with a spinlock which
protects the critical section while staying preemptible. The CPU
locality is established by disabling migration.
The underlying concepts of this code have been in use in PREEMPT_RT for
way more than a decade. The code has been refactored several times over
the years and this final incarnation has been optimized once again to be
as non-intrusive as possible, i.e. the RT specific parts are mostly
isolated.
It has been extensively tested in the 5.14-rt patch series and it has
been verified that !RT kernels are not affected by these changes"
* tag 'locking-core-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (92 commits)
locking/rtmutex: Return success on deadlock for ww_mutex waiters
locking/rtmutex: Prevent spurious EDEADLK return caused by ww_mutexes
locking/rtmutex: Dequeue waiter on ww_mutex deadlock
locking/rtmutex: Dont dereference waiter lockless
locking/semaphore: Add might_sleep() to down_*() family
locking/ww_mutex: Initialize waiter.ww_ctx properly
static_call: Update API documentation
locking/local_lock: Add PREEMPT_RT support
locking/spinlock/rt: Prepare for RT local_lock
locking/rtmutex: Add adaptive spinwait mechanism
locking/rtmutex: Implement equal priority lock stealing
preempt: Adjust PREEMPT_LOCK_OFFSET for RT
locking/rtmutex: Prevent lockdep false positive with PI futexes
futex: Prevent requeue_pi() lock nesting issue on RT
futex: Simplify handle_early_requeue_pi_wakeup()
futex: Reorder sanity checks in futex_requeue()
futex: Clarify comment in futex_requeue()
futex: Restructure futex_requeue()
futex: Correct the number of requeued waiters for PI
futex: Remove bogus condition for requeue PI
...
RT builds substitutions for rwsem, mutex, spinlock and rwlock around
rtmutexes. Split the inner working out so each lock substitution can use
them with the appropriate lockdep annotations. This avoids having an extra
unused lockdep map in the wrapped rtmutex.
No functional change.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20210815211302.784739994@linutronix.de
The WARN_ON_ONCE() invocation within the CONFIG_PREEMPT=y version of
rcu_note_context_switch() triggers when there is a voluntary context
switch in an RCU read-side critical section, but there is quite a gap
between the output of that WARN_ON_ONCE() and this RCU-usage error.
This commit therefore converts the WARN_ON_ONCE() to a WARN_ONCE()
that explicitly describes the problem in its message.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
KCSAN flags accesses to ->rcu_read_lock_nesting as data races, but
in the past, the overhead of marked accesses was excessive. However,
that was long ago, and much has changed since then, both in terms of
hardware and of compilers. Here is data taken on an eight-core laptop
using Intel(R) Core(TM) i9-10885H CPU @ 2.40GHz with a kernel built
using gcc version 9.3.0, with all data in nanoseconds.
Unmarked accesses (status quo), measured by three refscale runs:
Minimum reader duration: 3.286 2.851 3.395
Median reader duration: 3.698 3.531 3.4695
Maximum reader duration: 4.481 5.215 5.157
Marked accesses, also measured by three refscale runs:
Minimum reader duration: 3.501 3.677 3.580
Median reader duration: 4.053 3.723 3.895
Maximum reader duration: 7.307 4.999 5.511
This focused microbenhmark shows only sub-nanosecond differences which
are unlikely to be visible at the system level. This commit therefore
marks data-racing accesses to ->rcu_read_lock_nesting.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit fixes several typos where CONFIG_TASKS_RCU_TRACE should
instead be CONFIG_TASKS_TRACE_RCU. Among other things, these typos
could cause CONFIG_TASKS_TRACE_RCU_READ_MB=y kernels to suffer from
memory-ordering bugs that could result in false-positive quiescent
states and too-short grace periods.
Signed-off-by: Zhouyi Zhou <zhouzhouyi@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The kernel/rcu/tree_plugin.h file contains not only the plugins for
preemptible RCU, but also many other features including rcu_nocbs
callback offloading. This offloading has become large and complex,
so it is time to put it in its own file.
This commit starts that process.
Suggested-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
[ paulmck: Rename to tree_nocb.h, add Frederic as author. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Pull RCU updates from Paul McKenney:
- Bitmap parsing support for "all" as an alias for all bits
- Documentation updates
- Miscellaneous fixes, including some that overlap into mm and lockdep
- kvfree_rcu() updates
- mem_dump_obj() updates, with acks from one of the slab-allocator
maintainers
- RCU NOCB CPU updates, including limited deoffloading
- SRCU updates
- Tasks-RCU updates
- Torture-test updates
* 'core-rcu-2021.07.04' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (78 commits)
tasks-rcu: Make show_rcu_tasks_gp_kthreads() be static inline
rcu-tasks: Make ksoftirqd provide RCU Tasks quiescent states
rcu: Add missing __releases() annotation
rcu: Remove obsolete rcu_read_unlock() deadlock commentary
rcu: Improve comments describing RCU read-side critical sections
rcu: Create an unrcu_pointer() to remove __rcu from a pointer
srcu: Early test SRCU polling start
rcu: Fix various typos in comments
rcu/nocb: Unify timers
rcu/nocb: Prepare for fine-grained deferred wakeup
rcu/nocb: Only cancel nocb timer if not polling
rcu/nocb: Delete bypass_timer upon nocb_gp wakeup
rcu/nocb: Cancel nocb_timer upon nocb_gp wakeup
rcu/nocb: Allow de-offloading rdp leader
rcu/nocb: Directly call __wake_nocb_gp() from bypass timer
rcu: Don't penalize priority boosting when there is nothing to boost
rcu: Point to documentation of ordering guarantees
rcu: Make rcu_gp_cleanup() be noinline for tracing
rcu: Restrict RCU_STRICT_GRACE_PERIOD to at most four CPUs
rcu: Make show_rcu_gp_kthreads() dump rcu_node structures blocking GP
...