In removing UV1 support, efi_have_uv1_memmap is no longer used.
Signed-off-by: Steve Wahl <steve.wahl@hpe.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lkml.kernel.org/r/20200713212955.786177105@hpe.com
There is some code that exposes physical addresses of certain parts of
the EFI firmware implementation via sysfs nodes. These nodes are only
used on x86, and are of dubious value to begin with, so let's move
their handling into the x86 arch code.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Since commit 33b85447fa ("efi/x86: Drop two near identical versions
of efi_runtime_init()"), we no longer map the EFI runtime services table
before calling SetVirtualAddressMap(), which means we don't need the 1:1
mapped physical address of this table, and so there is no point in passing
the address via EFI setup data on kexec boot.
Note that the kexec tools will still look for this address in sysfs, so
we still need to provide it.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
We carry a quirk in the x86 EFI code to switch back to an older
method of mapping the EFI runtime services memory regions, because
it was deemed risky at the time to implement a new method without
providing a fallback to the old method in case problems arose.
Such problems did arise, but they appear to be limited to SGI UV1
machines, and so these are the only ones for which the fallback gets
enabled automatically (via a DMI quirk). The fallback can be enabled
manually as well, by passing efi=old_map, but there is very little
evidence that suggests that this is something that is being relied
upon in the field.
Given that UV1 support is not enabled by default by the distros
(Ubuntu, Fedora), there is no point in carrying this fallback code
all the time if there are no other users. So let's move it into the
UV support code, and document that efi=old_map now requires this
support code to be enabled.
Note that efi=old_map has been used in the past on other SGI UV
machines to work around kernel regressions in production, so we
keep the option to enable it by hand, but only if the kernel was
built with UV support.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200113172245.27925-8-ardb@kernel.org
Pull kernel lockdown mode from James Morris:
"This is the latest iteration of the kernel lockdown patchset, from
Matthew Garrett, David Howells and others.
From the original description:
This patchset introduces an optional kernel lockdown feature,
intended to strengthen the boundary between UID 0 and the kernel.
When enabled, various pieces of kernel functionality are restricted.
Applications that rely on low-level access to either hardware or the
kernel may cease working as a result - therefore this should not be
enabled without appropriate evaluation beforehand.
The majority of mainstream distributions have been carrying variants
of this patchset for many years now, so there's value in providing a
doesn't meet every distribution requirement, but gets us much closer
to not requiring external patches.
There are two major changes since this was last proposed for mainline:
- Separating lockdown from EFI secure boot. Background discussion is
covered here: https://lwn.net/Articles/751061/
- Implementation as an LSM, with a default stackable lockdown LSM
module. This allows the lockdown feature to be policy-driven,
rather than encoding an implicit policy within the mechanism.
The new locked_down LSM hook is provided to allow LSMs to make a
policy decision around whether kernel functionality that would allow
tampering with or examining the runtime state of the kernel should be
permitted.
The included lockdown LSM provides an implementation with a simple
policy intended for general purpose use. This policy provides a coarse
level of granularity, controllable via the kernel command line:
lockdown={integrity|confidentiality}
Enable the kernel lockdown feature. If set to integrity, kernel features
that allow userland to modify the running kernel are disabled. If set to
confidentiality, kernel features that allow userland to extract
confidential information from the kernel are also disabled.
This may also be controlled via /sys/kernel/security/lockdown and
overriden by kernel configuration.
New or existing LSMs may implement finer-grained controls of the
lockdown features. Refer to the lockdown_reason documentation in
include/linux/security.h for details.
The lockdown feature has had signficant design feedback and review
across many subsystems. This code has been in linux-next for some
weeks, with a few fixes applied along the way.
Stephen Rothwell noted that commit 9d1f8be5cf ("bpf: Restrict bpf
when kernel lockdown is in confidentiality mode") is missing a
Signed-off-by from its author. Matthew responded that he is providing
this under category (c) of the DCO"
* 'next-lockdown' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (31 commits)
kexec: Fix file verification on S390
security: constify some arrays in lockdown LSM
lockdown: Print current->comm in restriction messages
efi: Restrict efivar_ssdt_load when the kernel is locked down
tracefs: Restrict tracefs when the kernel is locked down
debugfs: Restrict debugfs when the kernel is locked down
kexec: Allow kexec_file() with appropriate IMA policy when locked down
lockdown: Lock down perf when in confidentiality mode
bpf: Restrict bpf when kernel lockdown is in confidentiality mode
lockdown: Lock down tracing and perf kprobes when in confidentiality mode
lockdown: Lock down /proc/kcore
x86/mmiotrace: Lock down the testmmiotrace module
lockdown: Lock down module params that specify hardware parameters (eg. ioport)
lockdown: Lock down TIOCSSERIAL
lockdown: Prohibit PCMCIA CIS storage when the kernel is locked down
acpi: Disable ACPI table override if the kernel is locked down
acpi: Ignore acpi_rsdp kernel param when the kernel has been locked down
ACPI: Limit access to custom_method when the kernel is locked down
x86/msr: Restrict MSR access when the kernel is locked down
x86: Lock down IO port access when the kernel is locked down
...
Kexec reboot in case secure boot being enabled does not keep the secure
boot mode in new kernel, so later one can load unsigned kernel via legacy
kexec_load. In this state, the system is missing the protections provided
by secure boot.
Adding a patch to fix this by retain the secure_boot flag in original
kernel.
secure_boot flag in boot_params is set in EFI stub, but kexec bypasses the
stub. Fixing this issue by copying secure_boot flag across kexec reboot.
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Matthew Garrett <mjg59@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
cc: kexec@lists.infradead.org
Signed-off-by: James Morris <jmorris@namei.org>
- A fair pile of RST conversions, many from Mauro. These create more
than the usual number of simple but annoying merge conflicts with other
trees, unfortunately. He has a lot more of these waiting on the wings
that, I think, will go to you directly later on.
- A new document on how to use merges and rebases in kernel repos, and one
on Spectre vulnerabilities.
- Various improvements to the build system, including automatic markup of
function() references because some people, for reasons I will never
understand, were of the opinion that :c:func:``function()`` is
unattractive and not fun to type.
- We now recommend using sphinx 1.7, but still support back to 1.4.
- Lots of smaller improvements, warning fixes, typo fixes, etc.
-----BEGIN PGP SIGNATURE-----
iQFDBAABCAAtFiEEIw+MvkEiF49krdp9F0NaE2wMflgFAl0krAEPHGNvcmJldEBs
d24ubmV0AAoJEBdDWhNsDH5Yg98H/AuLqO9LpOgUjF4LhyjxGPdzJkY9RExSJ7km
gznyreLCZgFaJR+AY6YDsd4Jw6OJlPbu1YM/Qo3C3WrZVFVhgL/s2ebvBgCo50A8
raAFd8jTf4/mGCHnAqRotAPQ3mETJUk315B66lBJ6Oc+YdpRhwXWq8ZW2bJxInFF
3HDvoFgMf0KhLuMHUkkL0u3fxH1iA+KvDu8diPbJYFjOdOWENz/CV8wqdVkXRSEW
DJxIq89h/7d+hIG3d1I7Nw+gibGsAdjSjKv4eRKauZs4Aoxd1Gpl62z0JNk6aT3m
dtq4joLdwScydonXROD/Twn2jsu4xYTrPwVzChomElMowW/ZBBY=
=D0eO
-----END PGP SIGNATURE-----
Merge tag 'docs-5.3' of git://git.lwn.net/linux
Pull Documentation updates from Jonathan Corbet:
"It's been a relatively busy cycle for docs:
- A fair pile of RST conversions, many from Mauro. These create more
than the usual number of simple but annoying merge conflicts with
other trees, unfortunately. He has a lot more of these waiting on
the wings that, I think, will go to you directly later on.
- A new document on how to use merges and rebases in kernel repos,
and one on Spectre vulnerabilities.
- Various improvements to the build system, including automatic
markup of function() references because some people, for reasons I
will never understand, were of the opinion that
:c:func:``function()`` is unattractive and not fun to type.
- We now recommend using sphinx 1.7, but still support back to 1.4.
- Lots of smaller improvements, warning fixes, typo fixes, etc"
* tag 'docs-5.3' of git://git.lwn.net/linux: (129 commits)
docs: automarkup.py: ignore exceptions when seeking for xrefs
docs: Move binderfs to admin-guide
Disable Sphinx SmartyPants in HTML output
doc: RCU callback locks need only _bh, not necessarily _irq
docs: format kernel-parameters -- as code
Doc : doc-guide : Fix a typo
platform: x86: get rid of a non-existent document
Add the RCU docs to the core-api manual
Documentation: RCU: Add TOC tree hooks
Documentation: RCU: Rename txt files to rst
Documentation: RCU: Convert RCU UP systems to reST
Documentation: RCU: Convert RCU linked list to reST
Documentation: RCU: Convert RCU basic concepts to reST
docs: filesystems: Remove uneeded .rst extension on toctables
scripts/sphinx-pre-install: fix out-of-tree build
docs: zh_CN: submitting-drivers.rst: Remove a duplicated Documentation/
Documentation: PGP: update for newer HW devices
Documentation: Add section about CPU vulnerabilities for Spectre
Documentation: platform: Delete x86-laptop-drivers.txt
docs: Note that :c:func: should no longer be used
...
Pull x86 boot updates from Thomas Gleixner:
"Assorted updates to kexec/kdump:
- Proper kexec support for 4/5-level paging and jumping from a
5-level to a 4-level paging kernel.
- Make the EFI support for kexec/kdump more robust
- Enforce that the GDT is properly aligned instead of getting the
alignment by chance"
* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/kdump/64: Restrict kdump kernel reservation to <64TB
x86/kexec/64: Prevent kexec from 5-level paging to a 4-level only kernel
x86/boot: Add xloadflags bits to check for 5-level paging support
x86/boot: Make the GDT 8-byte aligned
x86/kexec: Add the ACPI NVS region to the ident map
x86/boot: Call get_rsdp_addr() after console_init()
Revert "x86/boot: Disable RSDP parsing temporarily"
x86/boot: Use efi_setup_data for searching RSDP on kexec-ed kernels
x86/kexec: Add the EFI system tables and ACPI tables to the ident map
If the running kernel has 5-level paging activated, the 5-level paging mode
is preserved across kexec. If the kexec'ed kernel does not contain support
for handling active 5-level paging mode in the decompressor, the
decompressor will crash with #GP.
Prevent this situation at load time. If 5-level paging is active, check the
xloadflags whether the kexec kernel can handle 5-level paging at least in
the decompressor. If not, reject the load attempt and print out an error
message.
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: bp@alien8.de
Cc: hpa@zytor.com
Cc: dyoung@redhat.com
Link: https://lkml.kernel.org/r/20190524073810.24298-3-bhe@redhat.com
Based on 2 normalized pattern(s):
this source code is licensed under the gnu general public license
version 2 see the file copying for more details
this source code is licensed under general public license version 2
see
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 52 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Enrico Weigelt <info@metux.net>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190602204653.449021192@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Mostly due to x86 and acpi conversion, several documentation
links are still pointing to the old file. Fix them.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Reviewed-by: Wolfram Sang <wsa@the-dreams.de>
Reviewed-by: Sven Van Asbroeck <TheSven73@gmail.com>
Reviewed-by: Bhupesh Sharma <bhsharma@redhat.com>
Acked-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Pull integrity updates from James Morris:
"Mimi Zohar says:
'Linux 5.0 introduced the platform keyring to allow verifying the IMA
kexec kernel image signature using the pre-boot keys. This pull
request similarly makes keys on the platform keyring accessible for
verifying the PE kernel image signature.
Also included in this pull request is a new IMA hook that tags tmp
files, in policy, indicating the file hash needs to be calculated.
The remaining patches are cleanup'"
* 'next-integrity' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security:
evm: Use defined constant for UUID representation
ima: define ima_post_create_tmpfile() hook and add missing call
evm: remove set but not used variable 'xattr'
encrypted-keys: fix Opt_err/Opt_error = -1
kexec, KEYS: Make use of platform keyring for signature verify
integrity, KEYS: add a reference to platform keyring
Pull x86 boot updates from Ingo Molnar:
"Most of the changes center around the difficult problem of KASLR
pinning down hot-removable memory regions. At the very early stage
KASRL is making irreversible kernel address layout decisions we don't
have full knowledge about the memory maps yet.
So the changes from Chao Fan add this (parsing the RSDP table early),
together with fixes from Borislav Petkov"
* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot/compressed/64: Do not read legacy ROM on EFI system
x86/boot: Correct RSDP parsing with 32-bit EFI
x86/kexec: Fill in acpi_rsdp_addr from the first kernel
x86/boot: Fix randconfig build error due to MEMORY_HOTREMOVE
x86/boot: Fix cmdline_find_option() prototype visibility
x86/boot/KASLR: Limit KASLR to extract the kernel in immovable memory only
x86/boot: Parse SRAT table and count immovable memory regions
x86/boot: Early parse RSDP and save it in boot_params
x86/boot: Search for RSDP in memory
x86/boot: Search for RSDP in the EFI tables
x86/boot: Add "acpi_rsdp=" early parsing
x86/boot: Copy kstrtoull() to boot/string.c
x86/boot: Build the command line parsing code unconditionally
When efi=noruntime or efi=oldmap is used on the kernel command line, EFI
services won't be available in the second kernel, therefore the second
kernel will not be able to get the ACPI RSDP address from firmware by
calling EFI services and so it won't boot.
Commit
e6e094e053 ("x86/acpi, x86/boot: Take RSDP address from boot params if available")
added an acpi_rsdp_addr field to boot_params which stores the RSDP
address for other kernel users.
Recently, after
3a63f70bf4 ("x86/boot: Early parse RSDP and save it in boot_params")
the acpi_rsdp_addr will always be filled with a valid RSDP address.
So fill in that value into the second kernel's boot_params thus ensuring
that the second kernel receives the RSDP value from the first kernel.
[ bp: massage commit message. ]
Signed-off-by: Kairui Song <kasong@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Chao Fan <fanc.fnst@cn.fujitsu.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: kexec@lists.infradead.org
Cc: Philipp Rudo <prudo@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Cc: Yannik Sembritzki <yannik@sembritzki.me>
Link: https://lkml.kernel.org/r/20190204173852.4863-1-kasong@redhat.com
This patch allows the kexec_file_load syscall to verify the PE signed
kernel image signature based on the preboot keys stored in the .platform
keyring, as fall back, if the signature verification failed due to not
finding the public key in the secondary or builtin keyrings.
This commit adds a VERIFY_USE_PLATFORM_KEYRING similar to previous
VERIFY_USE_SECONDARY_KEYRING indicating that verify_pkcs7_signature
should verify the signature using platform keyring. Also, decrease
the error message log level when verification failed with -ENOKEY,
so that if called tried multiple time with different keyring it
won't generate extra noises.
Signed-off-by: Kairui Song <kasong@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Acked-by: Dave Young <dyoung@redhat.com> (for kexec_file_load part)
[zohar@linux.ibm.com: tweaked the first paragraph of the patch description,
and fixed checkpatch warning.]
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Commit
b6664ba42f ("s390, kexec_file: drop arch_kexec_mem_walk()")
changed the behavior of kexec_locate_mem_hole(): it will try to allocate
free memory only when kbuf.mem is initialized to zero.
However, x86's kexec_file_load() implementation reuses a struct
kexec_buf allocated on the stack and its kbuf.mem member gets set by
each kexec_add_buffer() invocation.
The second kexec_add_buffer() will reuse the same kbuf but not
reinitialize kbuf.mem.
Therefore, explictily reset kbuf.mem each time in order for
kexec_locate_mem_hole() to locate a free memory region each time.
[ bp: massage commit message. ]
Fixes: b6664ba42f ("s390, kexec_file: drop arch_kexec_mem_walk()")
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Philipp Rudo <prudo@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Yannik Sembritzki <yannik@sembritzki.me>
Cc: Yi Wang <wang.yi59@zte.com.cn>
Cc: kexec@lists.infradead.org
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20181228011247.GA9999@dhcp-128-65.nay.redhat.com
The split of .system_keyring into .builtin_trusted_keys and
.secondary_trusted_keys broke kexec, thereby preventing kernels signed by
keys which are now in the secondary keyring from being kexec'd.
Fix this by passing VERIFY_USE_SECONDARY_KEYRING to
verify_pefile_signature().
Fixes: d3bfe84129 ("certs: Add a secondary system keyring that can be added to dynamically")
Signed-off-by: Yannik Sembritzki <yannik@sembritzki.me>
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: kexec@lists.infradead.org
Cc: keyrings@vger.kernel.org
Cc: linux-security-module@vger.kernel.org
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Chun-Yi reported a kernel warning message below:
WARNING: CPU: 0 PID: 0 at ../mm/early_ioremap.c:182 early_iounmap+0x4f/0x12c()
early_iounmap(ffffffffff200180, 00000118) [0] size not consistent 00000120
The problem is x86 kexec_file_load adds extra alignment to the efi
memmap: in bzImage64_load():
efi_map_sz = efi_get_runtime_map_size();
efi_map_sz = ALIGN(efi_map_sz, 16);
And __efi_memmap_init maps with the size including the alignment bytes
but efi_memmap_unmap use nr_maps * desc_size which does not include the
extra bytes.
The alignment in kexec code is only needed for the kexec buffer internal
use Actually kexec should pass exact size of the efi memmap to 2nd
kernel.
Link: http://lkml.kernel.org/r/20180417083600.GA1972@dhcp-128-65.nay.redhat.com
Signed-off-by: Dave Young <dyoung@redhat.com>
Reported-by: joeyli <jlee@suse.com>
Tested-by: Randy Wright <rwright@hpe.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For s390 new kernels are loaded to fixed addresses in memory before they
are booted. With the current code this is a problem as it assumes the
kernel will be loaded to an 'arbitrary' address. In particular,
kexec_locate_mem_hole searches for a large enough memory region and sets
the load address (kexec_bufer->mem) to it.
Luckily there is a simple workaround for this problem. By returning 1
in arch_kexec_walk_mem, kexec_locate_mem_hole is turned off. This
allows the architecture to set kbuf->mem by hand. While the trick works
fine for the kernel it does not for the purgatory as here the
architectures don't have access to its kexec_buffer.
Give architectures access to the purgatories kexec_buffer by changing
kexec_load_purgatory to take a pointer to it. With this change
architectures have access to the buffer and can edit it as they need.
A nice side effect of this change is that we can get rid of the
purgatory_info->purgatory_load_address field. As now the information
stored there can directly be accessed from kbuf->mem.
Link: http://lkml.kernel.org/r/20180321112751.22196-11-prudo@linux.vnet.ibm.com
Signed-off-by: Philipp Rudo <prudo@linux.vnet.ibm.com>
Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As arch_kexec_kernel_image_{probe,load}(),
arch_kimage_file_post_load_cleanup() and arch_kexec_kernel_verify_sig()
are almost duplicated among architectures, they can be commonalized with
an architecture-defined kexec_file_ops array. So let's factor them out.
Link: http://lkml.kernel.org/r/20180306102303.9063-3-takahiro.akashi@linaro.org
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Acked-by: Dave Young <dyoung@redhat.com>
Tested-by: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently the e820_table_firmware[] table is mainly used by the kexec,
and it is not what it's supposed to be - despite its name it might be
modified by the kernel.
So change its name to e820_table_kexec[]. In the next patch we will
introduce the real e820_table_firmware[] table.
No functional change.
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Xunlei Pang <xlpang@redhat.com>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We've got a number of defines related to the E820 table and its size:
E820MAP
E820NR
E820_X_MAX
E820MAX
The first two denote byte offsets into the zeropage (struct boot_params),
and can are not used in the kernel and can be removed.
The E820_*_MAX values have an inconsistent structure and it's unclear in any
case what they mean. 'X' presuably goes for extended - but it's not very
expressive altogether.
Change these over to:
E820_MAX_ENTRIES_ZEROPAGE
E820_MAX_ENTRIES
... which are self-explanatory names.
No change in functionality.
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang, Ying <ying.huang@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Jackson <pj@sgi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So there's a number of constants that start with "E820" but which
are not types - these create a confusing mixture when seen together
with 'enum e820_type' values:
E820MAP
E820NR
E820_X_MAX
E820MAX
To better differentiate the 'enum e820_type' values prefix them
with E820_TYPE_.
No change in functionality.
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang, Ying <ying.huang@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Jackson <pj@sgi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So the 'e820_table_saved' is a bit of a misnomer that hides its real purpose.
At first sight the name suggests that it's some sort save/restore mechanism,
as this is how we typically name such facilities in the kernel.
But that is not so, e820_table_saved is the original firmware version of the
e820 table, not modified by the kernel. This table is displayed in the
/sys/firmware/memmap file, and it's also used by the hibernation code to
calculate a physical memory layout MD5 fingerprint checksum which is
invariant of the kernel.
So rename it to 'e820_table_firmware' and update all the comments to better
describe the main e820 data strutures.
Also rename:
'initial_e820_table_saved' => 'e820_table_firmware_init'
'e820_update_range_saved' => 'e820_update_range_firmware'
... to better match the new nomenclature.
No change in functionality.
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang, Ying <ying.huang@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Jackson <pj@sgi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So the e820_table->map and e820_table->nr_map names are a bit
confusing, because it's not clear what a 'map' really means
(it could be a bitmap, or some other data structure), nor is
it clear what nr_map means (is it a current index, or some
other count).
Rename the fields from:
e820_table->map => e820_table->entries
e820_table->nr_map => e820_table->nr_entries
which makes it abundantly clear that these are entries
of the table, and that the size of the table is ->nr_entries.
Propagate the changes to all affected files. Where necessary,
adjust local variable names to better reflect the new field names.
No change in functionality.
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang, Ying <ying.huang@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Jackson <pj@sgi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
No change in functionality.
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang, Ying <ying.huang@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Jackson <pj@sgi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In line with the rename to 'struct e820_array', harmonize the naming of common e820
table variable names as well:
e820 => e820_array
e820_saved => e820_array_saved
e820_map => e820_array
initial_e820 => e820_array_init
This makes the variable names more consistent and easier to grep for.
No change in functionality.
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang, Ying <ying.huang@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Jackson <pj@sgi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The 'e820entry' and 'e820map' names have various annoyances:
- the missing underscore departs from the usual kernel style
and makes the code look weird,
- in the past I kept confusing the 'map' with the 'entry', because
a 'map' is ambiguous in that regard,
- it's not really clear from the 'e820map' that this is a regular
C array.
Rename them to 'struct e820_entry' and 'struct e820_array' accordingly.
( Leave the legacy UAPI header alone but do the rename in the bootparam.h
and e820/types.h file - outside tools relying on these defines should
either adjust their code, or should use the legacy header, or should
create their private copies for the definitions. )
No change in functionality.
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang, Ying <ying.huang@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Jackson <pj@sgi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A commonly used lowlevel x86 header, asm/pgtable.h, includes asm/e820/api.h
spuriously, without making direct use of it.
Removing it is not simple: over the years various .c code learned to rely
on this indirect inclusion.
Remove the unnecessary include - this should speed up the kernel build a bit,
as a large header is not included anymore in totally unrelated code.
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang, Ying <ying.huang@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Jackson <pj@sgi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This is done to simplify the kexec_add_buffer argument list.
Adapt all callers to set up a kexec_buf to pass to kexec_add_buffer.
In addition, change the type of kexec_buf.buffer from char * to void *.
There is no particular reason for it to be a char *, and the change
allows us to get rid of 3 existing casts to char * in the code.
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch turns e820 and e820_saved into pointers to e820 tables,
of the same size as before.
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20160917213927.1787-2-dvlasenk@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Generalise system_verify_data() to provide access to internal content
through a callback. This allows all the PKCS#7 stuff to be hidden inside
this function and removed from the PE file parser and the PKCS#7 test key.
If external content is not required, NULL should be passed as data to the
function. If the callback is not required, that can be set to NULL.
The function is now called verify_pkcs7_signature() to contrast with
verify_pefile_signature() and the definitions of both have been moved into
linux/verification.h along with the key_being_used_for enum.
Signed-off-by: David Howells <dhowells@redhat.com>
Pull security subsystem updates from James Morris:
"Highlights:
- PKCS#7 support added to support signed kexec, also utilized for
module signing. See comments in 3f1e1bea.
** NOTE: this requires linking against the OpenSSL library, which
must be installed, e.g. the openssl-devel on Fedora **
- Smack
- add IPv6 host labeling; ignore labels on kernel threads
- support smack labeling mounts which use binary mount data
- SELinux:
- add ioctl whitelisting (see
http://kernsec.org/files/lss2015/vanderstoep.pdf)
- fix mprotect PROT_EXEC regression caused by mm change
- Seccomp:
- add ptrace options for suspend/resume"
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (57 commits)
PKCS#7: Add OIDs for sha224, sha284 and sha512 hash algos and use them
Documentation/Changes: Now need OpenSSL devel packages for module signing
scripts: add extract-cert and sign-file to .gitignore
modsign: Handle signing key in source tree
modsign: Use if_changed rule for extracting cert from module signing key
Move certificate handling to its own directory
sign-file: Fix warning about BIO_reset() return value
PKCS#7: Add MODULE_LICENSE() to test module
Smack - Fix build error with bringup unconfigured
sign-file: Document dependency on OpenSSL devel libraries
PKCS#7: Appropriately restrict authenticated attributes and content type
KEYS: Add a name for PKEY_ID_PKCS7
PKCS#7: Improve and export the X.509 ASN.1 time object decoder
modsign: Use extract-cert to process CONFIG_SYSTEM_TRUSTED_KEYS
extract-cert: Cope with multiple X.509 certificates in a single file
sign-file: Generate CMS message as signature instead of PKCS#7
PKCS#7: Support CMS messages also [RFC5652]
X.509: Change recorded SKID & AKID to not include Subject or Issuer
PKCS#7: Check content type and versions
MAINTAINERS: The keyrings mailing list has moved
...
A PKCS#7 or CMS message can have per-signature authenticated attributes
that are digested as a lump and signed by the authorising key for that
signature. If such attributes exist, the content digest isn't itself
signed, but rather it is included in a special authattr which then
contributes to the signature.
Further, we already require the master message content type to be
pkcs7_signedData - but there's also a separate content type for the data
itself within the SignedData object and this must be repeated inside the
authattrs for each signer [RFC2315 9.2, RFC5652 11.1].
We should really validate the authattrs if they exist or forbid them
entirely as appropriate. To this end:
(1) Alter the PKCS#7 parser to reject any message that has more than one
signature where at least one signature has authattrs and at least one
that does not.
(2) Validate authattrs if they are present and strongly restrict them.
Only the following authattrs are permitted and all others are
rejected:
(a) contentType. This is checked to be an OID that matches the
content type in the SignedData object.
(b) messageDigest. This must match the crypto digest of the data.
(c) signingTime. If present, we check that this is a valid, parseable
UTCTime or GeneralTime and that the date it encodes fits within
the validity window of the matching X.509 cert.
(d) S/MIME capabilities. We don't check the contents.
(e) Authenticode SP Opus Info. We don't check the contents.
(f) Authenticode Statement Type. We don't check the contents.
The message is rejected if (a) or (b) are missing. If the message is
an Authenticode type, the message is rejected if (e) is missing; if
not Authenticode, the message is rejected if (d) - (f) are present.
The S/MIME capabilities authattr (d) unfortunately has to be allowed
to support kernels already signed by the pesign program. This only
affects kexec. sign-file suppresses them (CMS_NOSMIMECAP).
The message is also rejected if an authattr is given more than once or
if it contains more than one element in its set of values.
(3) Add a parameter to pkcs7_verify() to select one of the following
restrictions and pass in the appropriate option from the callers:
(*) VERIFYING_MODULE_SIGNATURE
This requires that the SignedData content type be pkcs7-data and
forbids authattrs. sign-file sets CMS_NOATTR. We could be more
flexible and permit authattrs optionally, but only permit minimal
content.
(*) VERIFYING_FIRMWARE_SIGNATURE
This requires that the SignedData content type be pkcs7-data and
requires authattrs. In future, this will require an attribute
holding the target firmware name in addition to the minimal set.
(*) VERIFYING_UNSPECIFIED_SIGNATURE
This requires that the SignedData content type be pkcs7-data but
allows either no authattrs or only permits the minimal set.
(*) VERIFYING_KEXEC_PE_SIGNATURE
This only supports the Authenticode SPC_INDIRECT_DATA content type
and requires at least an SpcSpOpusInfo authattr in addition to the
minimal set. It also permits an SPC_STATEMENT_TYPE authattr (and
an S/MIME capabilities authattr because the pesign program doesn't
remove these).
(*) VERIFYING_KEY_SIGNATURE
(*) VERIFYING_KEY_SELF_SIGNATURE
These are invalid in this context but are included for later use
when limiting the use of X.509 certs.
(4) The pkcs7_test key type is given a module parameter to select between
the above options for testing purposes. For example:
echo 1 >/sys/module/pkcs7_test_key/parameters/usage
keyctl padd pkcs7_test foo @s </tmp/stuff.pkcs7
will attempt to check the signature on stuff.pkcs7 as if it contains a
firmware blob (1 being VERIFYING_FIRMWARE_SIGNATURE).
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Marcel Holtmann <marcel@holtmann.org>
Reviewed-by: David Woodhouse <David.Woodhouse@intel.com>
The kernel does not support the MCA bus anymroe, so mark sys_desc_table
as obsolete: remove any reference from the code together with the remaining
of MCA logic.
bloat-o-meter output:
add/remove: 0/0 grow/shrink: 0/2 up/down: 0/-55 (-55)
function old new delta
i386_start_kernel 128 119 -9
setup_arch 1421 1375 -46
Signed-off-by: Paolo Pisati <p.pisati@gmail.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1437409430-8491-1-git-send-email-p.pisati@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Any parameter passed after '--' in the kernel command-line will not be
parsed by the kernel at all, instead it will be passed directly to init
process.
Currently the kernel appends elfcorehdr=<paddr> to the cmdline passed from
kexec load, and if this command-line is used to pass parameters to init
process this means that 'elfcorehdr' will not be parsed as a kernel
parameter at all which will be a problem for vmcore subsystem since it
will know nothing about the location of the ELF structure!
Prepending 'elfcorehdr' instead of appending it fixes this problem since
it ensures that it always comes before '--' and so it's always parsed as a
kernel command-line parameter.
Even with this patch things can still go wrong if 'CONFIG_CMDLINE' was
also used to embedd a command-line to the crash dump kernel and this
command-line contains '--' since the current behavior of the kernel is to
actually append the boot loader command-line to the embedded command-line.
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Cc: Haren Myneni <hbabu@us.ibm.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
David Howells brought to my attention the mails generated by kbuild test
bot and following sparse warnings were present. This patch fixes these
warnings.
arch/x86/kernel/kexec-bzimage64.c:270:5: warning: symbol 'bzImage64_probe' was not declared. Should it be static?
arch/x86/kernel/kexec-bzimage64.c:328:6: warning: symbol 'bzImage64_load' was not declared. Should it be static?
arch/x86/kernel/kexec-bzimage64.c:517:5: warning: symbol 'bzImage64_cleanup' was not declared. Should it be static?
arch/x86/kernel/kexec-bzimage64.c:531:5: warning: symbol 'bzImage64_verify_sig' was not declared. Should it be static?
arch/x86/kernel/kexec-bzimage64.c:546:23: warning: symbol 'kexec_bzImage64_ops' was not declared. Should it be static?
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Reported-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is the final piece of the puzzle of verifying kernel image signature
during kexec_file_load() syscall.
This patch calls into PE file routines to verify signature of bzImage. If
signature are valid, kexec_file_load() succeeds otherwise it fails.
Two new config options have been introduced. First one is
CONFIG_KEXEC_VERIFY_SIG. This option enforces that kernel has to be
validly signed otherwise kernel load will fail. If this option is not
set, no signature verification will be done. Only exception will be when
secureboot is enabled. In that case signature verification should be
automatically enforced when secureboot is enabled. But that will happen
when secureboot patches are merged.
Second config option is CONFIG_KEXEC_BZIMAGE_VERIFY_SIG. This option
enables signature verification support on bzImage. If this option is not
set and previous one is set, kernel image loading will fail because kernel
does not have support to verify signature of bzImage.
I tested these patches with both "pesign" and "sbsign" signed bzImages.
I used signing_key.priv key and signing_key.x509 cert for signing as
generated during kernel build process (if module signing is enabled).
Used following method to sign bzImage.
pesign
======
- Convert DER format cert to PEM format cert
openssl x509 -in signing_key.x509 -inform DER -out signing_key.x509.PEM -outform
PEM
- Generate a .p12 file from existing cert and private key file
openssl pkcs12 -export -out kernel-key.p12 -inkey signing_key.priv -in
signing_key.x509.PEM
- Import .p12 file into pesign db
pk12util -i /tmp/kernel-key.p12 -d /etc/pki/pesign
- Sign bzImage
pesign -i /boot/vmlinuz-3.16.0-rc3+ -o /boot/vmlinuz-3.16.0-rc3+.signed.pesign
-c "Glacier signing key - Magrathea" -s
sbsign
======
sbsign --key signing_key.priv --cert signing_key.x509.PEM --output
/boot/vmlinuz-3.16.0-rc3+.signed.sbsign /boot/vmlinuz-3.16.0-rc3+
Patch details:
Well all the hard work is done in previous patches. Now bzImage loader
has just call into that code and verify whether bzImage signature are
valid or not.
Also create two config options. First one is CONFIG_KEXEC_VERIFY_SIG.
This option enforces that kernel has to be validly signed otherwise kernel
load will fail. If this option is not set, no signature verification will
be done. Only exception will be when secureboot is enabled. In that case
signature verification should be automatically enforced when secureboot is
enabled. But that will happen when secureboot patches are merged.
Second config option is CONFIG_KEXEC_BZIMAGE_VERIFY_SIG. This option
enables signature verification support on bzImage. If this option is not
set and previous one is set, kernel image loading will fail because kernel
does not have support to verify signature of bzImage.
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: WANG Chao <chaowang@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Matt Fleming <matt@console-pimps.org>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch does two things. It passes EFI run time mappings to second
kernel in bootparams efi_info. Second kernel parse this info and create
new mappings in second kernel. That means mappings in first and second
kernel will be same. This paves the way to enable EFI in kexec kernel.
This patch also prepares and passes EFI setup data through bootparams.
This contains bunch of information about various tables and their
addresses.
These information gathering and passing has been written along the lines
of what current kexec-tools is doing to make kexec work with UEFI.
[akpm@linux-foundation.org: s/get_efi/efi_get/g, per Matt]
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: WANG Chao <chaowang@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Matt Fleming <matt@console-pimps.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds support for loading a kexec on panic (kdump) kernel usning
new system call.
It prepares ELF headers for memory areas to be dumped and for saved cpu
registers. Also prepares the memory map for second kernel and limits its
boot to reserved areas only.
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: WANG Chao <chaowang@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is loader specific code which can load bzImage and set it up for
64bit entry. This does not take care of 32bit entry or real mode entry.
32bit mode entry can be implemented if somebody needs it.
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: WANG Chao <chaowang@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>