One thing I never quite got around to doing is porting the log intent
item recovery code to reconstruct the deferred pending work state. As a
result, each intent item open codes xfs_defer_finish_one in its recovery
method, because that's what the EFI code did before xfs_defer.c even
existed.
This is a gross thing to have left unfixed -- if an EFI cannot proceed
due to busy extents, we end up creating separate new EFIs for each
unfinished work item, which is a change in behavior from what runtime
would have done.
Worse yet, Long Li pointed out that there's a UAF in the recovery code.
The ->commit_pass2 function adds the intent item to the AIL and drops
the refcount. The one remaining refcount is now owned by the recovery
mechanism (aka the log intent items in the AIL) with the intent of
giving the refcount to the intent done item in the ->iop_recover
function.
However, if something fails later in recovery, xlog_recover_finish will
walk the recovered intent items in the AIL and release them. If the CIL
hasn't been pushed before that point (which is possible since we don't
force the log until later) then the intent done release will try to free
its associated intent, which has already been freed.
This patch starts to address this mess by having the ->commit_pass2
functions recreate the xfs_defer_pending state. The next few patches
will fix the recovery functions.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Wengang Wang reports that a customer's system was running a number of
truncate operations on a filesystem with a very small log. Contention
on the reserve heads lead to other threads stalling on smaller updates
(e.g. mtime updates) long enough to result in the node being rebooted
on account of the lack of responsivenes. The node failed to recover
because log recovery of an EFI became stuck waiting for a grant of
reserve space. From Wengang's report:
"For the file deletion, log bytes are reserved basing on
xfs_mount->tr_itruncate which is:
tr_logres = 175488,
tr_logcount = 2,
tr_logflags = XFS_TRANS_PERM_LOG_RES,
"You see it's a permanent log reservation with two log operations (two
transactions in rolling mode). After calculation (xlog_calc_unit_res()
adds space for various log headers), the final log space needed per
transaction changes from 175488 to 180208 bytes. So the total log
space needed is 360416 bytes (180208 * 2). [That quantity] of log space
(360416 bytes) needs to be reserved for both run time inode removing
(xfs_inactive_truncate()) and EFI recover (xfs_efi_item_recover())."
In other words, runtime pre-reserves 360K of space in anticipation of
running a chain of two transactions in which each transaction gets a
180K reservation.
Now that we've allocated the transaction, we delete the bmap mapping,
log an EFI to free the space, and roll the transaction as part of
finishing the deferops chain. Rolling creates a new xfs_trans which
shares its ticket with the old transaction. Next, xfs_trans_roll calls
__xfs_trans_commit with regrant == true, which calls xlog_cil_commit
with the same regrant parameter.
xlog_cil_commit calls xfs_log_ticket_regrant, which decrements t_cnt and
subtracts t_curr_res from the reservation and write heads.
If the filesystem is fresh and the first transaction only used (say)
20K, then t_curr_res will be 160K, and we give that much reservation
back to the reservation head. Or if the file is really fragmented and
the first transaction actually uses 170K, then t_curr_res will be 10K,
and that's what we give back to the reservation.
Having done that, we're now headed into the second transaction with an
EFI and 180K of reservation. Other threads apparently consumed all the
reservation for smaller transactions, such as timestamp updates.
Now let's say the first transaction gets written to disk and we crash
without ever completing the second transaction. Now we remount the fs,
log recovery finds the unfinished EFI, and calls xfs_efi_recover to
finish the EFI. However, xfs_efi_recover starts a new tr_itruncate
tranasction, which asks for 360K log reservation. This is a lot more
than the 180K that we had reserved at the time of the crash. If the
first EFI to be recovered is also pinning the tail of the log, we will
be unable to free any space in the log, and recovery livelocks.
Wengang confirmed this:
"Now we have the second transaction which has 180208 log bytes reserved
too. The second transaction is supposed to process intents including
extent freeing. With my hacking patch, I blocked the extent freeing 5
hours. So in that 5 hours, 180208 (NOT 360416) log bytes are reserved.
"With my test case, other transactions (update timestamps) then happen.
As my hacking patch pins the journal tail, those timestamp-updating
transactions finally use up (almost) all the left available log space
(in memory in on disk). And finally the on disk (and in memory)
available log space goes down near to 180208 bytes. Those 180208 bytes
are reserved by [the] second (extent-free) transaction [in the chain]."
Wengang and I noticed that EFI recovery starts a transaction, completes
one step of the chain, and commits the transaction without completing
any other steps of the chain. Those subsequent steps are completed by
xlog_finish_defer_ops, which allocates yet another transaction to
finish the rest of the chain. That transaction gets the same tr_logres
as the head transaction, but with tr_logcount = 1 to force regranting
with every roll to avoid livelocks.
In other words, we already figured this out in commit 929b92f640
("xfs: xfs_defer_capture should absorb remaining transaction
reservation"), but should have applied that logic to each intent item's
recovery function. For Wengang's case, the xfs_trans_alloc call in the
EFI recovery function should only be asking for a single transaction's
worth of log reservation -- 180K, not 360K.
Quoting Wengang again:
"With log recovery, during EFI recovery, we use tr_itruncate again to
reserve two transactions that needs 360416 log bytes. Reserving 360416
bytes fails [stalls] because we now only have about 180208 available.
"Actually during the EFI recover, we only need one transaction to free
the extents just like the 2nd transaction at RUNTIME. So it only needs
to reserve 180208 rather than 360416 bytes. We have (a bit) more than
180208 available log bytes on disk, so [if we decrease the reservation
to 180K] the reservation goes and the recovery [finishes]. That is to
say: we can fix the log recover part to fix the issue. We can introduce
a new xfs_trans_res xfs_mount->tr_ext_free
{
tr_logres = 175488,
tr_logcount = 0,
tr_logflags = 0,
}
"and use tr_ext_free instead of tr_itruncate in EFI recover."
However, I don't think it quite makes sense to create an entirely new
transaction reservation type to handle single-stepping during log
recovery. Instead, we should copy the transaction reservation
information in the xfs_mount, change tr_logcount to 1, and pass that
into xfs_trans_alloc. We know this won't risk changing the min log size
computation since we always ask for a fraction of the reservation for
all known transaction types.
This looks like it's been lurking in the codebase since commit
3d3c8b5222, which changed the xfs_trans_reserve call in
xlog_recover_process_efi to use the tr_logcount in tr_itruncate.
That changed the EFI recovery transaction from making a
non-XFS_TRANS_PERM_LOG_RES request for one transaction's worth of log
space to a XFS_TRANS_PERM_LOG_RES request for two transactions worth.
Fixes: 3d3c8b5222 ("xfs: refactor xfs_trans_reserve() interface")
Complements: 929b92f640 ("xfs: xfs_defer_capture should absorb remaining transaction reservation")
Suggested-by: Wengang Wang <wen.gang.wang@oracle.com>
Cc: Srikanth C S <srikanth.c.s@oracle.com>
[djwong: apply the same transformation to all log intent recovery]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
When a writer thread executes a chain of log intent items, the AG header
buffer locks will cycle during a transaction roll to get from one intent
item to the next in a chain. Although scrub takes all AG header buffer
locks, this isn't sufficient to guard against scrub checking an AG while
that writer thread is in the middle of finishing a chain because there's
no higher level locking primitive guarding allocation groups.
When there's a collision, cross-referencing between data structures
(e.g. rmapbt and refcountbt) yields false corruption events; if repair
is running, this results in incorrect repairs, which is catastrophic.
Fix this by adding to the perag structure the count of active intents
and make scrub wait until it has both AG header buffer locks and the
intent counter reaches zero.
One quirk of the drain code is that deferred bmap updates also bump and
drop the intent counter. A fundamental decision made during the design
phase of the reverse mapping feature is that updates to the rmapbt
records are always made by the same code that updates the primary
metadata. In other words, callers of bmapi functions expect that the
bmapi functions will queue deferred rmap updates.
Some parts of the reflink code queue deferred refcount (CUI) and bmap
(BUI) updates in the same head transaction, but the deferred work
manager completely finishes the CUI before the BUI work is started. As
a result, the CUI drops the intent count long before the deferred rmap
(RUI) update even has a chance to bump the intent count. The only way
to keep the intent count elevated between the CUI and RUI is for the BUI
to bump the counter until the RUI has been created.
A second quirk of the intent drain code is that deferred work items must
increment the intent counter as soon as the work item is added to the
transaction. When a BUI completes and queues an RUI, the RUI must
increment the counter before the BUI decrements it. The only way to
accomplish this is to require that the counter be bumped as soon as the
deferred work item is created in memory.
In the next patches we'll improve on this facility, but this patch
provides the basic functionality.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Give the xfs_bmap_intent an active reference to the perag structure
data. This reference will be used to enable scrub intent draining
functionality in subsequent patches. Later, shrink will use these
passive references to know if an AG is quiesced or not.
The reason why we take a passive ref for a file mapping operation is
simple: we're committing to some sort of action involving space in an
AG, so we want to indicate our interest in that AG. The space is
already allocated, so we need to be able to operate on AGs that are
offline or being shrunk.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Variable names in this code module are inconsistent and confusing.
xfs_map_extent describe file mappings, so rename them "map".
xfs_bmap_intents describe block mapping intents, so rename them "bi".
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Instead of repeatedly boxing and unboxing the incore extent mapping
structure as it passes through the BUI code, pass the pointer directly
through.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
If log recovery decides that an intent item is corrupt and wants to
abort the mount, capture a hexdump of the corrupt log item in the kernel
log for further analysis. Some of the log item code already did this,
so we're fixing the rest to do it consistently.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Starting in 6.1, CONFIG_FORTIFY_SOURCE checks the length parameter of
memcpy. Unfortunately, it doesn't handle flex arrays correctly:
------------[ cut here ]------------
memcpy: detected field-spanning write (size 48) of single field "dst_bui_fmt" at fs/xfs/xfs_bmap_item.c:628 (size 16)
Fix this by refactoring the xfs_bui_copy_format function to handle the
copying of the head and the flex array members separately. While we're
at it, fix a minor validation deficiency in the recovery function.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
When we release an intent that a whiteout applies to, it will not
have been committed to the journal and so won't be in the AIL. Hence
when we drop the last reference to the intent, we do not want to try
to remove it from the AIL as that will trigger a filesystem
shutdown. Hence make the removal of intents from the AIL conditional
on them actually being in the AIL so we do the correct thing.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
To apply a whiteout to an intent item when an intent done item is
committed, we need to be able to retrieve the intent item from the
the intent done item. Add a log item op method for doing this, and
wire all the intent done items up to it.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Intent whiteouts will require extra work to be done during
transaction commit if the transaction contains an intent done item.
To determine if a transaction contains an intent done item, we want
to avoid having to walk all the items in the transaction to check if
they are intent done items. Hence when we add an intent done item to
a transaction, tag the transaction to indicate that it contains such
an item.
We don't tag the transaction when the defer ops is relogging an
intent to move it forward in the log. Whiteouts will never apply to
these cases, so we don't need to bother looking for them.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We currently have a couple of helper functions that try to infer
whether the log item is an intent or intent done item from the
combinations of operations it supports. This is incredibly fragile
and not very efficient as it requires checking specific combinations
of ops.
We need to be able to identify intent and intent done items quickly
and easily in upcoming patches, so simply add intent and intent done
type flags to the log item ops flags. These are static flags to
begin with, so intent items should have been typed like this from
the start.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Ever since we added shadown format buffers to the log items, log
items need to handle the item being released with shadow buffers
attached. Due to the fact this requirement was added at the same
time we added new rmap/reflink intents, we missed the cleanup of
those items.
In theory, this means shadow buffers can be leaked in a very small
window when a shutdown is initiated. Testing with KASAN shows this
leak does not happen in practice - we haven't identified a single
leak in several years of shutdown testing since ~v4.8 kernels.
However, the intent whiteout cleanup mechanism results in every
cancelled intent in exactly the same state as this tiny race window
creates and so if intents down clean up shadow buffers on final
release we will leak the shadow buffer for just about every intent
we create.
Hence we start with this patch to close this condition off and
ensure that when whiteouts start to be used we don't leak lots of
memory.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This commit enables upgrading existing inodes to use large extent counters
provided that underlying filesystem's superblock has large extent counter
feature enabled.
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Log items belong to the log, not the xfs_mount. Convert the mount
pointer in the log item to a xlog pointer in preparation for
upcoming log centric changes to the log items.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Create slab caches for the high-level structures that coordinate
deferred intent items, since they're used fairly heavily.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Now that we've gotten rid of the kmem_zone_t typedef, rename the
variables to _cache since that's what they are.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Remove these typedefs by referencing kmem_cache directly.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
When log recovery tries to recover a transaction that had log intent
items attached to it, it has to save certain parts of the transaction
state (reservation, dfops chain, inodes with no automatic unlock) so
that it can finish single-stepping the recovered transactions before
finishing the chains.
This is done with the xfs_defer_ops_capture and xfs_defer_ops_continue
functions. Right now they open-code this functionality, so let's port
this to the formalized resource capture structure that we introduced in
the previous patch. This enables us to hold up to two inodes and two
buffers during log recovery, the same way we do for regular runtime.
With this patch applied, we'll be ready to support atomic extent swap
which holds two inodes; and logged xattrs which holds one inode and one
xattr leaf buffer.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Hoist the code from xfs_bui_item_recover that igets an inode and marks
it as being part of log intent recovery. The next patch will want a
common function.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
If we try to recover a log intent item and the operation fails due to
filesystem corruption, dump the contents of the item to the log for
further analysis.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
list_sort() internally casts the comparison function passed to it
to a different type with constant struct list_head pointers, and
uses this pointer to call the functions, which trips indirect call
Control-Flow Integrity (CFI) checking.
Instead of removing the consts, this change defines the
list_cmp_func_t type and changes the comparison function types of
all list_sort() callers to use const pointers, thus avoiding type
mismatches.
Suggested-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20210408182843.1754385-10-samitolvanen@google.com
The extent mapping the file offset at which a hole has to be
inserted will be split into two extents causing extent count to
increase by 1.
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Chandan Babu R <chandanrlinux@gmail.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
When adding a new data extent (without modifying an inode's existing
extents) the extent count increases only by 1. This commit checks for
extent count overflow in such cases.
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Chandan Babu R <chandanrlinux@gmail.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Refactor all the open-coded validation of file block ranges into a
single helper, and teach the bmap scrubber to check the ranges.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Refactor all the open-coded validation of non-static data device extents
into a single helper.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
The code that validates recovered bmap intent items is kind of a mess --
it doesn't use the standard xfs type validators, and it doesn't check
for things that it should. Fix the validator function to use the
standard validation helpers and look for more types of obvious errors.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
When we recover a bmap intent from the log, we need to validate its
contents before we try to replay them. Hoist the checking code into a
separate function in preparation to refactor this code to use validation
helpers.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
There's a subtle design flaw in the deferred log item code that can lead
to pinning the log tail. Taking up the defer ops chain examples from
the previous commit, we can get trapped in sequences like this:
Caller hands us a transaction t0 with D0-D3 attached. The defer ops
chain will look like the following if the transaction rolls succeed:
t1: D0(t0), D1(t0), D2(t0), D3(t0)
t2: d4(t1), d5(t1), D1(t0), D2(t0), D3(t0)
t3: d5(t1), D1(t0), D2(t0), D3(t0)
...
t9: d9(t7), D3(t0)
t10: D3(t0)
t11: d10(t10), d11(t10)
t12: d11(t10)
In transaction 9, we finish d9 and try to roll to t10 while holding onto
an intent item for D3 that we logged in t0.
The previous commit changed the order in which we place new defer ops in
the defer ops processing chain to reduce the maximum chain length. Now
make xfs_defer_finish_noroll capable of relogging the entire chain
periodically so that we can always move the log tail forward. Most
chains will never get relogged, except for operations that generate very
long chains (large extents containing many blocks with different sharing
levels) or are on filesystems with small logs and a lot of ongoing
metadata updates.
Callers are now required to ensure that the transaction reservation is
large enough to handle logging done items and new intent items for the
maximum possible chain length. Most callers are careful to keep the
chain lengths low, so the overhead should be minimal.
The decision to relog an intent item is made based on whether the intent
was logged in a previous checkpoint, since there's no point in relogging
an intent into the same checkpoint.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
In xfs_bui_item_recover, there exists a use-after-free bug with regards
to the inode that is involved in the bmap replay operation. If the
mapping operation does not complete, we call xfs_bmap_unmap_extent to
create a deferred op to finish the unmapping work, and we retain a
pointer to the incore inode.
Unfortunately, the very next thing we do is commit the transaction and
drop the inode. If reclaim tears down the inode before we try to finish
the defer ops, we dereference garbage and blow up. Therefore, create a
way to join inodes to the defer ops freezer so that we can maintain the
xfs_inode reference until we're done with the inode.
Note: This imposes the requirement that there be enough memory to keep
every incore inode in memory throughout recovery.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
In most places in XFS, we have a specific order in which we gather
resources: grab the inode, allocate a transaction, then lock the inode.
xfs_bui_item_recover doesn't do it in that order, so fix it to be more
consistent. This also makes the error bailout code a bit less weird.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
The bmap intent item checking code in xfs_bui_item_recover is spread all
over the function. We should check the recovered log item at the top
before we allocate any resources or do anything else, so do that.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
When we replay unfinished intent items that have been recovered from the
log, it's possible that the replay will cause the creation of more
deferred work items. As outlined in commit 509955823c ("xfs: log
recovery should replay deferred ops in order"), later work items have an
implicit ordering dependency on earlier work items. Therefore, recovery
must replay the items (both recovered and created) in the same order
that they would have been during normal operation.
For log recovery, we enforce this ordering by using an empty transaction
to collect deferred ops that get created in the process of recovering a
log intent item to prevent them from being committed before the rest of
the recovered intent items. After we finish committing all the
recovered log items, we allocate a transaction with an enormous block
reservation, splice our huge list of created deferred ops into that
transaction, and commit it, thereby finishing all those ops.
This is /really/ hokey -- it's the one place in XFS where we allow
nested transactions; the splicing of the defer ops list is is inelegant
and has to be done twice per recovery function; and the broken way we
handle inode pointers and block reservations cause subtle use-after-free
and allocator problems that will be fixed by this patch and the two
patches after it.
Therefore, replace the hokey empty transaction with a structure designed
to capture each chain of deferred ops that are created as part of
recovering a single unfinished log intent. Finally, refactor the loop
that replays those chains to do so using one transaction per chain.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Nowadays, log recovery will call ->release on the recovered intent items
if recovery fails. Therefore, it's redundant to release them from
inside the ->recover functions when they're about to return an error.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
In the bmap intent item recovery code, we must be careful to attach the
inode to its dquots (if quotas are enabled) so that a change in the
shape of the bmap btree doesn't cause the quota counters to be
incorrect.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
During a code inspection, I found a serious bug in the log intent item
recovery code when an intent item cannot complete all the work and
decides to requeue itself to get that done. When this happens, the
item recovery creates a new incore deferred op representing the
remaining work and attaches it to the transaction that it allocated. At
the end of _item_recover, it moves the entire chain of deferred ops to
the dummy parent_tp that xlog_recover_process_intents passed to it, but
fail to log a new intent item for the remaining work before committing
the transaction for the single unit of work.
xlog_finish_defer_ops logs those new intent items once recovery has
finished dealing with the intent items that it recovered, but this isn't
sufficient. If the log is forced to disk after a recovered log item
decides to requeue itself and the system goes down before we call
xlog_finish_defer_ops, the second log recovery will never see the new
intent item and therefore has no idea that there was more work to do.
It will finish recovery leaving the filesystem in a corrupted state.
The same logic applies to /any/ deferred ops added during intent item
recovery, not just the one handling the remaining work.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Use kmem_cache_zalloc() directly.
With the exception of xlog_ticket_alloc() which will be dealt on the
next patch for readability.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
The only purpose of XFS_LI_RECOVERED is to prevent log recovery from
trying to replay recovered intents more than once. Therefore, we can
move the bit setting up to the ->iop_recover caller.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Now that we've made the recovered item tests all the same, we can hoist
the test and the ail locking code to the ->iop_recover caller and call
the recovery function directly.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Rename XFS_{EFI,BUI,RUI,CUI}_RECOVERED to XFS_LI_RECOVERED so that we
track recovery status in the log item, then get rid of the now unused
flags fields in each of those log item types.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
During recovery, every intent that we recover from the log has to be
added to the AIL. Replace the open-coded addition with a helper.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Replace the open-coded AIL item walking with a proper helper when we're
trying to release an intent item that has been finished. We add a new
->iop_match method to decide if an intent item matches a supplied ID.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Move the code that processes the log items created from the recovered
log items into the per-item source code files and use dispatch functions
to call them. No functional changes.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Move the bmap update intent and intent-done pass2 commit code into the
per-item source code files and use dispatch functions to call them. We
do these one at a time because there's a lot of code to move. No
functional changes.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create a generic dispatch structure to delegate recovery of different
log item types into various code modules. This will enable us to move
code specific to a particular log item type out of xfs_log_recover.c and
into the log item source.
The first operation we virtualize is the log item sorting.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Various intent log items call xfs_trans_ail_remove() with a log I/O
error shutdown type, but this helper historically checks whether an
item is in the AIL before calling xfs_trans_ail_delete(). This means
the shutdown check is essentially a no-op for users of
xfs_trans_ail_remove().
It is possible that some items might not be AIL resident when the
AIL remove attempt occurs, but this should be isolated to cases
where the filesystem has already shutdown. For example, this
includes abort of the transaction committing the intent and I/O
error of the iclog buffer committing the intent to the log.
Therefore, update these callsites to use xfs_trans_ail_delete() to
provide AIL state validation for the common path of items being
released and removed when associated done items commit to the
physical log.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Given how XFS is all based around btrees it doesn't make much sense
to offer a totally generic state when we can just use the btree cursor.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
All defer op instance place their own extension of the log item into
the dfp_done field. Replace that with a xfs_log_item to improve type
safety and make the code easier to follow.
Also use the opportunity to improve the ->finish_item calling conventions
to place the done log item as the higher level structure before the
list_entry used for the individual items.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
All defer op instance place their own extension of the log item into
the dfp_intent field. Replace that with a xfs_log_item to improve type
safety and make the code easier to follow.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This avoids a per-item indirect call, and also simplifies the interface
a bit.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>