mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-12 08:45:11 +08:00
01b5022f0a
1181 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Yu Zhao
|
f386e93140 |
mm: multi-gen LRU: simplify arch_has_hw_pte_young() check
Scanning page tables when hardware does not set the accessed bit has no real use cases. Link: https://lkml.kernel.org/r/20221222041905.2431096-9-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
e9d4e1ee78 |
mm: multi-gen LRU: clarify scan_control flags
Among the flags in scan_control: 1. sc->may_swap, which indicates swap constraint due to memsw.max, is supported as usual. 2. sc->proactive, which indicates reclaim by memory.reclaim, may not opportunistically skip the aging path, since it is considered less latency sensitive. 3. !(sc->gfp_mask & __GFP_IO), which indicates IO constraint, lowers swappiness to prioritize file LRU, since clean file folios are more likely to exist. 4. sc->may_writepage and sc->may_unmap, which indicates opportunistic reclaim, are rejected, since unmapped clean folios are already prioritized. Scanning for more of them is likely futile and can cause high reclaim latency when there is a large number of memcgs. The rest are handled by the existing code. Link: https://lkml.kernel.org/r/20221222041905.2431096-8-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
e4dde56cd2 |
mm: multi-gen LRU: per-node lru_gen_folio lists
For each node, memcgs are divided into two generations: the old and the young. For each generation, memcgs are randomly sharded into multiple bins to improve scalability. For each bin, an RCU hlist_nulls is virtually divided into three segments: the head, the tail and the default. An onlining memcg is added to the tail of a random bin in the old generation. The eviction starts at the head of a random bin in the old generation. The per-node memcg generation counter, whose reminder (mod 2) indexes the old generation, is incremented when all its bins become empty. There are four operations: 1. MEMCG_LRU_HEAD, which moves an memcg to the head of a random bin in its current generation (old or young) and updates its "seg" to "head"; 2. MEMCG_LRU_TAIL, which moves an memcg to the tail of a random bin in its current generation (old or young) and updates its "seg" to "tail"; 3. MEMCG_LRU_OLD, which moves an memcg to the head of a random bin in the old generation, updates its "gen" to "old" and resets its "seg" to "default"; 4. MEMCG_LRU_YOUNG, which moves an memcg to the tail of a random bin in the young generation, updates its "gen" to "young" and resets its "seg" to "default". The events that trigger the above operations are: 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD; 2. The first attempt to reclaim an memcg below low, which triggers MEMCG_LRU_TAIL; 3. The first attempt to reclaim an memcg below reclaimable size threshold, which triggers MEMCG_LRU_TAIL; 4. The second attempt to reclaim an memcg below reclaimable size threshold, which triggers MEMCG_LRU_YOUNG; 5. Attempting to reclaim an memcg below min, which triggers MEMCG_LRU_YOUNG; 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG; 7. Offlining an memcg, which triggers MEMCG_LRU_OLD. Note that memcg LRU only applies to global reclaim, and the round-robin incrementing of their max_seq counters ensures the eventual fairness to all eligible memcgs. For memcg reclaim, it still relies on mem_cgroup_iter(). Link: https://lkml.kernel.org/r/20221222041905.2431096-7-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
77d4459a4a |
mm: multi-gen LRU: shuffle should_run_aging()
Move should_run_aging() next to its only caller left. Link: https://lkml.kernel.org/r/20221222041905.2431096-6-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
7348cc9182 |
mm: multi-gen LRU: remove aging fairness safeguard
Recall that the aging produces the youngest generation: first it scans for accessed folios and updates their gen counters; then it increments lrugen->max_seq. The current aging fairness safeguard for kswapd uses two passes to ensure the fairness to multiple eligible memcgs. On the first pass, which is shared with the eviction, it checks whether all eligible memcgs are low on cold folios. If so, it requires a second pass, on which it ages all those memcgs at the same time. With memcg LRU, the aging, while ensuring eventual fairness, will run when necessary. Therefore the current aging fairness safeguard for kswapd will not be needed. Note that memcg LRU only applies to global reclaim. For memcg reclaim, the aging can be unfair to different memcgs, i.e., their lrugen->max_seq can be incremented at different paces. Link: https://lkml.kernel.org/r/20221222041905.2431096-5-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
a579086c99 |
mm: multi-gen LRU: remove eviction fairness safeguard
Recall that the eviction consumes the oldest generation: first it bucket-sorts folios whose gen counters were updated by the aging and reclaims the rest; then it increments lrugen->min_seq. The current eviction fairness safeguard for global reclaim has a dilemma: when there are multiple eligible memcgs, should it continue or stop upon meeting the reclaim goal? If it continues, it overshoots and increases direct reclaim latency; if it stops, it loses fairness between memcgs it has taken memory away from and those it has yet to. With memcg LRU, the eviction, while ensuring eventual fairness, will stop upon meeting its goal. Therefore the current eviction fairness safeguard for global reclaim will not be needed. Note that memcg LRU only applies to global reclaim. For memcg reclaim, the eviction will continue, even if it is overshooting. This becomes unconditional due to code simplification. Link: https://lkml.kernel.org/r/20221222041905.2431096-4-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
6df1b22129 |
mm: multi-gen LRU: rename lrugen->lists[] to lrugen->folios[]
lru_gen_folio will be chained into per-node lists by the coming lrugen->list. Link: https://lkml.kernel.org/r/20221222041905.2431096-3-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
391655fe08 |
mm: multi-gen LRU: rename lru_gen_struct to lru_gen_folio
Patch series "mm: multi-gen LRU: memcg LRU", v3. Overview ======== An memcg LRU is a per-node LRU of memcgs. It is also an LRU of LRUs, since each node and memcg combination has an LRU of folios (see mem_cgroup_lruvec()). Its goal is to improve the scalability of global reclaim, which is critical to system-wide memory overcommit in data centers. Note that memcg reclaim is currently out of scope. Its memory bloat is a pointer to each lruvec and negligible to each pglist_data. In terms of traversing memcgs during global reclaim, it improves the best-case complexity from O(n) to O(1) and does not affect the worst-case complexity O(n). Therefore, on average, it has a sublinear complexity in contrast to the current linear complexity. The basic structure of an memcg LRU can be understood by an analogy to the active/inactive LRU (of folios): 1. It has the young and the old (generations), i.e., the counterparts to the active and the inactive; 2. The increment of max_seq triggers promotion, i.e., the counterpart to activation; 3. Other events trigger similar operations, e.g., offlining an memcg triggers demotion, i.e., the counterpart to deactivation. In terms of global reclaim, it has two distinct features: 1. Sharding, which allows each thread to start at a random memcg (in the old generation) and improves parallelism; 2. Eventual fairness, which allows direct reclaim to bail out at will and reduces latency without affecting fairness over some time. The commit message in patch 6 details the workflow: https://lore.kernel.org/r/20221222041905.2431096-7-yuzhao@google.com/ The following is a simple test to quickly verify its effectiveness. Test design: 1. Create multiple memcgs. 2. Each memcg contains a job (fio). 3. All jobs access the same amount of memory randomly. 4. The system does not experience global memory pressure. 5. Periodically write to the root memory.reclaim. Desired outcome: 1. All memcgs have similar pgsteal counts, i.e., stddev(pgsteal) over mean(pgsteal) is close to 0%. 2. The total pgsteal is close to the total requested through memory.reclaim, i.e., sum(pgsteal) over sum(requested) is close to 100%. Actual outcome [1]: MGLRU off MGLRU on stddev(pgsteal) / mean(pgsteal) 75% 20% sum(pgsteal) / sum(requested) 425% 95% #################################################################### MEMCGS=128 for ((memcg = 0; memcg < $MEMCGS; memcg++)); do mkdir /sys/fs/cgroup/memcg$memcg done start() { echo $BASHPID > /sys/fs/cgroup/memcg$memcg/cgroup.procs fio -name=memcg$memcg --numjobs=1 --ioengine=mmap \ --filename=/dev/zero --size=1920M --rw=randrw \ --rate=64m,64m --random_distribution=random \ --fadvise_hint=0 --time_based --runtime=10h \ --group_reporting --minimal } for ((memcg = 0; memcg < $MEMCGS; memcg++)); do start & done sleep 600 for ((i = 0; i < 600; i++)); do echo 256m >/sys/fs/cgroup/memory.reclaim sleep 6 done for ((memcg = 0; memcg < $MEMCGS; memcg++)); do grep "pgsteal " /sys/fs/cgroup/memcg$memcg/memory.stat done #################################################################### [1]: This was obtained from running the above script (touches less than 256GB memory) on an EPYC 7B13 with 512GB DRAM for over an hour. This patch (of 8): The new name lru_gen_folio will be more distinct from the coming lru_gen_memcg. Link: https://lkml.kernel.org/r/20221222041905.2431096-1-yuzhao@google.com Link: https://lkml.kernel.org/r/20221222041905.2431096-2-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Vishal Moola (Oracle)
|
5a9e34747c |
mm/swap: convert deactivate_page() to folio_deactivate()
Deactivate_page() has already been converted to use folios, this change converts it to take in a folio argument instead of calling page_folio(). It also renames the function folio_deactivate() to be more consistent with other folio functions. [akpm@linux-foundation.org: fix left-over comments, per Yu Zhao] Link: https://lkml.kernel.org/r/20221221180848.20774-5-vishal.moola@gmail.com Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Linus Torvalds
|
4f292c4de4 |
New Feature:
* Randomize the per-cpu entry areas Cleanups: * Have CR3_ADDR_MASK use PHYSICAL_PAGE_MASK instead of open coding it * Move to "native" set_memory_rox() helper * Clean up pmd_get_atomic() and i386-PAE * Remove some unused page table size macros -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmOc53UACgkQaDWVMHDJ krCUHw//SGZ+La0hLZLAiAiZTXLZZHpYkOmg1Oj1+11qSU11uZzTFqDpauhaKpRS cJCSh+D+RXe5e2ipgt0+Zl0hESLt7pJf8258OE4ra0DL/IlyO9uqruAs9Kn3eRS/ Fk76nG8gdEU+JKJqpG02GqOLslYQuIy96n9hpuj1x25b614+uezPfC7S4XEat0NT MbJQ+jnVDf16aJIJkzT+iSwhubDVeh+bSHeO0SSCzX23WLUqDeg5NvlyxoCHGbBh UpUTWggV/0pYAkBKRHToeJs8qTWREwuuH/8JGewpe9A0tjdB5wyZfNL2PuracweN 9MauXC3T5f0+Ca4yIIaPq1fF7Ny/PR2dBFihk27rOD0N7tjaZxNwal2pB1sZcmvZ +PAokjyTPVH5ZXjkMYGGAUe1jyjwr2+TgFSZxhTnDuGtyVQiY4pihGKOifLCX6tv x6khvYeTBw7wfaDRtKEAf+2kLHYn+71HszHP/8bNKX9T03h+Zf0i1wdZu5xbM5Gc VK2wR7bCC+UftJJYG0pldcHg2qaF19RBHK2tLwp7zngUv7lTbkKfkgKjre73KV2a D4b76lrqdUMo6UYwYdw7WtDyarZS4OVLq2DcNhwwMddBCaX8kyN5a4AqwQlZYJ0u dM+kuMofE8U3yMxmMhJimkZUsj09yLHIqfynY0jbAcU3nhKZZNY= =wwVF -----END PGP SIGNATURE----- Merge tag 'x86_mm_for_6.2_v2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 mm updates from Dave Hansen: "New Feature: - Randomize the per-cpu entry areas Cleanups: - Have CR3_ADDR_MASK use PHYSICAL_PAGE_MASK instead of open coding it - Move to "native" set_memory_rox() helper - Clean up pmd_get_atomic() and i386-PAE - Remove some unused page table size macros" * tag 'x86_mm_for_6.2_v2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (35 commits) x86/mm: Ensure forced page table splitting x86/kasan: Populate shadow for shared chunk of the CPU entry area x86/kasan: Add helpers to align shadow addresses up and down x86/kasan: Rename local CPU_ENTRY_AREA variables to shorten names x86/mm: Populate KASAN shadow for entire per-CPU range of CPU entry area x86/mm: Recompute physical address for every page of per-CPU CEA mapping x86/mm: Rename __change_page_attr_set_clr(.checkalias) x86/mm: Inhibit _PAGE_NX changes from cpa_process_alias() x86/mm: Untangle __change_page_attr_set_clr(.checkalias) x86/mm: Add a few comments x86/mm: Fix CR3_ADDR_MASK x86/mm: Remove P*D_PAGE_MASK and P*D_PAGE_SIZE macros mm: Convert __HAVE_ARCH_P..P_GET to the new style mm: Remove pointless barrier() after pmdp_get_lockless() x86/mm/pae: Get rid of set_64bit() x86_64: Remove pointless set_64bit() usage x86/mm/pae: Be consistent with pXXp_get_and_clear() x86/mm/pae: Use WRITE_ONCE() x86/mm/pae: Don't (ab)use atomic64 mm/gup: Fix the lockless PMD access ... |
||
Peter Zijlstra
|
eb780dcae0 |
mm: Remove pointless barrier() after pmdp_get_lockless()
pmdp_get_lockless() should itself imply any ordering required. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20221022114425.298833095%40infradead.org |
||
Peter Zijlstra
|
dab6e71742 |
mm: Rename pmd_read_atomic()
There's no point in having the identical routines for PTE/PMD have different names. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20221022114424.841277397%40infradead.org |
||
Hugh Dickins
|
c449deb2b9 |
mm: memcg: fix swapcached stat accounting
I'd been worried by high "swapcached" counts in memcg OOM reports, thought we had a problem freeing swapcache, but it was just the accounting that was wrong. Two issues: 1. When __remove_mapping() removes swapcache, __delete_from_swap_cache() relies on memcg_data for the right counts to be updated; but that had already been reset by mem_cgroup_swapout(). Swap those calls around - mem_cgroup_swapout() does not require the swapcached flag to be set. 6.1 commit |
||
Mina Almasry
|
12a5d39552 |
mm: add nodes= arg to memory.reclaim
The nodes= arg instructs the kernel to only scan the given nodes for
proactive reclaim. For example use cases, consider a 2 tier memory
system:
nodes 0,1 -> top tier
nodes 2,3 -> second tier
$ echo "1m nodes=0" > memory.reclaim
This instructs the kernel to attempt to reclaim 1m memory from node 0.
Since node 0 is a top tier node, demotion will be attempted first. This
is useful to direct proactive reclaim to specific nodes that are under
pressure.
$ echo "1m nodes=2,3" > memory.reclaim
This instructs the kernel to attempt to reclaim 1m memory in the second
tier, since this tier of memory has no demotion targets the memory will be
reclaimed.
$ echo "1m nodes=0,1" > memory.reclaim
Instructs the kernel to reclaim memory from the top tier nodes, which can
be desirable according to the userspace policy if there is pressure on the
top tiers. Since these nodes have demotion targets, the kernel will
attempt demotion first.
Since commit
|
||
Mina Almasry
|
6b426d0714 |
mm: disable top-tier fallback to reclaim on proactive reclaim
Reclaiming directly from top tier nodes breaks the aging pipeline of memory tiers. If we have a RAM -> CXL -> storage hierarchy, we should demote from RAM to CXL and from CXL to storage. If we reclaim a page from RAM, it means we 'demote' it directly from RAM to storage, bypassing potentially a huge amount of pages colder than it in CXL. However disabling reclaim from top tier nodes entirely would cause ooms in edge scenarios where lower tier memory is unreclaimable for whatever reason, e.g. memory being mlocked() or too hot to reclaim. In these cases we would rather the job run with a performance regression rather than it oom altogether. However, we can disable reclaim from top tier nodes for proactive reclaim. That reclaim is not real memory pressure, and we don't have any cause to be breaking the aging pipeline. [akpm@linux-foundation.org: restore comment layout, per Ying Huang] Link: https://lkml.kernel.org/r/20221201233317.1394958-1-almasrymina@google.com Signed-off-by: Mina Almasry <almasrymina@google.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Wei Xu <weixugc@google.com> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yosry Ahmed
|
adb8213014 |
mm: memcg: fix stale protection of reclaim target memcg
Patch series "mm: memcg: fix protection of reclaim target memcg", v3. This series fixes a bug in calculating the protection of the reclaim target memcg where we end up using stale effective protection values from the last reclaim operation, instead of completely ignoring the protection of the reclaim target as intended. More detailed explanation and examples in patch 1, which includes the fix. Patches 2 & 3 introduce a selftest case that catches the bug. This patch (of 3): When we are doing memcg reclaim, the intended behavior is that we ignore any protection (memory.min, memory.low) of the target memcg (but not its children). Ever since the patch pointed to by the "Fixes" tag, we actually read a stale value for the target memcg protection when deciding whether to skip the memcg or not because it is protected. If the stale value happens to be high enough, we don't reclaim from the target memcg. Essentially, in some cases we may falsely skip reclaiming from the target memcg of reclaim because we read a stale protection value from last time we reclaimed from it. During reclaim, mem_cgroup_calculate_protection() is used to determine the effective protection (emin and elow) values of a memcg. The protection of the reclaim target is ignored, but we cannot set their effective protection to 0 due to a limitation of the current implementation (see comment in mem_cgroup_protection()). Instead, we leave their effective protection values unchaged, and later ignore it in mem_cgroup_protection(). However, mem_cgroup_protection() is called later in shrink_lruvec()->get_scan_count(), which is after the mem_cgroup_below_{min/low}() checks in shrink_node_memcgs(). As a result, the stale effective protection values of the target memcg may lead us to skip reclaiming from the target memcg entirely, before calling shrink_lruvec(). This can be even worse with recursive protection, where the stale target memcg protection can be higher than its standalone protection. See two examples below (a similar version of example (a) is added to test_memcontrol in a later patch). (a) A simple example with proactive reclaim is as follows. Consider the following hierarchy: ROOT | A | B (memory.min = 10M) Consider the following scenario: - B has memory.current = 10M. - The system undergoes global reclaim (or memcg reclaim in A). - In shrink_node_memcgs(): - mem_cgroup_calculate_protection() calculates the effective min (emin) of B as 10M. - mem_cgroup_below_min() returns true for B, we do not reclaim from B. - Now if we want to reclaim 5M from B using proactive reclaim (memory.reclaim), we should be able to, as the protection of the target memcg should be ignored. - In shrink_node_memcgs(): - mem_cgroup_calculate_protection() immediately returns for B without doing anything, as B is the target memcg, relying on mem_cgroup_protection() to ignore B's stale effective min (still 10M). - mem_cgroup_below_min() reads the stale effective min for B and we skip it instead of ignoring its protection as intended, as we never reach mem_cgroup_protection(). (b) An more complex example with recursive protection is as follows. Consider the following hierarchy with memory_recursiveprot: ROOT | A (memory.min = 50M) | B (memory.min = 10M, memory.high = 40M) Consider the following scenario: - B has memory.current = 35M. - The system undergoes global reclaim (target memcg is NULL). - B will have an effective min of 50M (all of A's unclaimed protection). - B will not be reclaimed from. - Now allocate 10M more memory in B, pushing it above it's high limit. - The system undergoes memcg reclaim from B (target memcg is B). - Like example (a), we do nothing in mem_cgroup_calculate_protection(), then call mem_cgroup_below_min(), which will read the stale effective min for B (50M) and skip it. In this case, it's even worse because we are not just considering B's standalone protection (10M), but we are reading a much higher stale protection (50M) which will cause us to not reclaim from B at all. This is an artifact of commit |
||
Xu Panda
|
8ef9c32a12 |
mm: vmscan: use sysfs_emit() to instead of scnprintf()
Replace open-coded snprintf() with sysfs_emit() to simplify the code. Link: https://lkml.kernel.org/r/202211241929015476424@zte.com.cn Signed-off-by: Xu Panda <xu.panda@zte.com.cn> Signed-off-by: Yang Yang <yang.yang29@zte.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
931b6a8b36 |
mm: multi-gen LRU: remove NULL checks on NODE_DATA()
NODE_DATA() is preallocated for all possible nodes after commit
|
||
Jan Kara
|
e83b39d6bb |
mm: make drop_caches keep reclaiming on all nodes
Currently, drop_caches are reclaiming node-by-node, looping on each node until reclaim could not make progress. This can however leave quite some slab entries (such as filesystem inodes) unreclaimed if objects say on node 1 keep objects on node 0 pinned. So move the "loop until no progress" loop to the node-by-node iteration to retry reclaim also on other nodes if reclaim on some nodes made progress. This fixes problem when drop_caches was not reclaiming lots of otherwise perfectly fine to reclaim inodes. Link: https://lkml.kernel.org/r/20221115123255.12559-1-jack@suse.cz Signed-off-by: Jan Kara <jack@suse.cz> Reported-by: You Zhou <you.zhou@intel.com> Reported-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Johannes Weiner
|
57e9cc50f4 |
mm: vmscan: split khugepaged stats from direct reclaim stats
Direct reclaim stats are useful for identifying a potential source for application latency, as well as spotting issues with kswapd. However, khugepaged currently distorts the picture: as a kernel thread it doesn't impose allocation latencies on userspace, and it explicitly opts out of kswapd reclaim. Its activity showing up in the direct reclaim stats is misleading. Counting it as kswapd reclaim could also cause confusion when trying to understand actual kswapd behavior. Break out khugepaged from the direct reclaim counters into new pgsteal_khugepaged, pgdemote_khugepaged, pgscan_khugepaged counters. Test with a huge executable (CONFIG_READ_ONLY_THP_FOR_FS): pgsteal_kswapd 1342185 pgsteal_direct 0 pgsteal_khugepaged 3623 pgscan_kswapd 1345025 pgscan_direct 0 pgscan_khugepaged 3623 Link: https://lkml.kernel.org/r/20221026180133.377671-1-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: Eric Bergen <ebergen@meta.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Andrew Morton
|
a38358c934 | Merge branch 'mm-hotfixes-stable' into mm-stable | ||
Juergen Gross
|
4aaf269c76 |
mm: introduce arch_has_hw_nonleaf_pmd_young()
When running as a Xen PV guests commit |
||
Aneesh Kumar K.V
|
81a70c21d9 |
mm/cgroup/reclaim: fix dirty pages throttling on cgroup v1
balance_dirty_pages doesn't do the required dirty throttling on cgroupv1.
See commit
|
||
Yu Zhao
|
359a5e1416 |
mm: multi-gen LRU: retry folios written back while isolated
The page reclaim isolates a batch of folios from the tail of one of the
LRU lists and works on those folios one by one. For a suitable
swap-backed folio, if the swap device is async, it queues that folio for
writeback. After the page reclaim finishes an entire batch, it puts back
the folios it queued for writeback to the head of the original LRU list.
In the meantime, the page writeback flushes the queued folios also by
batches. Its batching logic is independent from that of the page reclaim.
For each of the folios it writes back, the page writeback calls
folio_rotate_reclaimable() which tries to rotate a folio to the tail.
folio_rotate_reclaimable() only works for a folio after the page reclaim
has put it back. If an async swap device is fast enough, the page
writeback can finish with that folio while the page reclaim is still
working on the rest of the batch containing it. In this case, that folio
will remain at the head and the page reclaim will not retry it before
reaching there.
This patch adds a retry to evict_folios(). After evict_folios() has
finished an entire batch and before it puts back folios it cannot free
immediately, it retries those that may have missed the rotation.
Before this patch, ~60% of folios swapped to an Intel Optane missed
folio_rotate_reclaimable(). After this patch, ~99% of missed folios were
reclaimed upon retry.
This problem affects relatively slow async swap devices like Samsung 980
Pro much less and does not affect sync swap devices like zram or zswap at
all.
Link: https://lkml.kernel.org/r/20221116013808.3995280-1-yuzhao@google.com
Fixes:
|
||
Johannes Weiner
|
f53af4285d |
mm: vmscan: fix extreme overreclaim and swap floods
During proactive reclaim, we sometimes observe severe overreclaim, with several thousand times more pages reclaimed than requested. This trace was obtained from shrink_lruvec() during such an instance: prio:0 anon_cost:1141521 file_cost:7767 nr_reclaimed:4387406 nr_to_reclaim:1047 (or_factor:4190) nr=[7161123 345 578 1111] While he reclaimer requested 4M, vmscan reclaimed close to 16G, most of it by swapping. These requests take over a minute, during which the write() to memory.reclaim is unkillably stuck inside the kernel. Digging into the source, this is caused by the proportional reclaim bailout logic. This code tries to resolve a fundamental conflict: to reclaim roughly what was requested, while also aging all LRUs fairly and in accordance to their size, swappiness, refault rates etc. The way it attempts fairness is that once the reclaim goal has been reached, it stops scanning the LRUs with the smaller remaining scan targets, and adjusts the remainder of the bigger LRUs according to how much of the smaller LRUs was scanned. It then finishes scanning that remainder regardless of the reclaim goal. This works fine if priority levels are low and the LRU lists are comparable in size. However, in this instance, the cgroup that is targeted by proactive reclaim has almost no files left - they've already been squeezed out by proactive reclaim earlier - and the remaining anon pages are hot. Anon rotations cause the priority level to drop to 0, which results in reclaim targeting all of anon (a lot) and all of file (almost nothing). By the time reclaim decides to bail, it has scanned most or all of the file target, and therefor must also scan most or all of the enormous anon target. This target is thousands of times larger than the reclaim goal, thus causing the overreclaim. The bailout code hasn't changed in years, why is this failing now? The most likely explanations are two other recent changes in anon reclaim: 1. Before the series starting with commit |
||
Johannes Weiner
|
0538a82c39 |
mm: vmscan: make rotations a secondary factor in balancing anon vs file
We noticed a 2% webserver throughput regression after upgrading from 5.6.
This could be tracked down to a shift in the anon/file reclaim balance
(confirmed with swappiness) that resulted in worse reclaim efficiency and
thus more kswapd activity for the same outcome.
The change that exposed the problem is
|
||
Yu Zhao
|
e4fea72b14 |
mglru: mm/vmscan.c: fix imprecise comments
Link: https://lkml.kernel.org/r/YzSWfFI+MOeb1ils@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
14aa8b2d5c |
mm/mglru: don't sync disk for each aging cycle
wakeup_flusher_threads() was added under the assumption that if a system
runs out of clean cold pages, it might want to write back dirty pages more
aggressively so that they can become clean and be dropped.
However, doing so can breach the rate limit a system wants to impose on
writeback, resulting in early SSD wearout.
Link: https://lkml.kernel.org/r/YzSiWq9UEER5LKup@google.com
Fixes:
|
||
Matthew Wilcox (Oracle)
|
9202d527b7 |
memcg: convert mem_cgroup_swap_full() to take a folio
All callers now have a folio, so convert the function to take a folio. Saves a couple of calls to compound_head(). Link: https://lkml.kernel.org/r/20220902194653.1739778-48-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
4081f7446d |
mm/swap: convert put_swap_page() to put_swap_folio()
With all callers now using a folio, we can convert this function. Link: https://lkml.kernel.org/r/20220902194653.1739778-14-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
bdb0ed54a4 |
mm/swapfile: convert try_to_free_swap() to folio_free_swap()
Add kernel-doc for folio_free_swap() and make it return bool. Add a try_to_free_swap() compatibility wrapper. Link: https://lkml.kernel.org/r/20220902194653.1739778-11-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
49fd9b6df5 |
mm/vmscan: fix a lot of comments
Patch series "MM folio changes for 6.1", v2. My focus this round has been on shmem. I believe it is now fully converted to folios. Of course, shmem interacts with a lot of the swap cache and other parts of the kernel, so there are patches all over the MM. This patch series survives a round of xfstests on tmpfs, which is nice, but hardly an exhaustive test. Hugh was nice enough to run a round of tests on it and found a bug which is fixed in this edition. This patch (of 57): A lot of comments mention pages when they should say folios. Fix them up. [akpm@linux-foundation.org: fixups for mglru additions] Link: https://lkml.kernel.org/r/20220902194653.1739778-1-willy@infradead.org Link: https://lkml.kernel.org/r/20220902194653.1739778-2-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Liam R. Howlett
|
78ba531ff3 |
mm/vmscan: use vma iterator instead of vm_next
Use the vma iterator in in get_next_vma() instead of the linked list. [yuzhao@google.com: mm/vmscan: use the proper VMA iterator] Link: https://lkml.kernel.org/r/Yx+QGOgHg1Wk8tGK@google.com Link: https://lkml.kernel.org/r/20220906194824.2110408-68-Liam.Howlett@oracle.com Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Signed-off-by: Yu Zhao <yuzhao@google.com> Tested-by: Yu Zhao <yuzhao@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: SeongJae Park <sj@kernel.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Jagdish Gediya
|
3200802728 |
mm/demotion: demote pages according to allocation fallback order
Currently, a higher tier node can only be demoted to selected nodes on the next lower tier as defined by the demotion path. This strict demotion order does not work in all use cases (e.g. some use cases may want to allow cross-socket demotion to another node in the same demotion tier as a fallback when the preferred demotion node is out of space). This demotion order is also inconsistent with the page allocation fallback order when all the nodes in a higher tier are out of space: The page allocation can fall back to any node from any lower tier, whereas the demotion order doesn't allow that currently. This patch adds support to get all the allowed demotion targets for a memory tier. demote_page_list() function is now modified to utilize this allowed node mask as the fallback allocation mask. Link: https://lkml.kernel.org/r/20220818131042.113280-9-aneesh.kumar@linux.ibm.com Signed-off-by: Jagdish Gediya <jvgediya.oss@gmail.com> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: Wei Xu <weixugc@google.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Bharata B Rao <bharata@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Hesham Almatary <hesham.almatary@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tim Chen <tim.c.chen@intel.com> Cc: Yang Shi <shy828301@gmail.com> Cc: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Aneesh Kumar K.V
|
9195244022 |
mm/demotion: move memory demotion related code
This moves memory demotion related code to mm/memory-tiers.c. No functional change in this patch. Link: https://lkml.kernel.org/r/20220818131042.113280-3-aneesh.kumar@linux.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: Wei Xu <weixugc@google.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Bharata B Rao <bharata@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Hesham Almatary <hesham.almatary@huawei.com> Cc: Jagdish Gediya <jvgediya.oss@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tim Chen <tim.c.chen@intel.com> Cc: Yang Shi <shy828301@gmail.com> Cc: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
07017acb06 |
mm: multi-gen LRU: admin guide
Add an admin guide. Link: https://lkml.kernel.org/r/20220918080010.2920238-14-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Barry Song <baohua@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
d6c3af7d8a |
mm: multi-gen LRU: debugfs interface
Add /sys/kernel/debug/lru_gen for working set estimation and proactive reclaim. These techniques are commonly used to optimize job scheduling (bin packing) in data centers [1][2]. Compared with the page table-based approach and the PFN-based approach, this lruvec-based approach has the following advantages: 1. It offers better choices because it is aware of memcgs, NUMA nodes, shared mappings and unmapped page cache. 2. It is more scalable because it is O(nr_hot_pages), whereas the PFN-based approach is O(nr_total_pages). Add /sys/kernel/debug/lru_gen_full for debugging. [1] https://dl.acm.org/doi/10.1145/3297858.3304053 [2] https://dl.acm.org/doi/10.1145/3503222.3507731 Link: https://lkml.kernel.org/r/20220918080010.2920238-13-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Reviewed-by: Qi Zheng <zhengqi.arch@bytedance.com> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Barry Song <baohua@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
1332a809d9 |
mm: multi-gen LRU: thrashing prevention
Add /sys/kernel/mm/lru_gen/min_ttl_ms for thrashing prevention, as requested by many desktop users [1]. When set to value N, it prevents the working set of N milliseconds from getting evicted. The OOM killer is triggered if this working set cannot be kept in memory. Based on the average human detectable lag (~100ms), N=1000 usually eliminates intolerable lags due to thrashing. Larger values like N=3000 make lags less noticeable at the risk of premature OOM kills. Compared with the size-based approach [2], this time-based approach has the following advantages: 1. It is easier to configure because it is agnostic to applications and memory sizes. 2. It is more reliable because it is directly wired to the OOM killer. [1] https://lore.kernel.org/r/Ydza%2FzXKY9ATRoh6@google.com/ [2] https://lore.kernel.org/r/20101028191523.GA14972@google.com/ Link: https://lkml.kernel.org/r/20220918080010.2920238-12-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Barry Song <baohua@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
354ed59744 |
mm: multi-gen LRU: kill switch
Add /sys/kernel/mm/lru_gen/enabled as a kill switch. Components that can be disabled include: 0x0001: the multi-gen LRU core 0x0002: walking page table, when arch_has_hw_pte_young() returns true 0x0004: clearing the accessed bit in non-leaf PMD entries, when CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG=y [yYnN]: apply to all the components above E.g., echo y >/sys/kernel/mm/lru_gen/enabled cat /sys/kernel/mm/lru_gen/enabled 0x0007 echo 5 >/sys/kernel/mm/lru_gen/enabled cat /sys/kernel/mm/lru_gen/enabled 0x0005 NB: the page table walks happen on the scale of seconds under heavy memory pressure, in which case the mmap_lock contention is a lesser concern, compared with the LRU lock contention and the I/O congestion. So far the only well-known case of the mmap_lock contention happens on Android, due to Scudo [1] which allocates several thousand VMAs for merely a few hundred MBs. The SPF and the Maple Tree also have provided their own assessments [2][3]. However, if walking page tables does worsen the mmap_lock contention, the kill switch can be used to disable it. In this case the multi-gen LRU will suffer a minor performance degradation, as shown previously. Clearing the accessed bit in non-leaf PMD entries can also be disabled, since this behavior was not tested on x86 varieties other than Intel and AMD. [1] https://source.android.com/devices/tech/debug/scudo [2] https://lore.kernel.org/r/20220128131006.67712-1-michel@lespinasse.org/ [3] https://lore.kernel.org/r/20220426150616.3937571-1-Liam.Howlett@oracle.com/ Link: https://lkml.kernel.org/r/20220918080010.2920238-11-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Barry Song <baohua@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
f76c833788 |
mm: multi-gen LRU: optimize multiple memcgs
When multiple memcgs are available, it is possible to use generations as a frame of reference to make better choices and improve overall performance under global memory pressure. This patch adds a basic optimization to select memcgs that can drop single-use unmapped clean pages first. Doing so reduces the chance of going into the aging path or swapping, which can be costly. A typical example that benefits from this optimization is a server running mixed types of workloads, e.g., heavy anon workload in one memcg and heavy buffered I/O workload in the other. Though this optimization can be applied to both kswapd and direct reclaim, it is only added to kswapd to keep the patchset manageable. Later improvements may cover the direct reclaim path. While ensuring certain fairness to all eligible memcgs, proportional scans of individual memcgs also require proper backoff to avoid overshooting their aggregate reclaim target by too much. Otherwise it can cause high direct reclaim latency. The conditions for backoff are: 1. At low priorities, for direct reclaim, if aging fairness or direct reclaim latency is at risk, i.e., aging one memcg multiple times or swapping after the target is met. 2. At high priorities, for global reclaim, if per-zone free pages are above respective watermarks. Server benchmark results: Mixed workloads: fio (buffered I/O): +[19, 21]% IOPS BW patch1-8: 1880k 7343MiB/s patch1-9: 2252k 8796MiB/s memcached (anon): +[119, 123]% Ops/sec KB/sec patch1-8: 862768.65 33514.68 patch1-9: 1911022.12 74234.54 Mixed workloads: fio (buffered I/O): +[75, 77]% IOPS BW 5.19-rc1: 1279k 4996MiB/s patch1-9: 2252k 8796MiB/s memcached (anon): +[13, 15]% Ops/sec KB/sec 5.19-rc1: 1673524.04 65008.87 patch1-9: 1911022.12 74234.54 Configurations: (changes since patch 6) cat mixed.sh modprobe brd rd_nr=2 rd_size=56623104 swapoff -a mkswap /dev/ram0 swapon /dev/ram0 mkfs.ext4 /dev/ram1 mount -t ext4 /dev/ram1 /mnt memtier_benchmark -S /var/run/memcached/memcached.sock \ -P memcache_binary -n allkeys --key-minimum=1 \ --key-maximum=50000000 --key-pattern=P:P -c 1 -t 36 \ --ratio 1:0 --pipeline 8 -d 2000 fio -name=mglru --numjobs=36 --directory=/mnt --size=1408m \ --buffered=1 --ioengine=io_uring --iodepth=128 \ --iodepth_batch_submit=32 --iodepth_batch_complete=32 \ --rw=randread --random_distribution=random --norandommap \ --time_based --ramp_time=10m --runtime=90m --group_reporting & pid=$! sleep 200 memtier_benchmark -S /var/run/memcached/memcached.sock \ -P memcache_binary -n allkeys --key-minimum=1 \ --key-maximum=50000000 --key-pattern=R:R -c 1 -t 36 \ --ratio 0:1 --pipeline 8 --randomize --distinct-client-seed kill -INT $pid wait Client benchmark results: no change (CONFIG_MEMCG=n) Link: https://lkml.kernel.org/r/20220918080010.2920238-10-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Barry Song <baohua@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
bd74fdaea1 |
mm: multi-gen LRU: support page table walks
To further exploit spatial locality, the aging prefers to walk page tables to search for young PTEs and promote hot pages. A kill switch will be added in the next patch to disable this behavior. When disabled, the aging relies on the rmap only. NB: this behavior has nothing similar with the page table scanning in the 2.4 kernel [1], which searches page tables for old PTEs, adds cold pages to swapcache and unmaps them. To avoid confusion, the term "iteration" specifically means the traversal of an entire mm_struct list; the term "walk" will be applied to page tables and the rmap, as usual. An mm_struct list is maintained for each memcg, and an mm_struct follows its owner task to the new memcg when this task is migrated. Given an lruvec, the aging iterates lruvec_memcg()->mm_list and calls walk_page_range() with each mm_struct on this list to promote hot pages before it increments max_seq. When multiple page table walkers iterate the same list, each of them gets a unique mm_struct; therefore they can run concurrently. Page table walkers ignore any misplaced pages, e.g., if an mm_struct was migrated, pages it left in the previous memcg will not be promoted when its current memcg is under reclaim. Similarly, page table walkers will not promote pages from nodes other than the one under reclaim. This patch uses the following optimizations when walking page tables: 1. It tracks the usage of mm_struct's between context switches so that page table walkers can skip processes that have been sleeping since the last iteration. 2. It uses generational Bloom filters to record populated branches so that page table walkers can reduce their search space based on the query results, e.g., to skip page tables containing mostly holes or misplaced pages. 3. It takes advantage of the accessed bit in non-leaf PMD entries when CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG=y. 4. It does not zigzag between a PGD table and the same PMD table spanning multiple VMAs. IOW, it finishes all the VMAs within the range of the same PMD table before it returns to a PGD table. This improves the cache performance for workloads that have large numbers of tiny VMAs [2], especially when CONFIG_PGTABLE_LEVELS=5. Server benchmark results: Single workload: fio (buffered I/O): no change Single workload: memcached (anon): +[8, 10]% Ops/sec KB/sec patch1-7: 1147696.57 44640.29 patch1-8: 1245274.91 48435.66 Configurations: no change Client benchmark results: kswapd profiles: patch1-7 48.16% lzo1x_1_do_compress (real work) 8.20% page_vma_mapped_walk (overhead) 7.06% _raw_spin_unlock_irq 2.92% ptep_clear_flush 2.53% __zram_bvec_write 2.11% do_raw_spin_lock 2.02% memmove 1.93% lru_gen_look_around 1.56% free_unref_page_list 1.40% memset patch1-8 49.44% lzo1x_1_do_compress (real work) 6.19% page_vma_mapped_walk (overhead) 5.97% _raw_spin_unlock_irq 3.13% get_pfn_folio 2.85% ptep_clear_flush 2.42% __zram_bvec_write 2.08% do_raw_spin_lock 1.92% memmove 1.44% alloc_zspage 1.36% memset Configurations: no change Thanks to the following developers for their efforts [3]. kernel test robot <lkp@intel.com> [1] https://lwn.net/Articles/23732/ [2] https://llvm.org/docs/ScudoHardenedAllocator.html [3] https://lore.kernel.org/r/202204160827.ekEARWQo-lkp@intel.com/ Link: https://lkml.kernel.org/r/20220918080010.2920238-9-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Barry Song <baohua@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
018ee47f14 |
mm: multi-gen LRU: exploit locality in rmap
Searching the rmap for PTEs mapping each page on an LRU list (to test and clear the accessed bit) can be expensive because pages from different VMAs (PA space) are not cache friendly to the rmap (VA space). For workloads mostly using mapped pages, searching the rmap can incur the highest CPU cost in the reclaim path. This patch exploits spatial locality to reduce the trips into the rmap. When shrink_page_list() walks the rmap and finds a young PTE, a new function lru_gen_look_around() scans at most BITS_PER_LONG-1 adjacent PTEs. On finding another young PTE, it clears the accessed bit and updates the gen counter of the page mapped by this PTE to (max_seq%MAX_NR_GENS)+1. Server benchmark results: Single workload: fio (buffered I/O): no change Single workload: memcached (anon): +[3, 5]% Ops/sec KB/sec patch1-6: 1106168.46 43025.04 patch1-7: 1147696.57 44640.29 Configurations: no change Client benchmark results: kswapd profiles: patch1-6 39.03% lzo1x_1_do_compress (real work) 18.47% page_vma_mapped_walk (overhead) 6.74% _raw_spin_unlock_irq 3.97% do_raw_spin_lock 2.49% ptep_clear_flush 2.48% anon_vma_interval_tree_iter_first 1.92% folio_referenced_one 1.88% __zram_bvec_write 1.48% memmove 1.31% vma_interval_tree_iter_next patch1-7 48.16% lzo1x_1_do_compress (real work) 8.20% page_vma_mapped_walk (overhead) 7.06% _raw_spin_unlock_irq 2.92% ptep_clear_flush 2.53% __zram_bvec_write 2.11% do_raw_spin_lock 2.02% memmove 1.93% lru_gen_look_around 1.56% free_unref_page_list 1.40% memset Configurations: no change Link: https://lkml.kernel.org/r/20220918080010.2920238-8-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Acked-by: Barry Song <baohua@kernel.org> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
ac35a49023 |
mm: multi-gen LRU: minimal implementation
To avoid confusion, the terms "promotion" and "demotion" will be applied to the multi-gen LRU, as a new convention; the terms "activation" and "deactivation" will be applied to the active/inactive LRU, as usual. The aging produces young generations. Given an lruvec, it increments max_seq when max_seq-min_seq+1 approaches MIN_NR_GENS. The aging promotes hot pages to the youngest generation when it finds them accessed through page tables; the demotion of cold pages happens consequently when it increments max_seq. Promotion in the aging path does not involve any LRU list operations, only the updates of the gen counter and lrugen->nr_pages[]; demotion, unless as the result of the increment of max_seq, requires LRU list operations, e.g., lru_deactivate_fn(). The aging has the complexity O(nr_hot_pages), since it is only interested in hot pages. The eviction consumes old generations. Given an lruvec, it increments min_seq when lrugen->lists[] indexed by min_seq%MAX_NR_GENS becomes empty. A feedback loop modeled after the PID controller monitors refaults over anon and file types and decides which type to evict when both types are available from the same generation. The protection of pages accessed multiple times through file descriptors takes place in the eviction path. Each generation is divided into multiple tiers. A page accessed N times through file descriptors is in tier order_base_2(N). Tiers do not have dedicated lrugen->lists[], only bits in folio->flags. The aforementioned feedback loop also monitors refaults over all tiers and decides when to protect pages in which tiers (N>1), using the first tier (N=0,1) as a baseline. The first tier contains single-use unmapped clean pages, which are most likely the best choices. In contrast to promotion in the aging path, the protection of a page in the eviction path is achieved by moving this page to the next generation, i.e., min_seq+1, if the feedback loop decides so. This approach has the following advantages: 1. It removes the cost of activation in the buffered access path by inferring whether pages accessed multiple times through file descriptors are statistically hot and thus worth protecting in the eviction path. 2. It takes pages accessed through page tables into account and avoids overprotecting pages accessed multiple times through file descriptors. (Pages accessed through page tables are in the first tier, since N=0.) 3. More tiers provide better protection for pages accessed more than twice through file descriptors, when under heavy buffered I/O workloads. Server benchmark results: Single workload: fio (buffered I/O): +[30, 32]% IOPS BW 5.19-rc1: 2673k 10.2GiB/s patch1-6: 3491k 13.3GiB/s Single workload: memcached (anon): -[4, 6]% Ops/sec KB/sec 5.19-rc1: 1161501.04 45177.25 patch1-6: 1106168.46 43025.04 Configurations: CPU: two Xeon 6154 Mem: total 256G Node 1 was only used as a ram disk to reduce the variance in the results. patch drivers/block/brd.c <<EOF 99,100c99,100 < gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM; < page = alloc_page(gfp_flags); --- > gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM | __GFP_THISNODE; > page = alloc_pages_node(1, gfp_flags, 0); EOF cat >>/etc/systemd/system.conf <<EOF CPUAffinity=numa NUMAPolicy=bind NUMAMask=0 EOF cat >>/etc/memcached.conf <<EOF -m 184320 -s /var/run/memcached/memcached.sock -a 0766 -t 36 -B binary EOF cat fio.sh modprobe brd rd_nr=1 rd_size=113246208 swapoff -a mkfs.ext4 /dev/ram0 mount -t ext4 /dev/ram0 /mnt mkdir /sys/fs/cgroup/user.slice/test echo 38654705664 >/sys/fs/cgroup/user.slice/test/memory.max echo $$ >/sys/fs/cgroup/user.slice/test/cgroup.procs fio -name=mglru --numjobs=72 --directory=/mnt --size=1408m \ --buffered=1 --ioengine=io_uring --iodepth=128 \ --iodepth_batch_submit=32 --iodepth_batch_complete=32 \ --rw=randread --random_distribution=random --norandommap \ --time_based --ramp_time=10m --runtime=5m --group_reporting cat memcached.sh modprobe brd rd_nr=1 rd_size=113246208 swapoff -a mkswap /dev/ram0 swapon /dev/ram0 memtier_benchmark -S /var/run/memcached/memcached.sock \ -P memcache_binary -n allkeys --key-minimum=1 \ --key-maximum=65000000 --key-pattern=P:P -c 1 -t 36 \ --ratio 1:0 --pipeline 8 -d 2000 memtier_benchmark -S /var/run/memcached/memcached.sock \ -P memcache_binary -n allkeys --key-minimum=1 \ --key-maximum=65000000 --key-pattern=R:R -c 1 -t 36 \ --ratio 0:1 --pipeline 8 --randomize --distinct-client-seed Client benchmark results: kswapd profiles: 5.19-rc1 40.33% page_vma_mapped_walk (overhead) 21.80% lzo1x_1_do_compress (real work) 7.53% do_raw_spin_lock 3.95% _raw_spin_unlock_irq 2.52% vma_interval_tree_iter_next 2.37% folio_referenced_one 2.28% vma_interval_tree_subtree_search 1.97% anon_vma_interval_tree_iter_first 1.60% ptep_clear_flush 1.06% __zram_bvec_write patch1-6 39.03% lzo1x_1_do_compress (real work) 18.47% page_vma_mapped_walk (overhead) 6.74% _raw_spin_unlock_irq 3.97% do_raw_spin_lock 2.49% ptep_clear_flush 2.48% anon_vma_interval_tree_iter_first 1.92% folio_referenced_one 1.88% __zram_bvec_write 1.48% memmove 1.31% vma_interval_tree_iter_next Configurations: CPU: single Snapdragon 7c Mem: total 4G ChromeOS MemoryPressure [1] [1] https://chromium.googlesource.com/chromiumos/platform/tast-tests/ Link: https://lkml.kernel.org/r/20220918080010.2920238-7-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Barry Song <baohua@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
ec1c86b25f |
mm: multi-gen LRU: groundwork
Evictable pages are divided into multiple generations for each lruvec. The youngest generation number is stored in lrugen->max_seq for both anon and file types as they are aged on an equal footing. The oldest generation numbers are stored in lrugen->min_seq[] separately for anon and file types as clean file pages can be evicted regardless of swap constraints. These three variables are monotonically increasing. Generation numbers are truncated into order_base_2(MAX_NR_GENS+1) bits in order to fit into the gen counter in folio->flags. Each truncated generation number is an index to lrugen->lists[]. The sliding window technique is used to track at least MIN_NR_GENS and at most MAX_NR_GENS generations. The gen counter stores a value within [1, MAX_NR_GENS] while a page is on one of lrugen->lists[]. Otherwise it stores 0. There are two conceptually independent procedures: "the aging", which produces young generations, and "the eviction", which consumes old generations. They form a closed-loop system, i.e., "the page reclaim". Both procedures can be invoked from userspace for the purposes of working set estimation and proactive reclaim. These techniques are commonly used to optimize job scheduling (bin packing) in data centers [1][2]. To avoid confusion, the terms "hot" and "cold" will be applied to the multi-gen LRU, as a new convention; the terms "active" and "inactive" will be applied to the active/inactive LRU, as usual. The protection of hot pages and the selection of cold pages are based on page access channels and patterns. There are two access channels: one through page tables and the other through file descriptors. The protection of the former channel is by design stronger because: 1. The uncertainty in determining the access patterns of the former channel is higher due to the approximation of the accessed bit. 2. The cost of evicting the former channel is higher due to the TLB flushes required and the likelihood of encountering the dirty bit. 3. The penalty of underprotecting the former channel is higher because applications usually do not prepare themselves for major page faults like they do for blocked I/O. E.g., GUI applications commonly use dedicated I/O threads to avoid blocking rendering threads. There are also two access patterns: one with temporal locality and the other without. For the reasons listed above, the former channel is assumed to follow the former pattern unless VM_SEQ_READ or VM_RAND_READ is present; the latter channel is assumed to follow the latter pattern unless outlying refaults have been observed [3][4]. The next patch will address the "outlying refaults". Three macros, i.e., LRU_REFS_WIDTH, LRU_REFS_PGOFF and LRU_REFS_MASK, used later are added in this patch to make the entire patchset less diffy. A page is added to the youngest generation on faulting. The aging needs to check the accessed bit at least twice before handing this page over to the eviction. The first check takes care of the accessed bit set on the initial fault; the second check makes sure this page has not been used since then. This protocol, AKA second chance, requires a minimum of two generations, hence MIN_NR_GENS. [1] https://dl.acm.org/doi/10.1145/3297858.3304053 [2] https://dl.acm.org/doi/10.1145/3503222.3507731 [3] https://lwn.net/Articles/495543/ [4] https://lwn.net/Articles/815342/ Link: https://lkml.kernel.org/r/20220918080010.2920238-6-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Barry Song <baohua@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
f1e1a7be47 |
mm/vmscan.c: refactor shrink_node()
This patch refactors shrink_node() to improve readability for the upcoming changes to mm/vmscan.c. Link: https://lkml.kernel.org/r/20220918080010.2920238-4-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Reviewed-by: Barry Song <baohua@kernel.org> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Andrew Morton
|
6d751329e7 | Merge branch 'mm-hotfixes-stable' into mm-stable | ||
Kefeng Wang
|
b4a0215e11 |
mm: fix null-ptr-deref in kswapd_is_running()
kswapd_run/stop() will set pgdat->kswapd to NULL, which could race with kswapd_is_running() in kcompactd(), kswapd_run/stop() kcompactd() kswapd_is_running() pgdat->kswapd // error or nomal ptr verify pgdat->kswapd // load non-NULL pgdat->kswapd pgdat->kswapd = NULL task_is_running(pgdat->kswapd) // Null pointer derefence KASAN reports the null-ptr-deref shown below, vmscan: Failed to start kswapd on node 0 ... BUG: KASAN: null-ptr-deref in kcompactd+0x440/0x504 Read of size 8 at addr 0000000000000024 by task kcompactd0/37 CPU: 0 PID: 37 Comm: kcompactd0 Kdump: loaded Tainted: G OE 5.10.60 #1 Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015 Call trace: dump_backtrace+0x0/0x394 show_stack+0x34/0x4c dump_stack+0x158/0x1e4 __kasan_report+0x138/0x140 kasan_report+0x44/0xdc __asan_load8+0x94/0xd0 kcompactd+0x440/0x504 kthread+0x1a4/0x1f0 ret_from_fork+0x10/0x18 At present kswapd/kcompactd_run() and kswapd/kcompactd_stop() are protected by mem_hotplug_begin/done(), but without kcompactd(). There is no need to involve memory hotplug lock in kcompactd(), so let's add a new mutex to protect pgdat->kswapd accesses. Also, because the kcompactd task will check the state of kswapd task, it's better to call kcompactd_stop() before kswapd_stop() to reduce lock conflicts. [akpm@linux-foundation.org: add comments] Link: https://lkml.kernel.org/r/20220827111959.186838-1-wangkefeng.wang@huawei.com Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: David Hildenbrand <david@redhat.com> Cc: Muchun Song <muchun.song@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yang Yang
|
d3629af59f |
mm/vmscan: make the annotations of refaults code at the right place
After patch "mm/workingset: prepare the workingset detection
infrastructure for anon LRU", we can handle the refaults of anonymous
pages too. So the annotations of refaults should cover both of anonymous
pages and file pages.
Link: https://lkml.kernel.org/r/20220813080757.59131-1-yang.yang29@zte.com.cn
Fixes:
|
||
Yang Yang
|
e9c2dbc8bf |
mm/vmscan: define macros for refaults in struct lruvec
The magic number 0 and 1 are used in several places in vmscan.c. Define macros for them to improve code readability. Link: https://lkml.kernel.org/r/20220808005644.1721066-1-yang.yang29@zte.com.cn Signed-off-by: Yang Yang <yang.yang29@zte.com.cn> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
36a3b14b5f |
vmscan: check folio_test_private(), not folio_get_private()
These two predicates are the same for file pages, but are not the same for
anonymous pages.
Link: https://lkml.kernel.org/r/20220902192639.1737108-3-willy@infradead.org
Fixes:
|