- Factor out the duplicated access/cache code into a single file
* Shared between i386/x86-64.
- Share flush code between AGP and IOMMU
* Fix a bug: AGP didn't wait for end of flush before
- Drop 8 northbridges limit and allocate dynamically
- Add lock to serialize AGP and IOMMU GART flushes
- Add PCI ID for next AMD northbridge
- Random related cleanups
The old K8 NUMA discovery code is unchanged. New systems
should all use SRAT for this.
Cc: "Navin Boppuri" <navin.boppuri@newisys.com>
Cc: Dave Jones <davej@redhat.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Changes are largely identical to the i386 version:
* alternative #define are moved to the new alternative.h file.
* one new elf section with pointers to the lock prefixes which can be
nop'ed out for non-smp.
* two new elf sections simliar to the "classic" alternatives to
replace SMP code with simpler UP code.
* fixup headers to use alternative.h instead of defining their own
LOCK / LOCK_PREFIX macros.
The patch reuses the i386 version of the alternatives code to avoid code
duplication. The code in alternatives.c was shuffled around a bit to
reduce the number of #ifdefs needed. It also got some tweaks needed for
x86_64 (vsyscall page handling) and new features (noreplacement option
which was x86_64 only up to now). Debug printk's are changed from
compile-time to runtime.
Loosely based on a early version from Bastian Blank <waldi@debian.org>
Signed-off-by: Gerd Hoffmann <kraxel@suse.de>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Intel systems report the cache level data from CPUID 4 in sysfs.
Add a CPUID 4 emulation for AMD CPUs to report the same
information for them. This allows programs to read this
information in a uniform way.
The AMD way to report this is less flexible so some assumptions
are hardcoded (e.g. no L3)
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
As described in a previous patch and documented in mm/filemap.h,
copy_from_user_inatomic* shouldn't zero out the tail of the buffer after an
incomplete copy.
This patch implements that change for i386.
For the _nocache version, a new __copy_user_intel_nocache is defined similar
to copy_user_zeroio_intel_nocache, and this is ultimately used for the copy.
For the regular version, __copy_from_user_ll_nozero is defined which uses
__copy_user and __copy_user_intel - the later needs casts to reposition the
__user annotations.
If copy_from_user_atomic is given a constant length of 1, 2, or 4, then we do
still zero the destintion on failure. This didn't seem worth the effort of
fixing as the places where it is used really don't care.
Signed-off-by: Neil Brown <neilb@suse.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The problem is that when we write to a file, the copy from userspace to
pagecache is first done with preemption disabled, so if the source address is
not immediately available the copy fails *and* *zeros* *the* *destination*.
This is a problem because a concurrent read (which admittedly is an odd thing
to do) might see zeros rather that was there before the write, or what was
there after, or some mixture of the two (any of these being a reasonable thing
to see).
If the copy did fail, it will immediately be retried with preemption
re-enabled so any transient problem with accessing the source won't cause an
error.
The first copying does not need to zero any uncopied bytes, and doing so
causes the problem. It uses copy_from_user_atomic rather than copy_from_user
so the simple expedient is to change copy_from_user_atomic to *not* zero out
bytes on failure.
The first of these two patches prepares for the change by fixing two places
which assume copy_from_user_atomic does zero the tail. The two usages are
very similar pieces of code which copy from a userspace iovec into one or more
page-cache pages. These are changed to remove the assumption.
The second patch changes __copy_from_user_inatomic* to not zero the tail.
Once these are accepted, I will look at similar patches of other architectures
where this is important (ppc, mips and sparc being the ones I can find).
This patch:
There is a problem with __copy_from_user_inatomic zeroing the tail of the
buffer in the case of an error. As it is called in atomic context, the error
may be transient, so it results in zeros being written where maybe they
shouldn't be.
In the usage in filemap, this opens a window for a well timed read to see data
(zeros) which is not consistent with any ordering of reads and writes.
Most cases where __copy_from_user_inatomic is called, a failure results in
__copy_from_user being called immediately. As long as the latter zeros the
tail, the former doesn't need to. However in *copy_from_user_iovec
implementations (in both filemap and ntfs/file), it is assumed that
copy_from_user_inatomic will zero the tail.
This patch removes that assumption, so that after this patch it will
be safe for copy_from_user_inatomic to not zero the tail.
This patch also adds some commentary to filemap.h and asm-i386/uaccess.h.
After this patch, all architectures that might disable preempt when
kmap_atomic is called need to have their __copy_from_user_inatomic* "fixed".
This includes
- powerpc
- i386
- mips
- sparc
Signed-off-by: Neil Brown <neilb@suse.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Anton Altaparmakov <aia21@cantab.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The floppy driver is already calling add_disk_randomness as it should, so this
was redundant.
Signed-off-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Clean up and refactor i386 sub-architecture setup.
This change moves all the code from the
asm-i386/mach-*/setup_arch_pre/post.h headers, into
arch/i386/mach-*/setup.c. mach-*/setup_arch_pre.h is renamed to
setup_arch.h, and contains only things which should be in header files. It
is purely code-motion; there should be no functional changes at all.
Several functions in arch/i386/kernel/setup.c needed to be made non-static
so that they're visible to the code in mach-*/setup.c. asm-i386/setup.h is
used to hold the prototypes for these functions.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Cc: Zachary Amsden <zach@vmware.com>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Christian Limpach <Christian.Limpach@cl.cam.ac.uk>
Cc: Martin Bligh <mbligh@google.com>
Cc: James Bottomley <James.Bottomley@steeleye.com>
Cc: Andrey Panin <pazke@donpac.ru>
Cc: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux-acpi-2.6: (65 commits)
ACPI: suppress power button event on S3 resume
ACPI: resolve merge conflict between sem2mutex and processor_perflib.c
ACPI: use for_each_possible_cpu() instead of for_each_cpu()
ACPI: delete newly added debugging macros in processor_perflib.c
ACPI: UP build fix for bugzilla-5737
Enable P-state software coordination via _PDC
P-state software coordination for speedstep-centrino
P-state software coordination for acpi-cpufreq
P-state software coordination for ACPI core
ACPI: create acpi_thermal_resume()
ACPI: create acpi_fan_suspend()/acpi_fan_resume()
ACPI: pass pm_message_t from acpi_device_suspend() to root_suspend()
ACPI: create acpi_device_suspend()/acpi_device_resume()
ACPI: replace spin_lock_irq with mutex for ec poll mode
ACPI: Allow a WAN module enable/disable on a Thinkpad X60.
sem2mutex: acpi, acpi_link_lock
ACPI: delete unused acpi_bus_drivers_lock
sem2mutex: drivers/acpi/processor_perflib.c
ACPI add ia64 exports to build acpi_memhotplug as a module
ACPI: asus_acpi_init(): propagate correct return value
...
Manual resolve of conflicts in:
arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c
arch/i386/kernel/cpu/cpufreq/speedstep-centrino.c
include/acpi/processor.h
compile fix: <asm-i386/alternative.h> needs <asm/types.h> for 'u8' --
just look at struct alt_instr.
My module includes <asm/bitops.h> as the first header, and as of 2.6.17 this
leads to compilation errors.
Signed-off-by: Kirill Smelkov <kirr@mns.spb.ru>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
New CPU flags for next generation of crypto engine as found in VIA C7
processors.
Signed-off-by: Michal Ludvig <michal@logix.cz>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
An immediate operand can't be the destination of the cmpl instruction,
so exclude it.
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Cc: Mattia Dongili <malattia@linux.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Only drm, framebuffer, mtrr parts + misc files here and there.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Use the x86 cache-bypassing copy instructions for copy_from_user().
Some performance data are
Total of GLOBAL_POWER_EVENTS (CPU cycle samples)
2.6.12.4.orig 1921587
2.6.12.4.nt 1599424
1599424/1921587=83.23% (16.77% reduction)
BSQ_CACHE_REFERENCE (L3 cache miss)
2.6.12.4.orig 57427
2.6.12.4.nt 20858
20858/57427=36.32% (63.7% reduction)
L3 cache miss reduction of __copy_from_user_ll
samples %
37408 65.1412 vmlinux __copy_from_user_ll
23 0.1103 vmlinux __copy_user_zeroing_intel_nocache
23/37408=0.061% (99.94% reduction)
Top 5 of 2.6.12.4.nt
Counted GLOBAL_POWER_EVENTS events (time during which processor is not stopped) with a unit mask of 0x01 (mandatory) count 100000
samples % app name symbol name
128392 8.0274 vmlinux __copy_user_zeroing_intel_nocache
64206 4.0143 vmlinux journal_add_journal_head
59746 3.7355 vmlinux do_get_write_access
47674 2.9807 vmlinux journal_put_journal_head
46021 2.8774 vmlinux journal_dirty_metadata
pattern9-0-cpu4-0-09011728/summary.out
Counted BSQ_CACHE_REFERENCE events (cache references seen by the bus unit) with a unit mask of 0x3f (multiple flags) count 3000
samples % app name symbol name
69755 4.2861 vmlinux __copy_user_zeroing_intel_nocache
55685 3.4215 vmlinux journal_add_journal_head
52371 3.2179 vmlinux __find_get_block
45504 2.7960 vmlinux journal_put_journal_head
36005 2.2123 vmlinux journal_stop
pattern9-0-cpu4-0-09011744/summary.out
Counted BSQ_CACHE_REFERENCE events (cache references seen by the bus unit) with a unit mask of 0x200 (read 3rd level cache miss) count 3000
samples % app name symbol name
1147 5.4994 vmlinux journal_add_journal_head
881 4.2240 vmlinux journal_dirty_data
872 4.1809 vmlinux blk_rq_map_sg
734 3.5192 vmlinux journal_commit_transaction
617 2.9582 vmlinux radix_tree_delete
pattern9-0-cpu4-0-09011731/summary.out
iozone results are
original 2.6.12.4 CPU time = 207.768 sec
cache aware CPU time = 184.783 sec
(three times run)
184.783/207.768=88.94% (11.06% reduction)
original:
pattern9-0-cpu4-0-08191720/iozone.out: CPU Utilization: Wall time 45.997 CPU time 64.527 CPU utilization 140.28 %
pattern9-0-cpu4-0-08191741/iozone.out: CPU Utilization: Wall time 46.878 CPU time 71.933 CPU utilization 153.45 %
pattern9-0-cpu4-0-08191743/iozone.out: CPU Utilization: Wall time 45.152 CPU time 71.308 CPU utilization 157.93 %
cache awre:
pattern9-0-cpu4-0-09011728/iozone.out: CPU Utilization: Wall time 44.842 CPU time 62.465 CPU utilization 139.30 %
pattern9-0-cpu4-0-09011731/iozone.out: CPU Utilization: Wall time 44.718 CPU time 59.273 CPU utilization 132.55 %
pattern9-0-cpu4-0-09011744/iozone.out: CPU Utilization: Wall time 44.367 CPU time 63.045 CPU utilization 142.10 %
Signed-off-by: Hiro Yoshioka <hyoshiok@miraclelinux.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
sys_move_pages() support for 32bit (i386 plus x86_64 compat layer)
Add support for move_pages() on i386 and also add the compat functions
necessary to run 32 bit binaries on x86_64.
Add compat_sys_move_pages to the x86_64 32bit binary layer. Note that it is
not up to date so I added the missing pieces. Not sure if this is done the
right way.
[akpm@osdl.org: compile fix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* master.kernel.org:/pub/scm/linux/kernel/git/gregkh/pci-2.6: (27 commits)
[PATCH] PCI: nVidia quirk to make AER PCI-E extended capability visible
[PATCH] PCI: fix issues with extended conf space when MMCONFIG disabled because of e820
[PATCH] PCI: Bus Parity Status sysfs interface
[PATCH] PCI: fix memory leak in MMCONFIG error path
[PATCH] PCI: fix error with pci_get_device() call in the mpc85xx driver
[PATCH] PCI: MSI-K8T-Neo2-Fir: run only where needed
[PATCH] PCI: fix race with pci_walk_bus and pci_destroy_dev
[PATCH] PCI: clean up pci documentation to be more specific
[PATCH] PCI: remove unneeded msi code
[PATCH] PCI: don't move ioapics below PCI bridge
[PATCH] PCI: cleanup unused variable about msi driver
[PATCH] PCI: disable msi mode in pci_disable_device
[PATCH] PCI: Allow MSI to work on kexec kernel
[PATCH] PCI: AMD 8131 MSI quirk called too late, bus_flags not inherited ?
[PATCH] PCI: Move various PCI IDs to header file
[PATCH] PCI Bus Parity Status-broken hardware attribute, EDAC foundation
[PATCH] PCI: i386/x86_84: disable PCI resource decode on device disable
[PATCH] PCI ACPI: Rename the functions to avoid multiple instances.
[PATCH] PCI: don't enable device if already enabled
[PATCH] PCI: Add a "enable" sysfs attribute to the pci devices to allow userspace (Xorg) to enable devices without doing foul direct access
...
VGA_MAP_MEM translates to ioremap() on some architectures. It makes sense
to do this to vga_vram_base, because we're going to access memory between
vga_vram_base and vga_vram_end.
But it doesn't really make sense to map starting at vga_vram_end, because
we aren't going to access memory starting there. On ia64, which always has
to be different, ioremapping vga_vram_end gives you something completely
incompatible with ioremapped vga_vram_start, so vga_vram_size ends up being
nonsense.
As a bonus, we often know the size up front, so we can use ioremap()
correctly, rather than giving it a zero size.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Cc: "Antonino A. Daplas" <adaplas@pol.net>
Cc: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
In IA64 platform, msi driver does not use irq_vector variable, and in
x86 platform LAST_DEVICE_VECTOR should one before FIRST_SYSTEM_VECTOR,
this patch modify this.
Signed-off-by: bibo, mao <bibo.mao@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Abstract portions of the MSI core for platforms that do not use standard
APIC interrupt controllers. This is implemented through a new arch-specific
msi setup routine, and a set of msi ops which can be set on a per platform
basis.
Signed-off-by: Mark Maule <maule@sgi.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
The patch addresses a problem with ACPI SCI interrupt entry, which gets
re-used, and the IRQ is assigned to another unrelated device. The patch
corrects the code such that SCI IRQ is skipped and duplicate entry is
avoided. Second issue came up with VIA chipset, the problem was caused by
original patch assigning IRQs starting 16 and up. The VIA chipset uses
4-bit IRQ register for internal interrupt routing, and therefore cannot
handle IRQ numbers assigned to its devices. The patch corrects this
problem by allowing PCI IRQs below 16.
Cc: len.brown@intel.com
Signed-off by: Natalie Protasevich <Natalie.Protasevich@unisys.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The FXSAVE information leak patch introduced a bug in FP exception
handling: it clears FP exceptions only when there are already
none outstanding. Mikael Pettersson reported that causes problems
with the Erlang runtime and has tested this fix.
Signed-off-by: Chuck Ebbert <76306.1226@compuserve.com>
Acked-by: Mikael Pettersson <mikpe@it.uu.se>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
These aren't needed by glibc or klibc, and they're broken in some cases
anyway. The uClibc folks are apparently switching over to stop using
them too (now that we agreed that they should be dropped, at least).
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
Proposed fix for ptep_get_and_clear_full PAE bug. Pte_clear had the same bug,
so use the same fix for both. Turns out pmd_clear had it as well, but pgds
are not affected.
The problem is rather intricate. Page table entries in PAE mode are 64-bits
wide, but the only atomic 8-byte write operation available in 32-bit mode is
cmpxchg8b, which is expensive (at least on P4), and thus avoided. But it can
happen that the processor may prefetch entries into the TLB in the middle of an
operation which clears a page table entry. So one must always clear the P-bit
in the low word of the page table entry first when clearing it.
Since the sequence *ptep = __pte(0) leaves the order of the write dependent on
the compiler, it must be coded explicitly as a clear of the low word followed
by a clear of the high word. Further, there must be a write memory barrier
here to enforce proper ordering by the compiler (and, in the future, by the
processor as well).
On > 4GB memory machines, the implementation of pte_clear for PAE was clearly
deficient, as it could leave virtual mappings of physical memory above 4GB
aliased to memory below 4GB in the TLB. The implementation of
ptep_get_and_clear_full has a similar bug, although not nearly as likely to
occur, since the mappings being cleared are in the process of being destroyed,
and should never be dereferenced again.
But, as luck would have it, it is possible to trigger bugs even without ever
dereferencing these bogus TLB mappings, even if the clear is followed fairly
soon after with a TLB flush or invalidation. The problem is that memory above
4GB may now be aliased into the first 4GB of memory, and in fact, may hit a
region of memory with non-memory semantics. These regions include AGP and PCI
space. As such, these memory regions are not cached by the processor. This
introduces the bug.
The processor can speculate memory operations, including memory writes, as long
as they are committed with the proper ordering. Speculating a memory write to
a linear address that has a bogus TLB mapping is possible. Normally, the
speculation is harmless. But for cached memory, it does leave the falsely
speculated cacheline unmodified, but in a dirty state. This cache line will be
eventually written back. If this cacheline happens to intersect a region of
memory that is not protected by the cache coherency protocol, it can corrupt
data in I/O memory, which is generally a very bad thing to do, and can cause
total system failure or just plain undefined behavior.
These bugs are extremely unlikely, but the severity is of such magnitude, and
the fix so simple that I think fixing them immediately is justified. Also,
they are nearly impossible to debug.
Signed-off-by: Zachary Amsden <zach@vmware.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
sys_splice() moves data to/from pipes with a file input/output. sys_vmsplice()
moves data to a pipe, with the input being a user address range instead.
This uses an approach suggested by Linus, where we can hold partial ranges
inside the pages[] map. Hopefully this will be useful for network
receive support as well.
Signed-off-by: Jens Axboe <axboe@suse.de>
AMD K7/K8 CPUs only save/restore the FOP/FIP/FDP x87 registers in FXSAVE
when an exception is pending. This means the value leak through
context switches and allow processes to observe some x87 instruction
state of other processes.
This was actually documented by AMD, but nobody recognized it as
being different from Intel before.
The fix first adds an optimization: instead of unconditionally
calling FNCLEX after each FXSAVE test if ES is pending and skip
it when not needed. Then do a x87 load from a kernel variable to
clear FOP/FIP/FDP.
This means other processes always will only see a constant value
defined by the kernel in their FP state.
I took some pain to make sure to chose a variable that's already
in L1 during context switch to make the overhead of this low.
Also alternative() is used to patch away the new code on CPUs
who don't need it.
Patch for both i386/x86-64.
The problem was discovered originally by Jan Beulich. Richard
Brunner provided the basic code for the workarounds, with contribution
from Jan.
This is CVE-2006-1056
Cc: richard.brunner@amd.com
Cc: jbeulich@novell.com
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
atomic_add_return() if CONFIG_M386 can accidentally enable local interrupts.
Signed-off-by: Lepton Wu <ytht.net@gmail.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Basically an in-kernel implementation of tee, which uses splice and the
pipe buffers as an intelligent way to pass data around by reference.
Where the user space tee consumes the input and produces a stdout and
file output, this syscall merely duplicates the data inside a pipe to
another pipe. No data is copied, the output just grabs a reference to the
input pipe data.
Signed-off-by: Jens Axboe <axboe@suse.de>
* 'splice' of git://brick.kernel.dk/data/git/linux-2.6-block:
[PATCH] vfs: add splice_write and splice_read to documentation
[PATCH] Remove sys_ prefix of new syscalls from __NR_sys_*
[PATCH] splice: warning fix
[PATCH] another round of fs/pipe.c cleanups
[PATCH] splice: comment styles
[PATCH] splice: add Ingo as addition copyright holder
[PATCH] splice: unlikely() optimizations
[PATCH] splice: speedups and optimizations
[PATCH] pipe.c/fifo.c code cleanups
[PATCH] get rid of the PIPE_*() macros
[PATCH] splice: speedup __generic_file_splice_read
[PATCH] splice: add direct fd <-> fd splicing support
[PATCH] splice: add optional input and output offsets
[PATCH] introduce a "kernel-internal pipe object" abstraction
[PATCH] splice: be smarter about calling do_page_cache_readahead()
[PATCH] splice: optimize the splice buffer mapping
[PATCH] splice: cleanup __generic_file_splice_read()
[PATCH] splice: only call wake_up_interruptible() when we really have to
[PATCH] splice: potential !page dereference
[PATCH] splice: mark the io page as accessed
__NR_sys_kexec_load should be __NR_kexec_load. Mainly affects users of the
_syscallN() macros, and glibc is already checking for __NR_kexec_load.
Cc: Ulrich Drepper <drepper@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Current implementations define NODES_SHIFT in include/asm-xxx/numnodes.h for
each arch. Its definition is sometimes configurable. Indeed, ia64 defines 5
NODES_SHIFT values in the current git tree. But it looks a bit messy.
SGI-SN2(ia64) system requires 1024 nodes, and the number of nodes already has
been changeable by config. Suitable node's number may be changed in the
future even if it is other architecture. So, I wrote configurable node's
number.
This patch set defines just default value for each arch which needs multi
nodes except ia64. But, it is easy to change to configurable if necessary.
On ia64 the number of nodes can be already configured in generic ia64 and SN2
config. But, NODES_SHIFT is defined for DIG64 and HP'S machine too. So, I
changed it so that all platforms can be configured via CONFIG_NODES_SHIFT. It
would be simpler.
See also: http://marc.theaimsgroup.com/?l=linux-kernel&m=114358010523896&w=2
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Andi Kleen <ak@muc.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Jack Steiner <steiner@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
On i386, we don't use sys_ prefix for __NR_*. This patch removes it
[FWIW, _syscall*() macros will generate foo() instead of sys_foo().]
Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Signed-off-by: Jens Axboe <axboe@suse.de>
If the HPET timer is enabled, the clock can drift by ~3 seconds a day.
This is due to the HPET timer not being initialized with the correct
setting (still using PIT count).
If HZ changes, this drift can become even more pronounced.
HPET patch initializes tick_nsec with correct tick_nsec settings for
HPET timer.
Vojtech comments:
"It's not entirely correct (it assumes the HPET ticks totally
exactly), but it's significantly better than assuming the PIT error
there."
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
AMD systems have a modern APIC that supports 8 bit IDs, but
don't have a XAPIC version number. Add a new "modern_apic"
subfunction that handles this correctly and use it (nearly)
everywhere where XAPIC is tested for.
I removed one wart: the code specified that external APICs
would use an 8bit APIC ID. But I checked a real 82093 data sheet
and it says clearly that they only use 4bit. So I removed
this special case since it would a bit awkward to implement now.
I removed the valid APIC tests in mptable parsing completely. On any modern
system they only check against the full field width (8bit) anyways
and are no-ops. This also fixes them doing the wrong thing
on >8 core Opterons.
This makes i386 boot again on 16 core Opterons.
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Introduce a e820_all_mapped() function which checks if the entire range
<start,end> is mapped with type.
This is done by moving the local start variable to the end of each
known-good region; if at the end of the function the start address is
still before end, there must be a part that's not of the correct type;
otherwise it's a good region.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
local_t's were defined to be unsigned. This increases confusion because
atomic_t's are signed. The patch goes through and changes all implementations
to use signed longs throughout.
Also, x86-64 was using 32-bit quantities for the value passed into local_add()
and local_sub(). Fixed.
All (actually, both) existing users have been audited.
(Also s/__inline__/inline/ in x86_64/local.h)
Cc: Andi Kleen <ak@muc.de>
Cc: Benjamin LaHaise <bcrl@kvack.org>
Cc: Kyle McMartin <kyle@parisc-linux.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Remove the recently-added LINUX_FADV_ASYNC_WRITE and LINUX_FADV_WRITE_WAIT
fadvise() additions, do it in a new sys_sync_file_range() syscall instead.
Reasons:
- It's more flexible. Things which would require two or three syscalls with
fadvise() can be done in a single syscall.
- Using fadvise() in this manner is something not covered by POSIX.
The patch wires up the syscall for x86.
The sycall is implemented in the new fs/sync.c. The intention is that we can
move sys_fsync(), sys_fdatasync() and perhaps sys_sync() into there later.
Documentation for the syscall is in fs/sync.c.
A test app (sync_file_range.c) is in
http://www.zip.com.au/~akpm/linux/patches/stuff/ext3-tools.tar.gz.
The available-to-GPL-modules do_sync_file_range() is for knfsd: "A COMMIT can
say NFS_DATA_SYNC or NFS_FILE_SYNC. I can skip the ->fsync call for
NFS_DATA_SYNC which is hopefully the more common."
Note: the `async' writeout mode SYNC_FILE_RANGE_WRITE will turn synchronous if
the queue is congested. This is trivial to fix: add a new flag bit, set
wbc->nonblocking. But I'm not sure that we want to expose implementation
details down to that level.
Note: it's notable that we can sync an fd which wasn't opened for writing.
Same with fsync() and fdatasync()).
Note: the code takes some care to handle attempts to sync file contents
outside the 16TB offset on 32-bit machines. It makes such attempts appear to
succeed, for best 32-bit/64-bit compatibility. Perhaps it should make such
requests fail...
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Michael Kerrisk <mtk-manpages@gmx.net>
Cc: Ulrich Drepper <drepper@redhat.com>
Cc: Neil Brown <neilb@cse.unsw.edu.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Porting the patch I posted for x86_64 to i386.
http://marc.theaimsgroup.com/?l=linux-kernel&m=114178139610707&w=2
o While using kdump, after a system crash when second kernel boots, timer
vector gets (0x31) locked and CPU does not see timer interrupts
travelling from IOAPIC to APIC. Currently it does not lead to boot
failure in second kernel as timer interrupts continues to come as ExtInt
through LAPIC directly, but fixing it is good in case some boards do not
support the other mode.
o After a system crash, it is not safe to service interrupts any more,
hence interrupts are disabled. This leads to pending interrupts at
LAPIC. LAPIC sends these interrupts to the CPU during early boot of
second kernel. Other pending interrupts are discarded saying unexpected
trap but timer interrupt is serviced and CPU does not issue an LAPIC EOI
because it think this interrupt came from i8259 and sends ack to 8259.
This leads to vector 0x31 locking as LAPIC does not clear respective ISR
and keeps on waiting for EOI.
o This patch issues extra EOI for the pending interrupts who have ISR set.
o Though today only timer seems to be the special case because in early
boot it thinks interrupts are coming from i8259 and uses
mask_and_ack_8259A() as ack handler and does not issue LAPIC EOI. But
probably doing it in generic manner for all vectors makes sense.
Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
It's been disabled since v2.1.88
Signed-off-by: Brian Gerst <bgerst@didntduck.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This adds support for the sys_splice system call. Using a pipe as a
transport, it can connect to files or sockets (latter as output only).
From the splice.c comments:
"splice": joining two ropes together by interweaving their strands.
This is the "extended pipe" functionality, where a pipe is used as
an arbitrary in-memory buffer. Think of a pipe as a small kernel
buffer that you can use to transfer data from one end to the other.
The traditional unix read/write is extended with a "splice()" operation
that transfers data buffers to or from a pipe buffer.
Named by Larry McVoy, original implementation from Linus, extended by
Jens to support splicing to files and fixing the initial implementation
bugs.
Signed-off-by: Jens Axboe <axboe@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Nowadays, even Debian stable ships a microcode_ctl utility recent enough to no
longer use this ioctl.
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Acked-by: Tigran Aivazian <tigran_aivazian@symantec.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>