Now that ext4 and f2fs implement their own post-read workflow that
supports both fscrypt and fsverity, the fscrypt-only workflow based
around struct fscrypt_ctx is no longer used. So remove the unused code.
This is based on a patch from Chandan Rajendra's "Consolidate FS read
I/O callbacks code" patchset, but rebased onto the latest kernel, folded
__fscrypt_decrypt_bio() into fscrypt_decrypt_bio(), cleaned up
fscrypt_initialize(), and updated the commit message.
Originally-from: Chandan Rajendra <chandan@linux.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Instead of open-coding the calculations for ESSIV handling, use an ESSIV
skcipher which does all of this under the hood. ESSIV was added to the
crypto API in v5.4.
This is based on a patch from Ard Biesheuvel, but reworked to apply
after all the fscrypt changes that went into v5.4.
Tested with 'kvm-xfstests -c ext4,f2fs -g encrypt', including the
ciphertext verification tests for v1 and v2 encryption policies.
Originally-from: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
By looking up the master keys in a filesystem-level keyring rather than
in the calling processes' key hierarchy, it becomes possible for a user
to set an encryption policy which refers to some key they don't actually
know, then encrypt their files using that key. Cryptographically this
isn't much of a problem, but the semantics of this would be a bit weird.
Thus, enforce that a v2 encryption policy can only be set if the user
has previously added the key, or has capable(CAP_FOWNER).
We tolerate that this problem will continue to exist for v1 encryption
policies, however; there is no way around that.
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Add a root-only variant of the FS_IOC_REMOVE_ENCRYPTION_KEY ioctl which
removes all users' claims of the key, not just the current user's claim.
I.e., it always removes the key itself, no matter how many users have
added it.
This is useful for forcing a directory to be locked, without having to
figure out which user ID(s) the key was added under. This is planned to
be used by a command like 'sudo fscrypt lock DIR --all-users' in the
fscrypt userspace tool (http://github.com/google/fscrypt).
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Allow the FS_IOC_ADD_ENCRYPTION_KEY and FS_IOC_REMOVE_ENCRYPTION_KEY
ioctls to be used by non-root users to add and remove encryption keys
from the filesystem-level crypto keyrings, subject to limitations.
Motivation: while privileged fscrypt key management is sufficient for
some users (e.g. Android and Chromium OS, where a privileged process
manages all keys), the old API by design also allows non-root users to
set up and use encrypted directories, and we don't want to regress on
that. Especially, we don't want to force users to continue using the
old API, running into the visibility mismatch between files and keyrings
and being unable to "lock" encrypted directories.
Intuitively, the ioctls have to be privileged since they manipulate
filesystem-level state. However, it's actually safe to make them
unprivileged if we very carefully enforce some specific limitations.
First, each key must be identified by a cryptographic hash so that a
user can't add the wrong key for another user's files. For v2
encryption policies, we use the key_identifier for this. v1 policies
don't have this, so managing keys for them remains privileged.
Second, each key a user adds is charged to their quota for the keyrings
service. Thus, a user can't exhaust memory by adding a huge number of
keys. By default each non-root user is allowed up to 200 keys; this can
be changed using the existing sysctl 'kernel.keys.maxkeys'.
Third, if multiple users add the same key, we keep track of those users
of the key (of which there remains a single copy), and won't really
remove the key, i.e. "lock" the encrypted files, until all those users
have removed it. This prevents denial of service attacks that would be
possible under simpler schemes, such allowing the first user who added a
key to remove it -- since that could be a malicious user who has
compromised the key. Of course, encryption keys should be kept secret,
but the idea is that using encryption should never be *less* secure than
not using encryption, even if your key was compromised.
We tolerate that a user will be unable to really remove a key, i.e.
unable to "lock" their encrypted files, if another user has added the
same key. But in a sense, this is actually a good thing because it will
avoid providing a false notion of security where a key appears to have
been removed when actually it's still in memory, available to any
attacker who compromises the operating system kernel.
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Add a new fscrypt policy version, "v2". It has the following changes
from the original policy version, which we call "v1" (*):
- Master keys (the user-provided encryption keys) are only ever used as
input to HKDF-SHA512. This is more flexible and less error-prone, and
it avoids the quirks and limitations of the AES-128-ECB based KDF.
Three classes of cryptographically isolated subkeys are defined:
- Per-file keys, like used in v1 policies except for the new KDF.
- Per-mode keys. These implement the semantics of the DIRECT_KEY
flag, which for v1 policies made the master key be used directly.
These are also planned to be used for inline encryption when
support for it is added.
- Key identifiers (see below).
- Each master key is identified by a 16-byte master_key_identifier,
which is derived from the key itself using HKDF-SHA512. This prevents
users from associating the wrong key with an encrypted file or
directory. This was easily possible with v1 policies, which
identified the key by an arbitrary 8-byte master_key_descriptor.
- The key must be provided in the filesystem-level keyring, not in a
process-subscribed keyring.
The following UAPI additions are made:
- The existing ioctl FS_IOC_SET_ENCRYPTION_POLICY can now be passed a
fscrypt_policy_v2 to set a v2 encryption policy. It's disambiguated
from fscrypt_policy/fscrypt_policy_v1 by the version code prefix.
- A new ioctl FS_IOC_GET_ENCRYPTION_POLICY_EX is added. It allows
getting the v1 or v2 encryption policy of an encrypted file or
directory. The existing FS_IOC_GET_ENCRYPTION_POLICY ioctl could not
be used because it did not have a way for userspace to indicate which
policy structure is expected. The new ioctl includes a size field, so
it is extensible to future fscrypt policy versions.
- The ioctls FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY,
and FS_IOC_GET_ENCRYPTION_KEY_STATUS now support managing keys for v2
encryption policies. Such keys are kept logically separate from keys
for v1 encryption policies, and are identified by 'identifier' rather
than by 'descriptor'. The 'identifier' need not be provided when
adding a key, since the kernel will calculate it anyway.
This patch temporarily keeps adding/removing v2 policy keys behind the
same permission check done for adding/removing v1 policy keys:
capable(CAP_SYS_ADMIN). However, the next patch will carefully take
advantage of the cryptographically secure master_key_identifier to allow
non-root users to add/remove v2 policy keys, thus providing a full
replacement for v1 policies.
(*) Actually, in the API fscrypt_policy::version is 0 while on-disk
fscrypt_context::format is 1. But I believe it makes the most sense
to advance both to '2' to have them be in sync, and to consider the
numbering to start at 1 except for the API quirk.
Reviewed-by: Paul Crowley <paulcrowley@google.com>
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Add an implementation of HKDF (RFC 5869) to fscrypt, for the purpose of
deriving additional key material from the fscrypt master keys for v2
encryption policies. HKDF is a key derivation function built on top of
HMAC. We choose SHA-512 for the underlying unkeyed hash, and use an
"hmac(sha512)" transform allocated from the crypto API.
We'll be using this to replace the AES-ECB based KDF currently used to
derive the per-file encryption keys. While the AES-ECB based KDF is
believed to meet the original security requirements, it is nonstandard
and has problems that don't exist in modern KDFs such as HKDF:
1. It's reversible. Given a derived key and nonce, an attacker can
easily compute the master key. This is okay if the master key and
derived keys are equally hard to compromise, but now we'd like to be
more robust against threats such as a derived key being compromised
through a timing attack, or a derived key for an in-use file being
compromised after the master key has already been removed.
2. It doesn't evenly distribute the entropy from the master key; each 16
input bytes only affects the corresponding 16 output bytes.
3. It isn't easily extensible to deriving other values or keys, such as
a public hash for securely identifying the key, or per-mode keys.
Per-mode keys will be immediately useful for Adiantum encryption, for
which fscrypt currently uses the master key directly, introducing
unnecessary usage constraints. Per-mode keys will also be useful for
hardware inline encryption, which is currently being worked on.
HKDF solves all the above problems.
Reviewed-by: Paul Crowley <paulcrowley@google.com>
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Add a new fscrypt ioctl, FS_IOC_GET_ENCRYPTION_KEY_STATUS. Given a key
specified by 'struct fscrypt_key_specifier' (the same way a key is
specified for the other fscrypt key management ioctls), it returns
status information in a 'struct fscrypt_get_key_status_arg'.
The main motivation for this is that applications need to be able to
check whether an encrypted directory is "unlocked" or not, so that they
can add the key if it is not, and avoid adding the key (which may
involve prompting the user for a passphrase) if it already is.
It's possible to use some workarounds such as checking whether opening a
regular file fails with ENOKEY, or checking whether the filenames "look
like gibberish" or not. However, no workaround is usable in all cases.
Like the other key management ioctls, the keyrings syscalls may seem at
first to be a good fit for this. Unfortunately, they are not. Even if
we exposed the keyring ID of the ->s_master_keys keyring and gave
everyone Search permission on it (note: currently the keyrings
permission system would also allow everyone to "invalidate" the keyring
too), the fscrypt keys have an additional state that doesn't map cleanly
to the keyrings API: the secret can be removed, but we can be still
tracking the files that were using the key, and the removal can be
re-attempted or the secret added again.
After later patches, some applications will also need a way to determine
whether a key was added by the current user vs. by some other user.
Reserved fields are included in fscrypt_get_key_status_arg for this and
other future extensions.
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Add a new fscrypt ioctl, FS_IOC_REMOVE_ENCRYPTION_KEY. This ioctl
removes an encryption key that was added by FS_IOC_ADD_ENCRYPTION_KEY.
It wipes the secret key itself, then "locks" the encrypted files and
directories that had been unlocked using that key -- implemented by
evicting the relevant dentries and inodes from the VFS caches.
The problem this solves is that many fscrypt users want the ability to
remove encryption keys, causing the corresponding encrypted directories
to appear "locked" (presented in ciphertext form) again. Moreover,
users want removing an encryption key to *really* remove it, in the
sense that the removed keys cannot be recovered even if kernel memory is
compromised, e.g. by the exploit of a kernel security vulnerability or
by a physical attack. This is desirable after a user logs out of the
system, for example. In many cases users even already assume this to be
the case and are surprised to hear when it's not.
It is not sufficient to simply unlink the master key from the keyring
(or to revoke or invalidate it), since the actual encryption transform
objects are still pinned in memory by their inodes. Therefore, to
really remove a key we must also evict the relevant inodes.
Currently one workaround is to run 'sync && echo 2 >
/proc/sys/vm/drop_caches'. But, that evicts all unused inodes in the
system rather than just the inodes associated with the key being
removed, causing severe performance problems. Moreover, it requires
root privileges, so regular users can't "lock" their encrypted files.
Another workaround, used in Chromium OS kernels, is to add a new
VFS-level ioctl FS_IOC_DROP_CACHE which is a more restricted version of
drop_caches that operates on a single super_block. It does:
shrink_dcache_sb(sb);
invalidate_inodes(sb, false);
But it's still a hack. Yet, the major users of filesystem encryption
want this feature badly enough that they are actually using these hacks.
To properly solve the problem, start maintaining a list of the inodes
which have been "unlocked" using each master key. Originally this
wasn't possible because the kernel didn't keep track of in-use master
keys at all. But, with the ->s_master_keys keyring it is now possible.
Then, add an ioctl FS_IOC_REMOVE_ENCRYPTION_KEY. It finds the specified
master key in ->s_master_keys, then wipes the secret key itself, which
prevents any additional inodes from being unlocked with the key. Then,
it syncs the filesystem and evicts the inodes in the key's list. The
normal inode eviction code will free and wipe the per-file keys (in
->i_crypt_info). Note that freeing ->i_crypt_info without evicting the
inodes was also considered, but would have been racy.
Some inodes may still be in use when a master key is removed, and we
can't simply revoke random file descriptors, mmap's, etc. Thus, the
ioctl simply skips in-use inodes, and returns -EBUSY to indicate that
some inodes weren't evicted. The master key *secret* is still removed,
but the fscrypt_master_key struct remains to keep track of the remaining
inodes. Userspace can then retry the ioctl to evict the remaining
inodes. Alternatively, if userspace adds the key again, the refreshed
secret will be associated with the existing list of inodes so they
remain correctly tracked for future key removals.
The ioctl doesn't wipe pagecache pages. Thus, we tolerate that after a
kernel compromise some portions of plaintext file contents may still be
recoverable from memory. This can be solved by enabling page poisoning
system-wide, which security conscious users may choose to do. But it's
very difficult to solve otherwise, e.g. note that plaintext file
contents may have been read in other places than pagecache pages.
Like FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY is
initially restricted to privileged users only. This is sufficient for
some use cases, but not all. A later patch will relax this restriction,
but it will require introducing key hashes, among other changes.
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Add a new fscrypt ioctl, FS_IOC_ADD_ENCRYPTION_KEY. This ioctl adds an
encryption key to the filesystem's fscrypt keyring ->s_master_keys,
making any files encrypted with that key appear "unlocked".
Why we need this
~~~~~~~~~~~~~~~~
The main problem is that the "locked/unlocked" (ciphertext/plaintext)
status of encrypted files is global, but the fscrypt keys are not.
fscrypt only looks for keys in the keyring(s) the process accessing the
filesystem is subscribed to: the thread keyring, process keyring, and
session keyring, where the session keyring may contain the user keyring.
Therefore, userspace has to put fscrypt keys in the keyrings for
individual users or sessions. But this means that when a process with a
different keyring tries to access encrypted files, whether they appear
"unlocked" or not is nondeterministic. This is because it depends on
whether the files are currently present in the inode cache.
Fixing this by consistently providing each process its own view of the
filesystem depending on whether it has the key or not isn't feasible due
to how the VFS caches work. Furthermore, while sometimes users expect
this behavior, it is misguided for two reasons. First, it would be an
OS-level access control mechanism largely redundant with existing access
control mechanisms such as UNIX file permissions, ACLs, LSMs, etc.
Encryption is actually for protecting the data at rest.
Second, almost all users of fscrypt actually do need the keys to be
global. The largest users of fscrypt, Android and Chromium OS, achieve
this by having PID 1 create a "session keyring" that is inherited by
every process. This works, but it isn't scalable because it prevents
session keyrings from being used for any other purpose.
On general-purpose Linux distros, the 'fscrypt' userspace tool [1] can't
similarly abuse the session keyring, so to make 'sudo' work on all
systems it has to link all the user keyrings into root's user keyring
[2]. This is ugly and raises security concerns. Moreover it can't make
the keys available to system services, such as sshd trying to access the
user's '~/.ssh' directory (see [3], [4]) or NetworkManager trying to
read certificates from the user's home directory (see [5]); or to Docker
containers (see [6], [7]).
By having an API to add a key to the *filesystem* we'll be able to fix
the above bugs, remove userspace workarounds, and clearly express the
intended semantics: the locked/unlocked status of an encrypted directory
is global, and encryption is orthogonal to OS-level access control.
Why not use the add_key() syscall
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We use an ioctl for this API rather than the existing add_key() system
call because the ioctl gives us the flexibility needed to implement
fscrypt-specific semantics that will be introduced in later patches:
- Supporting key removal with the semantics such that the secret is
removed immediately and any unused inodes using the key are evicted;
also, the eviction of any in-use inodes can be retried.
- Calculating a key-dependent cryptographic identifier and returning it
to userspace.
- Allowing keys to be added and removed by non-root users, but only keys
for v2 encryption policies; and to prevent denial-of-service attacks,
users can only remove keys they themselves have added, and a key is
only really removed after all users who added it have removed it.
Trying to shoehorn these semantics into the keyrings syscalls would be
very difficult, whereas the ioctls make things much easier.
However, to reuse code the implementation still uses the keyrings
service internally. Thus we get lockless RCU-mode key lookups without
having to re-implement it, and the keys automatically show up in
/proc/keys for debugging purposes.
References:
[1] https://github.com/google/fscrypt
[2] https://goo.gl/55cCrI#heading=h.vf09isp98isb
[3] https://github.com/google/fscrypt/issues/111#issuecomment-444347939
[4] https://github.com/google/fscrypt/issues/116
[5] https://bugs.launchpad.net/ubuntu/+source/fscrypt/+bug/1770715
[6] https://github.com/google/fscrypt/issues/128
[7] https://askubuntu.com/questions/1130306/cannot-run-docker-on-an-encrypted-filesystem
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Rename keyinfo.c to keysetup.c since this better describes what the file
does (sets up the key), and it matches the new file keysetup_v1.c.
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
In preparation for introducing v2 encryption policies which will find
and derive encryption keys differently from the current v1 encryption
policies, move the v1 policy-specific key setup code from keyinfo.c into
keysetup_v1.c.
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Do some more refactoring of the key setup code, in preparation for
introducing a filesystem-level keyring and v2 encryption policies:
- Now that ci_inode exists, don't pass around the inode unnecessarily.
- Define a function setup_file_encryption_key() which handles the crypto
key setup given an under-construction fscrypt_info. Don't pass the
fscrypt_context, since everything is in the fscrypt_info.
[This will be extended for v2 policies and the fs-level keyring.]
- Define a function fscrypt_set_derived_key() which sets the per-file
key, without depending on anything specific to v1 policies.
[This will also be used for v2 policies.]
- Define a function fscrypt_setup_v1_file_key() which takes the raw
master key, thus separating finding the key from using it.
[This will also be used if the key is found in the fs-level keyring.]
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
In preparation for introducing a filesystem-level keyring which will
contain fscrypt master keys, rename the existing 'struct
fscrypt_master_key' to 'struct fscrypt_direct_key'. This is the
structure in the existing table of master keys that's maintained to
deduplicate the crypto transforms for v1 DIRECT_KEY policies.
I've chosen to keep this table as-is rather than make it automagically
add/remove the keys to/from the filesystem-level keyring, since that
would add a lot of extra complexity to the filesystem-level keyring.
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Add an inode back-pointer to 'struct fscrypt_info', such that
inode->i_crypt_info->ci_inode == inode.
This will be useful for:
1. Evicting the inodes when a fscrypt key is removed, since we'll track
the inodes using a given key by linking their fscrypt_infos together,
rather than the inodes directly. This avoids bloating 'struct inode'
with a new list_head.
2. Simplifying the per-file key setup, since the inode pointer won't
have to be passed around everywhere just in case something goes wrong
and it's needed for fscrypt_warn().
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Update fs/crypto/ to use the new names for the UAPI constants rather
than the old names, then make the old definitions conditional on
!__KERNEL__.
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Return ENOPKG rather than ENOENT when trying to open a file that's
encrypted using algorithms not available in the kernel's crypto API.
This avoids an ambiguity, since ENOENT is also returned when the file
doesn't exist.
Note: this is the same approach I'm taking for fs-verity.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Users of fscrypt with non-default algorithms will encounter an error
like the following if they fail to include the needed algorithms into
the crypto API when configuring the kernel (as per the documentation):
Error allocating 'adiantum(xchacha12,aes)' transform: -2
This requires that the user figure out what the "-2" error means.
Make it more friendly by printing a warning like the following instead:
Missing crypto API support for Adiantum (API name: "adiantum(xchacha12,aes)")
Also upgrade the log level for *other* errors to KERN_ERR.
Signed-off-by: Eric Biggers <ebiggers@google.com>
When fs/crypto/ encounters an inode with an invalid encryption context,
currently it prints a warning if the pair of encryption modes are
unrecognized, but it's silent if there are other problems such as
unsupported context size, format, or flags. To help people debug such
situations, add more warning messages.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Most of the warning and error messages in fs/crypto/ are for situations
related to a specific inode, not merely to a super_block. So to make
things easier, make fscrypt_msg() take an inode rather than a
super_block, and make it print the inode number.
Note: This is the same approach I'm taking for fsverity_msg().
Signed-off-by: Eric Biggers <ebiggers@google.com>
Some minor cleanups for the code that base64 encodes and decodes
encrypted filenames and long name digests:
- Rename "digest_{encode,decode}()" => "base64_{encode,decode}()" since
they are used for filenames too, not just for long name digests.
- Replace 'while' loops with more conventional 'for' loops.
- Use 'u8' for binary data. Keep 'char' for string data.
- Fully constify the lookup table (pointer was not const).
- Improve comment.
No actual change in behavior.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Since commit 643fa9612b ("fscrypt: remove filesystem specific build
config option"), fs/crypto/ can no longer be built as a loadable module.
Thus it no longer needs a module_exit function, nor a MODULE_LICENSE.
So remove them, and change module_init to late_initcall.
Reviewed-by: Chandan Rajendra <chandan@linux.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
fscrypt only uses SHA-256 for AES-128-CBC-ESSIV, which isn't the default
and is only recommended on platforms that have hardware accelerated
AES-CBC but not AES-XTS. There's no link-time dependency, since SHA-256
is requested via the crypto API on first use.
To reduce bloat, we should limit FS_ENCRYPTION to selecting the default
algorithms only. SHA-256 by itself isn't that much bloat, but it's
being discussed to move ESSIV into a crypto API template, which would
incidentally bring in other things like "authenc" support, which would
all end up being built-in since FS_ENCRYPTION is now a bool.
For Adiantum encryption we already just document that users who want to
use it have to enable CONFIG_CRYPTO_ADIANTUM themselves. So, let's do
the same for AES-128-CBC-ESSIV and CONFIG_CRYPTO_SHA256.
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
These should have been removed during commit 544d08fde2 ("fscrypt: use
a common logging function"), but I missed them.
Signed-off-by: Eric Biggers <ebiggers@google.com>
The directory may have been removed when entering
fscrypt_ioctl_set_policy(). If so, the empty_dir() check will return
error for ext4 file system.
ext4_rmdir() sets i_size = 0, then ext4_empty_dir() reports an error
because 'inode->i_size < EXT4_DIR_REC_LEN(1) + EXT4_DIR_REC_LEN(2)'. If
the fs is mounted with errors=panic, it will trigger a panic issue.
Add the check IS_DEADDIR() to fix this problem.
Fixes: 9bd8212f98 ("ext4 crypto: add encryption policy and password salt support")
Cc: <stable@vger.kernel.org> # v4.1+
Signed-off-by: Hongjie Fang <hongjiefang@asrmicro.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
In __fscrypt_decrypt_bio(), only decrypt the blocks that actually
comprise the bio, rather than assuming blocksize == PAGE_SIZE and
decrypting the entirety of every page used in the bio.
This is in preparation for allowing encryption on ext4 filesystems with
blocksize != PAGE_SIZE.
This is based on work by Chandan Rajendra.
Reviewed-by: Chandan Rajendra <chandan@linux.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Rename fscrypt_decrypt_page() to fscrypt_decrypt_pagecache_blocks() and
redefine its behavior to decrypt all filesystem blocks in the given
region of the given page, rather than assuming that the region consists
of just one filesystem block. Also remove the 'inode' and 'lblk_num'
parameters, since they can be retrieved from the page as it's already
assumed to be a pagecache page.
This is in preparation for allowing encryption on ext4 filesystems with
blocksize != PAGE_SIZE.
This is based on work by Chandan Rajendra.
Reviewed-by: Chandan Rajendra <chandan@linux.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Currently fscrypt_decrypt_page() does one of two logically distinct
things depending on whether FS_CFLG_OWN_PAGES is set in the filesystem's
fscrypt_operations: decrypt a pagecache page in-place, or decrypt a
filesystem block in-place in any page. Currently these happen to share
the same implementation, but this conflates the notion of blocks and
pages. It also makes it so that all callers have to provide inode and
lblk_num, when fscrypt could determine these itself for pagecache pages.
Therefore, move the FS_CFLG_OWN_PAGES behavior into a new function
fscrypt_decrypt_block_inplace(). This mirrors
fscrypt_encrypt_block_inplace().
This is in preparation for allowing encryption on ext4 filesystems with
blocksize != PAGE_SIZE.
Reviewed-by: Chandan Rajendra <chandan@linux.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Adjust fscrypt_zeroout_range() to encrypt a block at a time rather than
a page at a time, so that it works when blocksize < PAGE_SIZE.
This isn't optimized for performance, but then again this function
already wasn't optimized for performance. As a future optimization, we
could submit much larger bios here.
This is in preparation for allowing encryption on ext4 filesystems with
blocksize != PAGE_SIZE.
This is based on work by Chandan Rajendra.
Reviewed-by: Chandan Rajendra <chandan@linux.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Rename fscrypt_encrypt_page() to fscrypt_encrypt_pagecache_blocks() and
redefine its behavior to encrypt all filesystem blocks from the given
region of the given page, rather than assuming that the region consists
of just one filesystem block. Also remove the 'inode' and 'lblk_num'
parameters, since they can be retrieved from the page as it's already
assumed to be a pagecache page.
This is in preparation for allowing encryption on ext4 filesystems with
blocksize != PAGE_SIZE.
This is based on work by Chandan Rajendra.
Reviewed-by: Chandan Rajendra <chandan@linux.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
fscrypt_encrypt_page() behaves very differently depending on whether the
filesystem set FS_CFLG_OWN_PAGES in its fscrypt_operations. This makes
the function difficult to understand and document. It also makes it so
that all callers have to provide inode and lblk_num, when fscrypt could
determine these itself for pagecache pages.
Therefore, move the FS_CFLG_OWN_PAGES behavior into a new function
fscrypt_encrypt_block_inplace().
This is in preparation for allowing encryption on ext4 filesystems with
blocksize != PAGE_SIZE.
Reviewed-by: Chandan Rajendra <chandan@linux.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Replace some BUG_ON()s with WARN_ON_ONCE() and returning an error code,
and move the check for len divisible by FS_CRYPTO_BLOCK_SIZE into
fscrypt_crypt_block() so that it's done for both encryption and
decryption, not just encryption.
Reviewed-by: Chandan Rajendra <chandan@linux.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
fscrypt_do_page_crypto() only does a single encryption or decryption
operation, with a single logical block number (single IV). So it
actually operates on a filesystem block, not a "page" per se. To
reflect this, rename it to fscrypt_crypt_block().
Reviewed-by: Chandan Rajendra <chandan@linux.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Now that fscrypt_ctx is not used for writes, remove the 'w' fields.
Reviewed-by: Chandan Rajendra <chandan@linux.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Currently, bounce page handling for writes to encrypted files is
unnecessarily complicated. A fscrypt_ctx is allocated along with each
bounce page, page_private(bounce_page) points to this fscrypt_ctx, and
fscrypt_ctx::w::control_page points to the original pagecache page.
However, because writes don't use the fscrypt_ctx for anything else,
there's no reason why page_private(bounce_page) can't just point to the
original pagecache page directly.
Therefore, this patch makes this change. In the process, it also cleans
up the API exposed to filesystems that allows testing whether a page is
a bounce page, getting the pagecache page from a bounce page, and
freeing a bounce page.
Reviewed-by: Chandan Rajendra <chandan@linux.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Add SPDX license identifiers to all Make/Kconfig files which:
- Have no license information of any form
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add SPDX license identifiers to all files which:
- Have no license information of any form
- Have MODULE_LICENCE("GPL*") inside which was used in the initial
scan/conversion to ignore the file
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add SPDX license identifiers to all files which:
- Have no license information of any form
- Have EXPORT_.*_SYMBOL_GPL inside which was used in the
initial scan/conversion to ignore the file
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
miscellaneous cleanups.
-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEEK2m5VNv+CHkogTfJ8vlZVpUNgaMFAlzSEfQACgkQ8vlZVpUN
gaNKrQf+O4JCCc8jqhpvUcNr8+DJNhWYpvRo7yDXoWbAyA6eZHV2fTRX5Vw6T8bW
iQAj9ofkRnakOq6JvnaUyW8eAuRcqellF7HnwFwTxGOpZ1x3UPAV/roKutAhe8sT
9dA0VxjugBAISbL2AMQKRPYNuzV07D9As6wZRlPuliFVLLnuPG5SseHRhdn3tm1n
Jwyipu8P6BjomFtfHT25amISaWRx/uGpjTa1fmjwUxIC8EI6V9K6hKNCAUPsk/3g
m8zEBpBKSmPK66sFPGxddPNGYAyyFluUboQxB7DuSCF7J3cULO8TxRZbsW/5jaio
ZR8utWezuXnrI80vG/VtCMhqG3398Q==
=0Bak
-----END PGP SIGNATURE-----
Merge tag 'fscrypt_for_linus' of git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt
Pull fscrypt updates from Ted Ts'o:
"Clean up fscrypt's dcache revalidation support, and other
miscellaneous cleanups"
* tag 'fscrypt_for_linus' of git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt:
fscrypt: cache decrypted symlink target in ->i_link
vfs: use READ_ONCE() to access ->i_link
fscrypt: fix race where ->lookup() marks plaintext dentry as ciphertext
fscrypt: only set dentry_operations on ciphertext dentries
fs, fscrypt: clear DCACHE_ENCRYPTED_NAME when unaliasing directory
fscrypt: fix race allowing rename() and link() of ciphertext dentries
fscrypt: clean up and improve dentry revalidation
fscrypt: use READ_ONCE() to access ->i_crypt_info
fscrypt: remove WARN_ON_ONCE() when decryption fails
fscrypt: drop inode argument from fscrypt_get_ctx()
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAlzR0AAQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpo0MD/47D1kBK9rGzkAwIz1Jkh1Qy/ITVaDJzmHJ
UP5uncQsgKFLKMR1LbRcrWtmk2MwFDNULGbteHFeCYE1ypCrTgpWSp5+SJluKd1Q
hma9krLSAXO9QiSaZ4jafshXFIZxz6IjakOW8c9LrT80Ze47yh7AxiLwDafcp/Jj
x6NW790qB7ENDtfarDkZk14NCS8HGLRHO5B21LB+hT0Kfbh0XZaLzJdj7Mck1wPA
VT8hL9mPuA++AjF7Ra4kUjwSakgmajTa3nS2fpkwTYdztQfas7x5Jiv7FWxrrelb
qbabkNkWKepcHAPEiZR7o53TyfCucGeSK/jG+dsJ9KhNp26kl1ci3frl5T6PfVMP
SPPDjsKIHs+dqFrU9y5rSGhLJqewTs96hHthnLGxyF67+5sRb5+YIy+dcqgiyc/b
TUVyjCD6r0cO2q4v9VhwnhOyeBUA9Rwbu8nl7JV5Q45uG7qI4BC39l1jfubMNDPO
GLNGUUzb6ER7z6lYINjRSF2Jhejsx8SR9P7jhpb1Q7k/VvDDxO1T4FpwvqWFz9+s
Gn+s6//+cA6LL+42eZkQjvwF2CUNE7TaVT8zdb+s5HP1RQkZToqUnsQCGeRTrFni
RqWXfW9o9+awYRp431417oMdX/LvLGq9+ZtifRk9DqDcowXevTaf0W2RpplWSuiX
RcCuPeLAVg==
=Ot0g
-----END PGP SIGNATURE-----
Merge tag 'for-5.2/block-20190507' of git://git.kernel.dk/linux-block
Pull block updates from Jens Axboe:
"Nothing major in this series, just fixes and improvements all over the
map. This contains:
- Series of fixes for sed-opal (David, Jonas)
- Fixes and performance tweaks for BFQ (via Paolo)
- Set of fixes for bcache (via Coly)
- Set of fixes for md (via Song)
- Enabling multi-page for passthrough requests (Ming)
- Queue release fix series (Ming)
- Device notification improvements (Martin)
- Propagate underlying device rotational status in loop (Holger)
- Removal of mtip32xx trim support, which has been disabled for years
(Christoph)
- Improvement and cleanup of nvme command handling (Christoph)
- Add block SPDX tags (Christoph)
- Cleanup/hardening of bio/bvec iteration (Christoph)
- A few NVMe pull requests (Christoph)
- Removal of CONFIG_LBDAF (Christoph)
- Various little fixes here and there"
* tag 'for-5.2/block-20190507' of git://git.kernel.dk/linux-block: (164 commits)
block: fix mismerge in bvec_advance
block: don't drain in-progress dispatch in blk_cleanup_queue()
blk-mq: move cancel of hctx->run_work into blk_mq_hw_sysfs_release
blk-mq: always free hctx after request queue is freed
blk-mq: split blk_mq_alloc_and_init_hctx into two parts
blk-mq: free hw queue's resource in hctx's release handler
blk-mq: move cancel of requeue_work into blk_mq_release
blk-mq: grab .q_usage_counter when queuing request from plug code path
block: fix function name in comment
nvmet: protect discovery change log event list iteration
nvme: mark nvme_core_init and nvme_core_exit static
nvme: move command size checks to the core
nvme-fabrics: check more command sizes
nvme-pci: check more command sizes
nvme-pci: remove an unneeded variable initialization
nvme-pci: unquiesce admin queue on shutdown
nvme-pci: shutdown on timeout during deletion
nvme-pci: fix psdt field for single segment sgls
nvme-multipath: don't print ANA group state by default
nvme-multipath: split bios with the ns_head bio_set before submitting
...
We only have two callers that need the integer loop iterator, and they
can easily maintain it themselves.
Suggested-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Acked-by: David Sterba <dsterba@suse.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Acked-by: Coly Li <colyli@suse.de>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The flags field in 'struct shash_desc' never actually does anything.
The only ostensibly supported flag is CRYPTO_TFM_REQ_MAY_SLEEP.
However, no shash algorithm ever sleeps, making this flag a no-op.
With this being the case, inevitably some users who can't sleep wrongly
pass MAY_SLEEP. These would all need to be fixed if any shash algorithm
actually started sleeping. For example, the shash_ahash_*() functions,
which wrap a shash algorithm with the ahash API, pass through MAY_SLEEP
from the ahash API to the shash API. However, the shash functions are
called under kmap_atomic(), so actually they're assumed to never sleep.
Even if it turns out that some users do need preemption points while
hashing large buffers, we could easily provide a helper function
crypto_shash_update_large() which divides the data into smaller chunks
and calls crypto_shash_update() and cond_resched() for each chunk. It's
not necessary to have a flag in 'struct shash_desc', nor is it necessary
to make individual shash algorithms aware of this at all.
Therefore, remove shash_desc::flags, and document that the
crypto_shash_*() functions can be called from any context.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Path lookups that traverse encrypted symlink(s) are very slow because
each encrypted symlink needs to be decrypted each time it's followed.
This also involves dropping out of rcu-walk mode.
Make encrypted symlinks faster by caching the decrypted symlink target
in ->i_link. The first call to fscrypt_get_symlink() sets it. Then,
the existing VFS path lookup code uses the non-NULL ->i_link to take the
fast path where ->get_link() isn't called, and lookups in rcu-walk mode
remain in rcu-walk mode.
Also set ->i_link immediately when a new encrypted symlink is created.
To safely free the symlink target after an RCU grace period has elapsed,
introduce a new function fscrypt_free_inode(), and make the relevant
filesystems call it just before actually freeing the inode.
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
->lookup() in an encrypted directory begins as follows:
1. fscrypt_prepare_lookup():
a. Try to load the directory's encryption key.
b. If the key is unavailable, mark the dentry as a ciphertext name
via d_flags.
2. fscrypt_setup_filename():
a. Try to load the directory's encryption key.
b. If the key is available, encrypt the name (treated as a plaintext
name) to get the on-disk name. Otherwise decode the name
(treated as a ciphertext name) to get the on-disk name.
But if the key is concurrently added, it may be found at (2a) but not at
(1a). In this case, the dentry will be wrongly marked as a ciphertext
name even though it was actually treated as plaintext.
This will cause the dentry to be wrongly invalidated on the next lookup,
potentially causing problems. For example, if the racy ->lookup() was
part of sys_mount(), then the new mount will be detached when anything
tries to access it. This is despite the mountpoint having a plaintext
path, which should remain valid now that the key was added.
Of course, this is only possible if there's a userspace race. Still,
the additional kernel-side race is confusing and unexpected.
Close the kernel-side race by changing fscrypt_prepare_lookup() to also
set the on-disk filename (step 2b), consistent with the d_flags update.
Fixes: 28b4c26396 ("ext4 crypto: revalidate dentry after adding or removing the key")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Plaintext dentries are always valid, so only set fscrypt_d_ops on
ciphertext dentries.
Besides marginally improved performance, this allows overlayfs to use an
fscrypt-encrypted upperdir, provided that all the following are true:
(1) The fscrypt encryption key is placed in the keyring before
mounting overlayfs, and remains while the overlayfs is mounted.
(2) The overlayfs workdir uses the same encryption policy.
(3) No dentries for the ciphertext names of subdirectories have been
created in the upperdir or workdir yet. (Since otherwise
d_splice_alias() will reuse the old dentry with ->d_op set.)
One potential use case is using an ephemeral encryption key to encrypt
all files created or changed by a container, so that they can be
securely erased ("crypto-shredded") after the container stops.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Close some race conditions where fscrypt allowed rename() and link() on
ciphertext dentries that had been looked up just prior to the key being
concurrently added. It's better to return -ENOKEY in this case.
This avoids doing the nonsensical thing of encrypting the names a second
time when searching for the actual on-disk dir entries. It also
guarantees that DCACHE_ENCRYPTED_NAME dentries are never rename()d, so
the dcache won't have support all possible combinations of moving
DCACHE_ENCRYPTED_NAME around during __d_move().
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Make various improvements to fscrypt dentry revalidation:
- Don't try to handle the case where the per-directory key is removed,
as this can't happen without the inode (and dentries) being evicted.
- Flag ciphertext dentries rather than plaintext dentries, since it's
ciphertext dentries that need the special handling.
- Avoid doing unnecessary work for non-ciphertext dentries.
- When revalidating ciphertext dentries, try to set up the directory's
i_crypt_info to make sure the key is really still absent, rather than
invalidating all negative dentries as the previous code did. An old
comment suggested we can't do this for locking reasons, but AFAICT
this comment was outdated and it actually works fine.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
->i_crypt_info starts out NULL and may later be locklessly set to a
non-NULL value by the cmpxchg() in fscrypt_get_encryption_info().
But ->i_crypt_info is used directly, which technically is incorrect.
It's a data race, and it doesn't include the data dependency barrier
needed to safely dereference the pointer on at least one architecture.
Fix this by using READ_ONCE() instead. Note: we don't need to use
smp_load_acquire(), since dereferencing the pointer only requires a data
dependency barrier, which is already included in READ_ONCE(). We also
don't need READ_ONCE() in places where ->i_crypt_info is unconditionally
dereferenced, since it must have already been checked.
Also downgrade the cmpxchg() to cmpxchg_release(), since RELEASE
semantics are sufficient on the write side.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
If decrypting a block fails, fscrypt did a WARN_ON_ONCE(). But WARN is
meant for kernel bugs, which this isn't; this could be hit by fuzzers
using fault injection, for example. Also, there is already a proper
warning message logged in fscrypt_do_page_crypto(), so the WARN doesn't
add much.
Just remove the unnessary WARN.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
The only reason the inode is being passed to fscrypt_get_ctx() is to
verify that the encryption key is available. However, all callers
already ensure this because if we get as far as trying to do I/O to an
encrypted file without the key, there's already a bug.
Therefore, remove this unnecessary argument.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
First: Ted, Jaegeuk, and I have decided to add me as a co-maintainer for
fscrypt, and we're now using a shared git tree. So we've updated
MAINTAINERS accordingly, and I'm doing the pull request this time.
The actual changes for v5.1 are:
- Remove the fs-specific kconfig options like CONFIG_EXT4_ENCRYPTION and
make fscrypt support for all fscrypt-capable filesystems be controlled
by CONFIG_FS_ENCRYPTION, similar to how CONFIG_QUOTA works.
- Improve error code for rename() and link() into encrypted directories.
- Various cleanups.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQSacvsUNc7UX4ntmEPzXCl4vpKOKwUCXH2YDRQcZWJpZ2dlcnNA
Z29vZ2xlLmNvbQAKCRDzXCl4vpKOK+SAAQCWYOTwYko8uE8Ze8i2fiUm0vr91NOg
zj5DGmK7Izxy/gEAsNDOVA7zWrDg/f5600/7aLpDQQTGHA38YVsgiyd7DgY=
=S3tT
-----END PGP SIGNATURE-----
Merge tag 'fscrypt-for-linus' of git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt
Pull fscrypt updates from Eric Biggers:
"First: Ted, Jaegeuk, and I have decided to add me as a co-maintainer
for fscrypt, and we're now using a shared git tree. So we've updated
MAINTAINERS accordingly, and I'm doing the pull request this time.
The actual changes for v5.1 are:
- Remove the fs-specific kconfig options like CONFIG_EXT4_ENCRYPTION
and make fscrypt support for all fscrypt-capable filesystems be
controlled by CONFIG_FS_ENCRYPTION, similar to how CONFIG_QUOTA
works.
- Improve error code for rename() and link() into encrypted
directories.
- Various cleanups"
* tag 'fscrypt-for-linus' of git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt:
MAINTAINERS: add Eric Biggers as an fscrypt maintainer
fscrypt: return -EXDEV for incompatible rename or link into encrypted dir
fscrypt: remove filesystem specific build config option
f2fs: use IS_ENCRYPTED() to check encryption status
ext4: use IS_ENCRYPTED() to check encryption status
fscrypt: remove CRYPTO_CTR dependency
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAlx63XIQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpp2vEACfrrQsap7R+Av28mmXpmXi2FPa3g5Tev1t
yYjK2qHvhlMZjPTYw3hCmbYdDDczlF7PEgSE2x2DjdcsYapb8Fy1lZ2X16c7ztBR
HD/t9b5AVSQsczZzKgv3RqsNtTnjzS5V0A8XH8FAP2QRgiwDMwSN6G0FP0JBLbE/
ZgxQrH1Iy1F33Wz4hI3Z7dEghKPZrH1IlegkZCEu47q9SlWS76qUetSy2GEtchOl
3Lgu54mQZyVdI5/QZf9DyMDLF6dIz3tYU2qhuo01AHjGRCC72v86p8sIiXcUr94Q
8pbegJhJ/g8KBol9Qhv3+pWG/QUAZwi/ZwasTkK+MJ4klRXfOrznxPubW1z6t9Vn
QRo39Po5SqqP0QWAscDxCFjESIQlWlKa+LZurJL7DJDCUGrSgzTpnVwFqKwc5zTP
HJa5MT2tEeL2TfUYRYCfh0ZV0elINdHA1y1klDBh38drh4EWr2gW8xdseGYXqRjh
fLgEpoF7VQ8kTvxKN+E4jZXkcZmoLmefp0ZyAbblS6IawpPVC7kXM9Fdn2OU8f2c
fjVjvSiqxfeN6dnpfeLDRbbN9894HwgP/LPropJOQ7KmjCorQq5zMDkAvoh3tElq
qwluRqdBJpWT/F05KweY+XVW8OawIycmUWqt6JrVNoIDAK31auHQv47kR0VA4OvE
DRVVhYpocw==
=VBaU
-----END PGP SIGNATURE-----
Merge tag 'for-5.1/block-20190302' of git://git.kernel.dk/linux-block
Pull block layer updates from Jens Axboe:
"Not a huge amount of changes in this round, the biggest one is that we
finally have Mings multi-page bvec support merged. Apart from that,
this pull request contains:
- Small series that avoids quiescing the queue for sysfs changes that
match what we currently have (Aleksei)
- Series of bcache fixes (via Coly)
- Series of lightnvm fixes (via Mathias)
- NVMe pull request from Christoph. Nothing major, just SPDX/license
cleanups, RR mp policy (Hannes), and little fixes (Bart,
Chaitanya).
- BFQ series (Paolo)
- Save blk-mq cpu -> hw queue mapping, removing a pointer indirection
for the fast path (Jianchao)
- fops->iopoll() added for async IO polling, this is a feature that
the upcoming io_uring interface will use (Christoph, me)
- Partition scan loop fixes (Dongli)
- mtip32xx conversion from managed resource API (Christoph)
- cdrom registration race fix (Guenter)
- MD pull from Song, two minor fixes.
- Various documentation fixes (Marcos)
- Multi-page bvec feature. This brings a lot of nice improvements
with it, like more efficient splitting, larger IOs can be supported
without growing the bvec table size, and so on. (Ming)
- Various little fixes to core and drivers"
* tag 'for-5.1/block-20190302' of git://git.kernel.dk/linux-block: (117 commits)
block: fix updating bio's front segment size
block: Replace function name in string with __func__
nbd: propagate genlmsg_reply return code
floppy: remove set but not used variable 'q'
null_blk: fix checking for REQ_FUA
block: fix NULL pointer dereference in register_disk
fs: fix guard_bio_eod to check for real EOD errors
blk-mq: use HCTX_TYPE_DEFAULT but not 0 to index blk_mq_tag_set->map
block: optimize bvec iteration in bvec_iter_advance
block: introduce mp_bvec_for_each_page() for iterating over page
block: optimize blk_bio_segment_split for single-page bvec
block: optimize __blk_segment_map_sg() for single-page bvec
block: introduce bvec_nth_page()
iomap: wire up the iopoll method
block: add bio_set_polled() helper
block: wire up block device iopoll method
fs: add an iopoll method to struct file_operations
loop: set GENHD_FL_NO_PART_SCAN after blkdev_reread_part()
loop: do not print warn message if partition scan is successful
block: bounce: make sure that bvec table is updated
...
This patch introduces one extra iterator variable to bio_for_each_segment_all(),
then we can allow bio_for_each_segment_all() to iterate over multi-page bvec.
Given it is just one mechannical & simple change on all bio_for_each_segment_all()
users, this patch does tree-wide change in one single patch, so that we can
avoid to use a temporary helper for this conversion.
Reviewed-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
CRYPTO_TFM_REQ_WEAK_KEY confuses newcomers to the crypto API because it
sounds like it is requesting a weak key. Actually, it is requesting
that weak keys be forbidden (for algorithms that have the notion of
"weak keys"; currently only DES and XTS do).
Also it is only one letter away from CRYPTO_TFM_RES_WEAK_KEY, with which
it can be easily confused. (This in fact happened in the UX500 driver,
though just in some debugging messages.)
Therefore, make the intent clear by renaming it to
CRYPTO_TFM_REQ_FORBID_WEAK_KEYS.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Currently, trying to rename or link a regular file, directory, or
symlink into an encrypted directory fails with EPERM when the source
file is unencrypted or is encrypted with a different encryption policy,
and is on the same mountpoint. It is correct for the operation to fail,
but the choice of EPERM breaks tools like 'mv' that know to copy rather
than rename if they see EXDEV, but don't know what to do with EPERM.
Our original motivation for EPERM was to encourage users to securely
handle their data. Encrypting files by "moving" them into an encrypted
directory can be insecure because the unencrypted data may remain in
free space on disk, where it can later be recovered by an attacker.
It's much better to encrypt the data from the start, or at least try to
securely delete the source data e.g. using the 'shred' program.
However, the current behavior hasn't been effective at achieving its
goal because users tend to be confused, hack around it, and complain;
see e.g. https://github.com/google/fscrypt/issues/76. And in some cases
it's actually inconsistent or unnecessary. For example, 'mv'-ing files
between differently encrypted directories doesn't work even in cases
where it can be secure, such as when in userspace the same passphrase
protects both directories. Yet, you *can* already 'mv' unencrypted
files into an encrypted directory if the source files are on a different
mountpoint, even though doing so is often insecure.
There are probably better ways to teach users to securely handle their
files. For example, the 'fscrypt' userspace tool could provide a
command that migrates unencrypted files into an encrypted directory,
acting like 'shred' on the source files and providing appropriate
warnings depending on the type of the source filesystem and disk.
Receiving errors on unimportant files might also force some users to
disable encryption, thus making the behavior counterproductive. It's
desirable to make encryption as unobtrusive as possible.
Therefore, change the error code from EPERM to EXDEV so that tools
looking for EXDEV will fall back to a copy.
This, of course, doesn't prevent users from still doing the right things
to securely manage their files. Note that this also matches the
behavior when a file is renamed between two project quota hierarchies;
so there's precedent for using EXDEV for things other than mountpoints.
xfstests generic/398 will require an update with this change.
[Rewritten from an earlier patch series by Michael Halcrow.]
Cc: Michael Halcrow <mhalcrow@google.com>
Cc: Joe Richey <joerichey@google.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
In order to have a common code base for fscrypt "post read" processing
for all filesystems which support encryption, this commit removes
filesystem specific build config option (e.g. CONFIG_EXT4_FS_ENCRYPTION)
and replaces it with a build option (i.e. CONFIG_FS_ENCRYPTION) whose
value affects all the filesystems making use of fscrypt.
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
fscrypt doesn't use the CTR mode of operation for anything, so there's
no need to select CRYPTO_CTR. It was added by commit 71dea01ea2
("ext4 crypto: require CONFIG_CRYPTO_CTR if ext4 encryption is
enabled"). But, I've been unable to identify the arm64 crypto bug it
was supposedly working around.
I suspect the issue was seen only on some old Android device kernel
(circa 3.10?). So if the fix wasn't mistaken, the real bug is probably
already fixed. Or maybe it was actually a bug in a non-upstream crypto
driver.
So, remove the dependency. If it turns out there's actually still a
bug, we'll fix it properly.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Add support for the Adiantum encryption mode to fscrypt. Adiantum is a
tweakable, length-preserving encryption mode with security provably
reducible to that of XChaCha12 and AES-256, subject to a security bound.
It's also a true wide-block mode, unlike XTS. See the paper
"Adiantum: length-preserving encryption for entry-level processors"
(https://eprint.iacr.org/2018/720.pdf) for more details. Also see
commit 059c2a4d8e ("crypto: adiantum - add Adiantum support").
On sufficiently long messages, Adiantum's bottlenecks are XChaCha12 and
the NH hash function. These algorithms are fast even on processors
without dedicated crypto instructions. Adiantum makes it feasible to
enable storage encryption on low-end mobile devices that lack AES
instructions; currently such devices are unencrypted. On ARM Cortex-A7,
on 4096-byte messages Adiantum encryption is about 4 times faster than
AES-256-XTS encryption; decryption is about 5 times faster.
In fscrypt, Adiantum is suitable for encrypting both file contents and
names. With filenames, it fixes a known weakness: when two filenames in
a directory share a common prefix of >= 16 bytes, with CTS-CBC their
encrypted filenames share a common prefix too, leaking information.
Adiantum does not have this problem.
Since Adiantum also accepts long tweaks (IVs), it's also safe to use the
master key directly for Adiantum encryption rather than deriving
per-file keys, provided that the per-file nonce is included in the IVs
and the master key isn't used for any other encryption mode. This
configuration saves memory and improves performance. A new fscrypt
policy flag is added to allow users to opt-in to this configuration.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
These are unused, undesired, and have never actually been used by
anybody. The original authors of this code have changed their mind about
its inclusion. While originally proposed for disk encryption on low-end
devices, the idea was discarded [1] in favor of something else before
that could really get going. Therefore, this patch removes Speck.
[1] https://marc.info/?l=linux-crypto-vger&m=153359499015659
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Acked-by: Eric Biggers <ebiggers@google.com>
Cc: stable@vger.kernel.org
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
In this round, we've mainly focused on discard, aka unmap, control along with
fstrim for Android-specific usage model. In addition, we've fixed writepage flow
which returned EAGAIN previously resulting in EIO of fsync(2) due to mapping's
error state. In order to avoid old MM bug [1], we decided not to use __GFP_ZERO
for the mapping for node and meta page caches. As always, we've cleaned up many
places for future fsverity and symbol conflicts.
Enhancement:
- do discard/fstrim in lower priority considering fs utilization
- split large discard commands into smaller ones for better responsiveness
- add more sanity checks to address syzbot reports
- add a mount option, fsync_mode=nobarrier, which can reduce # of cache flushes
- clean up symbol namespace with modified function names
- be strict on block allocation and IO control in corner cases
Bug fix:
- don't use __GFP_ZERO for mappings
- fix error reports in writepage to avoid fsync() failure
- avoid selinux denial on CAP_RESOURCE on resgid/resuid
- fix some subtle race conditions in GC/atomic writes/shutdown
- fix overflow bugs in sanity_check_raw_super
- fix missing bits on get_flags
Clean-up:
- prepare the generic flow for future fsverity integration
- fix some broken coding standard
[1] https://lkml.org/lkml/2018/4/8/661
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE00UqedjCtOrGVvQiQBSofoJIUNIFAlsepb8ACgkQQBSofoJI
UNJdSw/+IhrYJFkJEN/pV4M5xSjYirl/P2WJ4AGi6HcpjEGmaDiBi2whod1Jw2NE
1auSMiby7K91VAmPvxMmmLhOdC8XgJ8jwY1nEaZMfmMXohlaD3FDY5bzYf5rJDF4
J184P6xUZ2IKlFVA4prwNQgYi3awPthVu1lxbFPp8GUHDbmr5ZXEysxPDzz2O0Em
oE7WmklmyCHJPhmg/EcVXfF/Ekf3zMOVR+EI2otcDjnWIQioVetIK8CKi0MM4bkG
X8Z318ANjGTd42woupXIzsiTrMRONY7zzkUvE+S6tfUjKZoIdofDM5OIXMdOxpxL
DZ53WrwfeB74igD8jDZgqD6OaonIfDfCuKrwUASFAC2Ou4h3apj3ckUzoHtAhEUL
z5yTSKTrtfuoSufhBp+nKKs3ijDgms76arw8x/pPdN6D6xDwIJtBPxC2sObPaj35
damv4GyM4+sbhGO/Gbie2q6za55IvYFZc7JNCC2D2K5tnBmUaa7/XdvxcyigniGk
AZgkaddHePkAZpa5AYYirZR8bd7IFds0+m6VcybG0/pYb0qPEcI6U4mujBSCIwVy
kXuD7su3jNjj6hWnCl5PSQo8yBWS5H8c6/o+5XHozzYA91dsLAmD8entuCreg6Hp
NaIFio0qKULweLK86f66qQTsRPMpYRAtqPS0Ew0+3llKMcrlRp4=
=JrW7
-----END PGP SIGNATURE-----
Merge tag 'f2fs-for-4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs
Pull f2fs updates from Jaegeuk Kim:
"In this round, we've mainly focused on discard, aka unmap, control
along with fstrim for Android-specific usage model. In addition, we've
fixed writepage flow which returned EAGAIN previously resulting in EIO
of fsync(2) due to mapping's error state. In order to avoid old MM bug
[1], we decided not to use __GFP_ZERO for the mapping for node and
meta page caches. As always, we've cleaned up many places for future
fsverity and symbol conflicts.
Enhancements:
- do discard/fstrim in lower priority considering fs utilization
- split large discard commands into smaller ones for better responsiveness
- add more sanity checks to address syzbot reports
- add a mount option, fsync_mode=nobarrier, which can reduce # of cache flushes
- clean up symbol namespace with modified function names
- be strict on block allocation and IO control in corner cases
Bug fixes:
- don't use __GFP_ZERO for mappings
- fix error reports in writepage to avoid fsync() failure
- avoid selinux denial on CAP_RESOURCE on resgid/resuid
- fix some subtle race conditions in GC/atomic writes/shutdown
- fix overflow bugs in sanity_check_raw_super
- fix missing bits on get_flags
Clean-ups:
- prepare the generic flow for future fsverity integration
- fix some broken coding standard"
[1] https://lkml.org/lkml/2018/4/8/661
* tag 'f2fs-for-4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs: (79 commits)
f2fs: fix to clear FI_VOLATILE_FILE correctly
f2fs: let sync node IO interrupt async one
f2fs: don't change wbc->sync_mode
f2fs: fix to update mtime correctly
fs: f2fs: insert space around that ':' and ', '
fs: f2fs: add missing blank lines after declarations
fs: f2fs: changed variable type of offset "unsigned" to "loff_t"
f2fs: clean up symbol namespace
f2fs: make set_de_type() static
f2fs: make __f2fs_write_data_pages() static
f2fs: fix to avoid accessing cross the boundary
f2fs: fix to let caller retry allocating block address
disable loading f2fs module on PAGE_SIZE > 4KB
f2fs: fix error path of move_data_page
f2fs: don't drop dentry pages after fs shutdown
f2fs: fix to avoid race during access gc_thread pointer
f2fs: clean up with clear_radix_tree_dirty_tag
f2fs: fix to don't trigger writeback during recovery
f2fs: clear discard_wake earlier
f2fs: let discard thread wait a little longer if dev is busy
...
Log the crypto algorithm driver name for each fscrypt encryption mode on
its first use, also showing a friendly name for the mode.
This will help people determine whether the expected implementations are
being used. In some cases we've seen people do benchmarks and reject
using encryption for performance reasons, when in fact they used a much
slower implementation of AES-XTS than was possible on the hardware. It
can make an enormous difference; e.g., AES-XTS on ARM is about 10x
faster with the crypto extensions (AES instructions) than without.
This also makes it more obvious which modes are being used, now that
fscrypt supports multiple combinations of modes.
Example messages (with default modes, on x86_64):
[ 35.492057] fscrypt: AES-256-CTS-CBC using implementation "cts(cbc-aes-aesni)"
[ 35.492171] fscrypt: AES-256-XTS using implementation "xts-aes-aesni"
Note: algorithms can be dynamically added to the crypto API, which can
result in different implementations being used at different times. But
this is rare; for most users, showing the first will be good enough.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
fscrypt currently only supports AES encryption. However, many low-end
mobile devices have older CPUs that don't have AES instructions, e.g.
the ARMv8 Cryptography Extensions. Currently, user data on such devices
is not encrypted at rest because AES is too slow, even when the NEON
bit-sliced implementation of AES is used. Unfortunately, it is
infeasible to encrypt these devices at all when AES is the only option.
Therefore, this patch updates fscrypt to support the Speck block cipher,
which was recently added to the crypto API. The C implementation of
Speck is not especially fast, but Speck can be implemented very
efficiently with general-purpose vector instructions, e.g. ARM NEON.
For example, on an ARMv7 processor, we measured the NEON-accelerated
Speck128/256-XTS at 69 MB/s for both encryption and decryption, while
AES-256-XTS with the NEON bit-sliced implementation was only 22 MB/s
encryption and 19 MB/s decryption.
There are multiple variants of Speck. This patch only adds support for
Speck128/256, which is the variant with a 128-bit block size and 256-bit
key size -- the same as AES-256. This is believed to be the most secure
variant of Speck, and it's only about 6% slower than Speck128/128.
Speck64/128 would be at least 20% faster because it has 20% rounds, and
it can be even faster on CPUs that can't efficiently do the 64-bit
operations needed for Speck128. However, Speck64's 64-bit block size is
not preferred security-wise. ARM NEON also supports the needed 64-bit
operations even on 32-bit CPUs, resulting in Speck128 being fast enough
for our targeted use cases so far.
The chosen modes of operation are XTS for contents and CTS-CBC for
filenames. These are the same modes of operation that fscrypt defaults
to for AES. Note that as with the other fscrypt modes, Speck will not
be used unless userspace chooses to use it. Nor are any of the existing
modes (which are all AES-based) being removed, of course.
We intentionally don't make CONFIG_FS_ENCRYPTION select
CONFIG_CRYPTO_SPECK, so people will have to enable Speck support
themselves if they need it. This is because we shouldn't bloat the
FS_ENCRYPTION dependencies with every new cipher, especially ones that
aren't recommended for most users. Moreover, CRYPTO_SPECK is just the
generic implementation, which won't be fast enough for many users; in
practice, they'll need to enable CRYPTO_SPECK_NEON to get acceptable
performance.
More details about our choice of Speck can be found in our patches that
added Speck to the crypto API, and the follow-on discussion threads.
We're planning a publication that explains the choice in more detail.
But briefly, we can't use ChaCha20 as we previously proposed, since it
would be insecure to use a stream cipher in this context, with potential
IV reuse during writes on f2fs and/or on wear-leveling flash storage.
We also evaluated many other lightweight and/or ARX-based block ciphers
such as Chaskey-LTS, RC5, LEA, CHAM, Threefish, RC6, NOEKEON, SPARX, and
XTEA. However, all had disadvantages vs. Speck, such as insufficient
performance with NEON, much less published cryptanalysis, or an
insufficient security level. Various design choices in Speck make it
perform better with NEON than competing ciphers while still having a
security margin similar to AES, and in the case of Speck128 also the
same available security levels. Unfortunately, Speck does have some
political baggage attached -- it's an NSA designed cipher, and was
rejected from an ISO standard (though for context, as far as I know none
of the above-mentioned alternatives are ISO standards either).
Nevertheless, we believe it is a good solution to the problem from a
technical perspective.
Certain algorithms constructed from ChaCha or the ChaCha permutation,
such as MEM (Masked Even-Mansour) or HPolyC, may also meet our
performance requirements. However, these are new constructions that
need more time to receive the cryptographic review and acceptance needed
to be confident in their security. HPolyC hasn't been published yet,
and we are concerned that MEM makes stronger assumptions about the
underlying permutation than the ChaCha stream cipher does. In contrast,
the XTS mode of operation is relatively well accepted, and Speck has
over 70 cryptanalysis papers. Of course, these ChaCha-based algorithms
can still be added later if they become ready.
The best known attack on Speck128/256 is a differential cryptanalysis
attack on 25 of 34 rounds with 2^253 time complexity and 2^125 chosen
plaintexts, i.e. only marginally faster than brute force. There is no
known attack on the full 34 rounds.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Currently the key derivation function in fscrypt uses the master key
length as the amount of output key material to derive. This works, but
it means we can waste time deriving more key material than is actually
used, e.g. most commonly, deriving 64 bytes for directories which only
take a 32-byte AES-256-CTS-CBC key. It also forces us to validate that
the master key length is a multiple of AES_BLOCK_SIZE, which wouldn't
otherwise be necessary.
Fix it to only derive the needed length key.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Refactor the confusingly-named function 'validate_user_key()' into a new
function 'find_and_derive_key()' which first finds the keyring key, then
does the key derivation. Among other benefits this avoids the strange
behavior we had previously where if key derivation failed for some
reason, then we would fall back to the alternate key prefix. Now, we'll
only fall back to the alternate key prefix if a valid key isn't found.
This patch also improves the warning messages that are logged when the
keyring key's payload is invalid.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Use a common function for fscrypt warning and error messages so that all
the messages are consistently ratelimited, include the "fscrypt:"
prefix, and include the filesystem name if applicable.
Also fix up a few of the log messages to be more descriptive.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
With one exception, the internal key size constants such as
FS_AES_256_XTS_KEY_SIZE are only used for the 'available_modes' array,
where they really only serve to obfuscate what the values are. Also
some of the constants are unused, and the key sizes tend to be in the
names of the algorithms anyway. In the past these values were also
misused, e.g. we used to have FS_AES_256_XTS_KEY_SIZE in places that
technically should have been FS_MAX_KEY_SIZE.
The exception is that FS_AES_128_ECB_KEY_SIZE is used for key
derivation. But it's more appropriate to use
FS_KEY_DERIVATION_NONCE_SIZE for that instead.
Thus, just put the sizes directly in the 'available_modes' array.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
We're passing 'key_type_logon' to request_key(), so the found key is
guaranteed to be of type "logon". Thus, there is no reason to check
later that the key is really a "logon" key.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Now ->max_namelen() is only called to limit the filename length when
adding NUL padding, and only for real filenames -- not symlink targets.
It also didn't give the correct length for symlink targets anyway since
it forgot to subtract 'sizeof(struct fscrypt_symlink_data)'.
Thus, change ->max_namelen from a function to a simple 'unsigned int'
that gives the filesystem's maximum filename length.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
fname_decrypt() is validating that the encrypted filename is nonempty.
However, earlier a stronger precondition was already enforced: the
encrypted filename must be at least 16 (FS_CRYPTO_BLOCK_SIZE) bytes.
Drop the redundant check for an empty filename.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
fname_decrypt() returns an error if the input filename is longer than
the inode's ->max_namelen() as given by the filesystem. But, this
doesn't actually make sense because the filesystem provided the input
filename in the first place, where it was subject to the filesystem's
limits. And fname_decrypt() has no internal limit itself.
Thus, remove this unnecessary check.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
In fscrypt_setup_filename(), remove the unnecessary check for
fscrypt_get_encryption_info() returning EOPNOTSUPP. There's no reason
to handle this error differently from any other. I think there may have
been some confusion because the "notsupp" version of
fscrypt_get_encryption_info() returns EOPNOTSUPP -- but that's not
applicable from inside fs/crypto/.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
fscrypt is clearing the flags on the crypto_skcipher it allocates for
each inode. But, this is unnecessary and may cause problems in the
future because it will even clear flags that are meant to be internal to
the crypto API, e.g. CRYPTO_TFM_NEED_KEY.
Remove the unnecessary flag clearing.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
skcipher_request_alloc() can only fail due to lack of memory, and in
that case the memory allocator will have already printed a detailed
error message. Thus, remove the redundant error messages from fscrypt.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
crypto_alloc_skcipher() returns an ERR_PTR() on failure, not NULL.
Remove the unnecessary check for NULL.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Now that all filesystems have been converted to use
fscrypt_prepare_lookup(), we can remove the fscrypt_set_d_op() and
fscrypt_set_encrypted_dentry() functions as well as un-export
fscrypt_d_ops.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Improve fscrypt read performance by switching the decryption workqueue
from bound to unbound. With the bound workqueue, when multiple bios
completed on the same CPU, they were decrypted on that same CPU. But
with the unbound queue, they are now decrypted in parallel on any CPU.
Although fscrypt read performance can be tough to measure due to the
many sources of variation, this change is most beneficial when
decryption is slow, e.g. on CPUs without AES instructions. For example,
I timed tarring up encrypted directories on f2fs. On x86 with AES-NI
instructions disabled, the unbound workqueue improved performance by
about 25-35%, using 1 to NUM_CPUs jobs with 4 or 8 CPUs available. But
with AES-NI enabled, performance was unchanged to within ~2%.
I also did the same test on a quad-core ARM CPU using xts-speck128-neon
encryption. There performance was usually about 10% better with the
unbound workqueue, bringing it closer to the unencrypted speed.
The unbound workqueue may be worse in some cases due to worse locality,
but I think it's still the better default. dm-crypt uses an unbound
workqueue by default too, so this change makes fscrypt match.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Currently, fscrypt provides fscrypt_decrypt_bio_pages() which decrypts a
bio's pages asynchronously, then unlocks them afterwards. But, this
assumes that decryption is the last "postprocessing step" for the bio,
so it's incompatible with additional postprocessing steps such as
authenticity verification after decryption.
Therefore, rename the existing fscrypt_decrypt_bio_pages() to
fscrypt_enqueue_decrypt_bio(). Then, add fscrypt_decrypt_bio() which
decrypts the pages in the bio synchronously without unlocking the pages,
nor setting them Uptodate; and add fscrypt_enqueue_decrypt_work(), which
enqueues work on the fscrypt_read_workqueue. The new functions will be
used by filesystems that support both fscrypt and fs-verity.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
gcc versions prior to 4.6 require an extra level of braces when using a
designated initializer for a member in an anonymous struct or union.
This caused a compile error with the 'struct qstr' initialization in
__fscrypt_encrypt_symlink().
Fix it by using QSTR_INIT().
Reported-by: Andrew Morton <akpm@linux-foundation.org>
Fixes: 76e81d6d50 ("fscrypt: new helper functions for ->symlink()")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
fscrypt_put_encryption_info() is only called when evicting an inode, so
the 'struct fscrypt_info *ci' parameter is always NULL, and there cannot
be races with other threads. This was cruft left over from the broken
key revocation code. Remove the unused parameter and the cmpxchg().
Also remove the #ifdefs around the fscrypt_put_encryption_info() calls,
since fscrypt_notsupp.h defines a no-op stub for it.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Filesystems don't need fscrypt_fname_encrypted_size() anymore, so
unexport it and move it to fscrypt_private.h.
We also never calculate the encrypted size of a filename without having
the fscrypt_info present since it is needed to know the amount of
NUL-padding which is determined by the encryption policy, and also we
will always truncate the NUL-padding to the maximum filename length.
Therefore, also make fscrypt_fname_encrypted_size() assume that the
fscrypt_info is present, and make it truncate the returned length to the
specified max_len.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Previously fscrypt_fname_alloc_buffer() was used to allocate buffers for
both presented (decrypted or encoded) and encrypted filenames. That was
confusing, because it had to allocate the worst-case size for either,
e.g. including NUL-padding even when it was meaningless.
But now that fscrypt_setup_filename() no longer calls it, it is only
used in the ->get_link() and ->readdir() paths, which specifically want
a buffer for presented filenames. Therefore, switch the behavior over
to allocating the buffer for presented filenames only.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Currently, when encrypting a filename (either a real filename or a
symlink target) we calculate the amount of NUL-padding twice: once
before encryption and once during encryption in fname_encrypt(). It is
needed before encryption to allocate the needed buffer size as well as
calculate the size the symlink target will take up on-disk before
creating the symlink inode. Calculating the size during encryption as
well is redundant.
Remove this redundancy by always calculating the exact size beforehand,
and making fname_encrypt() just add as much NUL padding as is needed to
fill the output buffer.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Now that all filesystems have been converted to use the symlink helper
functions, they no longer need the declaration of 'struct
fscrypt_symlink_data'. Move it from fscrypt.h to fscrypt_private.h.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
fscrypt_fname_usr_to_disk() sounded very generic but was actually only
used to encrypt symlinks. Remove it now that all filesystems have been
switched over to fscrypt_encrypt_symlink().
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Filesystems also have duplicate code to support ->get_link() on
encrypted symlinks. Factor it out into a new function
fscrypt_get_symlink(). It takes in the contents of the encrypted
symlink on-disk and provides the target (decrypted or encoded) that
should be returned from ->get_link().
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Currently, filesystems supporting fscrypt need to implement some tricky
logic when creating encrypted symlinks, including handling a peculiar
on-disk format (struct fscrypt_symlink_data) and correctly calculating
the size of the encrypted symlink. Introduce helper functions to make
things a bit easier:
- fscrypt_prepare_symlink() computes and validates the size the symlink
target will require on-disk.
- fscrypt_encrypt_symlink() creates the encrypted target if needed.
The new helpers actually fix some subtle bugs. First, when checking
whether the symlink target was too long, filesystems didn't account for
the fact that the NUL padding is meant to be truncated if it would cause
the maximum length to be exceeded, as is done for filenames in
directories. Consequently users would receive ENAMETOOLONG when
creating symlinks close to what is supposed to be the maximum length.
For example, with EXT4 with a 4K block size, the maximum symlink target
length in an encrypted directory is supposed to be 4093 bytes (in
comparison to 4095 in an unencrypted directory), but in
FS_POLICY_FLAGS_PAD_32-mode only up to 4064 bytes were accepted.
Second, symlink targets of "." and ".." were not being encrypted, even
though they should be, as these names are special in *directory entries*
but not in symlink targets. Fortunately, we can fix this simply by
starting to encrypt them, as old kernels already accept them in
encrypted form.
Third, the output string length the filesystems were providing when
doing the actual encryption was incorrect, as it was forgotten to
exclude 'sizeof(struct fscrypt_symlink_data)'. Fortunately though, this
bug didn't make a difference.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
fscrypt.h included way too many other headers, given that it is included
by filesystems both with and without encryption support. Trim down the
includes list by moving the needed includes into more appropriate
places, and removing the unneeded ones.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Only fs/crypto/fname.c cares about treating the "." and ".." filenames
specially with regards to encryption, so move fscrypt_is_dot_dotdot()
from fscrypt.h to there.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
The encryption modes are validated by fs/crypto/, not by individual
filesystems. Therefore, move fscrypt_valid_enc_modes() from fscrypt.h
to fscrypt_private.h.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
The fscrypt_info kmem_cache is internal to fscrypt; filesystems don't
need to access it. So move its declaration into fscrypt_private.h.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEEK2m5VNv+CHkogTfJ8vlZVpUNgaMFAloI8AUACgkQ8vlZVpUN
gaMdjgf8CCW7UhPjoZYwF8sUNtAaX9+JZT1maOcXUhpJ3vRQiRn+AzRH6yBYMm79
+NZBwVlk4dlEe55Wh4yFIStMAstqzCrke4C9CSbExjgHNsJdU4znyYuLRMbLfyO0
6c4NObiAIKJdW1/te1aN90keGC6min8pBZot+FqZsRr+Kq2+IOtM43JAv7efOLev
v3LCjUf9JKxatoB8tgw4AJRa1p18p7D2APWTG05VlFq63TjhVIYNvvwcQlizLwGY
cuEq3X59FbFdX06fJnucujU3WP3ES4/3rhufBK4NNaec5e5dbnH2KlAx7J5SyMIZ
0qUFB/dmXDSb3gsfScSGo1F71Ad0CA==
=asAm
-----END PGP SIGNATURE-----
Merge tag 'fscrypt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/fscrypt
Pull fscrypt updates from Ted Ts'o:
"Lots of cleanups, mostly courtesy by Eric Biggers"
* tag 'fscrypt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/fscrypt:
fscrypt: lock mutex before checking for bounce page pool
fscrypt: add a documentation file for filesystem-level encryption
ext4: switch to fscrypt_prepare_setattr()
ext4: switch to fscrypt_prepare_lookup()
ext4: switch to fscrypt_prepare_rename()
ext4: switch to fscrypt_prepare_link()
ext4: switch to fscrypt_file_open()
fscrypt: new helper function - fscrypt_prepare_setattr()
fscrypt: new helper function - fscrypt_prepare_lookup()
fscrypt: new helper function - fscrypt_prepare_rename()
fscrypt: new helper function - fscrypt_prepare_link()
fscrypt: new helper function - fscrypt_file_open()
fscrypt: new helper function - fscrypt_require_key()
fscrypt: remove unneeded empty fscrypt_operations structs
fscrypt: remove ->is_encrypted()
fscrypt: switch from ->is_encrypted() to IS_ENCRYPTED()
fs, fscrypt: add an S_ENCRYPTED inode flag
fscrypt: clean up include file mess
Pull crypto updates from Herbert Xu:
"Here is the crypto update for 4.15:
API:
- Disambiguate EBUSY when queueing crypto request by adding ENOSPC.
This change touches code outside the crypto API.
- Reset settings when empty string is written to rng_current.
Algorithms:
- Add OSCCA SM3 secure hash.
Drivers:
- Remove old mv_cesa driver (replaced by marvell/cesa).
- Enable rfc3686/ecb/cfb/ofb AES in crypto4xx.
- Add ccm/gcm AES in crypto4xx.
- Add support for BCM7278 in iproc-rng200.
- Add hash support on Exynos in s5p-sss.
- Fix fallback-induced error in vmx.
- Fix output IV in atmel-aes.
- Fix empty GCM hash in mediatek.
Others:
- Fix DoS potential in lib/mpi.
- Fix potential out-of-order issues with padata"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (162 commits)
lib/mpi: call cond_resched() from mpi_powm() loop
crypto: stm32/hash - Fix return issue on update
crypto: dh - Remove pointless checks for NULL 'p' and 'g'
crypto: qat - Clean up error handling in qat_dh_set_secret()
crypto: dh - Don't permit 'key' or 'g' size longer than 'p'
crypto: dh - Don't permit 'p' to be 0
crypto: dh - Fix double free of ctx->p
hwrng: iproc-rng200 - Add support for BCM7278
dt-bindings: rng: Document BCM7278 RNG200 compatible
crypto: chcr - Replace _manual_ swap with swap macro
crypto: marvell - Add a NULL entry at the end of mv_cesa_plat_id_table[]
hwrng: virtio - Virtio RNG devices need to be re-registered after suspend/resume
crypto: atmel - remove empty functions
crypto: ecdh - remove empty exit()
MAINTAINERS: update maintainer for qat
crypto: caam - remove unused param of ctx_map_to_sec4_sg()
crypto: caam - remove unneeded edesc zeroization
crypto: atmel-aes - Reset the controller before each use
crypto: atmel-aes - properly set IV after {en,de}crypt
hwrng: core - Reset user selected rng by writing "" to rng_current
...
fscrypt starts several async. crypto ops and waiting for them to
complete. Move it over to generic code doing the same.
Signed-off-by: Gilad Ben-Yossef <gilad@benyossef.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
fscrypt_initialize(), which allocates the global bounce page pool when
an encrypted file is first accessed, uses "double-checked locking" to
try to avoid locking fscrypt_init_mutex. However, it doesn't use any
memory barriers, so it's theoretically possible for a thread to observe
a bounce page pool which has not been fully initialized. This is a
classic bug with "double-checked locking".
While "only a theoretical issue" in the latest kernel, in pre-4.8
kernels the pointer that was checked was not even the last to be
initialized, so it was easily possible for a crash (NULL pointer
dereference) to happen. This was changed only incidentally by the large
refactor to use fs/crypto/.
Solve both problems in a trivial way that can easily be backported: just
always take the mutex. It's theoretically less efficient, but it
shouldn't be noticeable in practice as the mutex is only acquired very
briefly once per encrypted file.
Later I'd like to make this use a helper macro like DO_ONCE(). However,
DO_ONCE() runs in atomic context, so we'd need to add a new macro that
allows blocking.
Cc: stable@vger.kernel.org # v4.1+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Please do not apply this to mainline directly, instead please re-run the
coccinelle script shown below and apply its output.
For several reasons, it is desirable to use {READ,WRITE}_ONCE() in
preference to ACCESS_ONCE(), and new code is expected to use one of the
former. So far, there's been no reason to change most existing uses of
ACCESS_ONCE(), as these aren't harmful, and changing them results in
churn.
However, for some features, the read/write distinction is critical to
correct operation. To distinguish these cases, separate read/write
accessors must be used. This patch migrates (most) remaining
ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following
coccinelle script:
----
// Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and
// WRITE_ONCE()
// $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch
virtual patch
@ depends on patch @
expression E1, E2;
@@
- ACCESS_ONCE(E1) = E2
+ WRITE_ONCE(E1, E2)
@ depends on patch @
expression E;
@@
- ACCESS_ONCE(E)
+ READ_ONCE(E)
----
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: davem@davemloft.net
Cc: linux-arch@vger.kernel.org
Cc: mpe@ellerman.id.au
Cc: shuah@kernel.org
Cc: snitzer@redhat.com
Cc: thor.thayer@linux.intel.com
Cc: tj@kernel.org
Cc: viro@zeniv.linux.org.uk
Cc: will.deacon@arm.com
Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduce a helper function which prepares to look up the given dentry
in the given directory. If the directory is encrypted, it handles
loading the directory's encryption key, setting the dentry's ->d_op to
fscrypt_d_ops, and setting DCACHE_ENCRYPTED_WITH_KEY if the directory's
encryption key is available.
Note: once all filesystems switch over to this, we'll be able to move
fscrypt_d_ops and fscrypt_set_encrypted_dentry() to fscrypt_private.h.
Acked-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Introduce a helper function which prepares to rename a file into a
possibly encrypted directory. It handles loading the encryption keys
for the source and target directories if needed, and it handles
enforcing that if the target directory (and the source directory for a
cross-rename) is encrypted, then the file being moved into the directory
has the same encryption policy as its containing directory.
Acked-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Introduce a helper function which prepares to link an inode into a
possibly-encrypted directory. It handles setting up the target
directory's encryption key, then verifying that the link won't violate
the constraint that all files in an encrypted directory tree use the
same encryption policy.
Acked-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Add a helper function which prepares to open a regular file which may be
encrypted. It handles setting up the file's encryption key, then
checking that the file's encryption policy matches that of its parent
directory (if the parent directory is encrypted). It may be set as the
->open() method or it can be called from another ->open() method.
Acked-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
IS_ENCRYPTED() now gives the same information as
i_sb->s_cop->is_encrypted() but is more efficient, since IS_ENCRYPTED()
is just a simple flag check. Prepare to remove ->is_encrypted() by
switching all callers to IS_ENCRYPTED().
Acked-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Filesystems have to include different header files based on whether they
are compiled with encryption support or not. That's nasty and messy.
Instead, rationalise the headers so we have a single include fscrypt.h
and let it decide what internal implementation to include based on the
__FS_HAS_ENCRYPTION define. Filesystems set __FS_HAS_ENCRYPTION to 1
before including linux/fscrypt.h if they are built with encryption
support. Otherwise, they must set __FS_HAS_ENCRYPTION to 0.
Add guards to prevent fscrypt_supp.h and fscrypt_notsupp.h from being
directly included by filesystems.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
[EB: use 1 and 0 rather than defined/undefined]
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
When an fscrypt-encrypted file is opened, we request the file's master
key from the keyrings service as a logon key, then access its payload.
However, a revoked key has a NULL payload, and we failed to check for
this. request_key() *does* skip revoked keys, but there is still a
window where the key can be revoked before we acquire its semaphore.
Fix it by checking for a NULL payload, treating it like a key which was
already revoked at the time it was requested.
Fixes: 88bd6ccdcd ("ext4 crypto: add encryption key management facilities")
Reviewed-by: James Morris <james.l.morris@oracle.com>
Cc: <stable@vger.kernel.org> [v4.1+]
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
This way we don't need a block_device structure to submit I/O. The
block_device has different life time rules from the gendisk and
request_queue and is usually only available when the block device node
is open. Other callers need to explicitly create one (e.g. the lightnvm
passthrough code, or the new nvme multipathing code).
For the actual I/O path all that we need is the gendisk, which exists
once per block device. But given that the block layer also does
partition remapping we additionally need a partition index, which is
used for said remapping in generic_make_request.
Note that all the block drivers generally want request_queue or
sometimes the gendisk, so this removes a layer of indirection all
over the stack.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
feature, which allows ext4 directories to support over 2 billion
directory entries (assuming ~64 byte file names; in practice, users
will run into practical performance limits first.) This feature was
originally written by the Lustre team, and credit goes to Artem
Blagodarenko from Seagate for getting this feature upstream.
The second major major feature allows ext4 to support extended
attribute values up to 64k. This feature was also originally from
Lustre, and has been enhanced by Tahsin Erdogan from Google with a
deduplication feature so that if multiple files have the same xattr
value (for example, Windows ACL's stored by Samba), only one copy will
be stored on disk for encoding and caching efficiency.
We also have the usual set of bug fixes, cleanups, and optimizations.
-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEEK2m5VNv+CHkogTfJ8vlZVpUNgaMFAllhl5AACgkQ8vlZVpUN
gaOiNQf+L23sT9KIQmFwQP38vkBVw67Eo7gBfevmk7oqQLiRppT5mmLzW8EWEDxR
PVaDQXvSZi18wSCAAcCd1ZqeIZk0P6tst0ufnIT60tGlZdUlwSLyrqvV/30axR2g
6kcnv90ZszrQNx5U8q8bMzNrs1KtyPHFCRzavFsBX11WezNSpWnH2in/uxO+t9Jy
F2zlrLUrE2m9AVMH48Dh6LbeaB6pqgr4k3jq1jG4Iqb2h9xgU8OKhs8gL07YS+Qi
5A7s8GIvYQSoZUO9DOOie2f1zhpO0KrhXchyZTJukVQH7TsmFxoSh0vhXnP1Bohu
CNLV6dzetDT0VfmPr1WhVe7lhZeeVw==
=FFkF
-----END PGP SIGNATURE-----
Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
Pull ext4 updates from Ted Ts'o:
"The first major feature for ext4 this merge window is the largedir
feature, which allows ext4 directories to support over 2 billion
directory entries (assuming ~64 byte file names; in practice, users
will run into practical performance limits first.) This feature was
originally written by the Lustre team, and credit goes to Artem
Blagodarenko from Seagate for getting this feature upstream.
The second major major feature allows ext4 to support extended
attribute values up to 64k. This feature was also originally from
Lustre, and has been enhanced by Tahsin Erdogan from Google with a
deduplication feature so that if multiple files have the same xattr
value (for example, Windows ACL's stored by Samba), only one copy will
be stored on disk for encoding and caching efficiency.
We also have the usual set of bug fixes, cleanups, and optimizations"
* tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: (47 commits)
ext4: fix spelling mistake: "prellocated" -> "preallocated"
ext4: fix __ext4_new_inode() journal credits calculation
ext4: skip ext4_init_security() and encryption on ea_inodes
fs: generic_block_bmap(): initialize all of the fields in the temp bh
ext4: change fast symlink test to not rely on i_blocks
ext4: require key for truncate(2) of encrypted file
ext4: don't bother checking for encryption key in ->mmap()
ext4: check return value of kstrtoull correctly in reserved_clusters_store
ext4: fix off-by-one fsmap error on 1k block filesystems
ext4: return EFSBADCRC if a bad checksum error is found in ext4_find_entry()
ext4: return EIO on read error in ext4_find_entry
ext4: forbid encrypting root directory
ext4: send parallel discards on commit completions
ext4: avoid unnecessary stalls in ext4_evict_inode()
ext4: add nombcache mount option
ext4: strong binding of xattr inode references
ext4: eliminate xattr entry e_hash recalculation for removes
ext4: reserve space for xattr entries/names
quota: add get_inode_usage callback to transfer multi-inode charges
ext4: xattr inode deduplication
...
-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEEK2m5VNv+CHkogTfJ8vlZVpUNgaMFAllhktgACgkQ8vlZVpUN
gaOQIQf+KM2s46sxxEl0/hjdBXR4OxTmSS2/0900NPyg7JHKlL8PdYslOyvMiKjo
wEi+YPwwQgbHtxhI1VINfV/q12MZHwvmFOfD9NzjrISwfmfsKj0dBgZDAfBH82sK
12wKgUxA8xJ4P+Xdvnz2PokRcFCsh1YUr5IUQkP3JR2RZOxNFUj42QwPJ2yWzqxO
MsnepMjIHsxvXZi0E7sPjRaoFsh3DDeLmNl8sX6INodC7hxJ1LotYKqJhA4stQpB
ezXY2tabwg3gaOWvWH7THyHhGntbZVDga3iRrKdNLahXN8OBdHktmG75ubiN6tEg
x80pqQLgr41yIQuJVOuyeh5jLYZrww==
=i4r9
-----END PGP SIGNATURE-----
Merge tag 'fscrypt_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/fscrypt
Pull fscrypt updates from Ted Ts'o:
"Add support for 128-bit AES and some cleanups to fscrypt"
* tag 'fscrypt_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/fscrypt:
fscrypt: make ->dummy_context() return bool
fscrypt: add support for AES-128-CBC
fscrypt: inline fscrypt_free_filename()
ea_inode feature allows creating extended attributes that are up to
64k in size. Update __ext4_new_inode() to pick increased credit limits.
To avoid overallocating too many journal credits, update
__ext4_xattr_set_credits() to make a distinction between xattr create
vs update. This helps __ext4_new_inode() because all attributes are
known to be new, so we can save credits that are normally needed to
delete old values.
Also, have fscrypt specify its maximum context size so that we don't
end up allocating credits for 64k size.
Signed-off-by: Tahsin Erdogan <tahsin@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
fscrypt provides facilities to use different encryption algorithms which
are selectable by userspace when setting the encryption policy. Currently,
only AES-256-XTS for file contents and AES-256-CBC-CTS for file names are
implemented. This is a clear case of kernel offers the mechanism and
userspace selects a policy. Similar to what dm-crypt and ecryptfs have.
This patch adds support for using AES-128-CBC for file contents and
AES-128-CBC-CTS for file name encryption. To mitigate watermarking
attacks, IVs are generated using the ESSIV algorithm. While AES-CBC is
actually slightly less secure than AES-XTS from a security point of view,
there is more widespread hardware support. Using AES-CBC gives us the
acceptable performance while still providing a moderate level of security
for persistent storage.
Especially low-powered embedded devices with crypto accelerators such as
CAAM or CESA often only support AES-CBC. Since using AES-CBC over AES-XTS
is basically thought of a last resort, we use AES-128-CBC over AES-256-CBC
since it has less encryption rounds and yields noticeable better
performance starting from a file size of just a few kB.
Signed-off-by: Daniel Walter <dwalter@sigma-star.at>
[david@sigma-star.at: addressed review comments]
Signed-off-by: David Gstir <david@sigma-star.at>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
fscrypt_free_filename() only needs to do a kfree() of crypto_buf.name,
which works well as an inline function. We can skip setting the various
pointers to NULL, since no user cares about it (the name is always freed
just before it goes out of scope).
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: David Gstir <david@sigma-star.at>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Replace bi_error with a new bi_status to allow for a clear conversion.
Note that device mapper overloaded bi_error with a private value, which
we'll have to keep arround at least for now and thus propagate to a
proper blk_status_t value.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
Introduce a helper function fscrypt_match_name() which tests whether a
fscrypt_name matches a directory entry. Also clean up the magic numbers
and document things properly.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
When accessing an encrypted directory without the key, userspace must
operate on filenames derived from the ciphertext names, which contain
arbitrary bytes. Since we must support filenames as long as NAME_MAX,
we can't always just base64-encode the ciphertext, since that may make
it too long. Currently, this is solved by presenting long names in an
abbreviated form containing any needed filesystem-specific hashes (e.g.
to identify a directory block), then the last 16 bytes of ciphertext.
This needs to be sufficient to identify the actual name on lookup.
However, there is a bug. It seems to have been assumed that due to the
use of a CBC (ciphertext block chaining)-based encryption mode, the last
16 bytes (i.e. the AES block size) of ciphertext would depend on the
full plaintext, preventing collisions. However, we actually use CBC
with ciphertext stealing (CTS), which handles the last two blocks
specially, causing them to appear "flipped". Thus, it's actually the
second-to-last block which depends on the full plaintext.
This caused long filenames that differ only near the end of their
plaintexts to, when observed without the key, point to the wrong inode
and be undeletable. For example, with ext4:
# echo pass | e4crypt add_key -p 16 edir/
# seq -f "edir/abcdefghijklmnopqrstuvwxyz012345%.0f" 100000 | xargs touch
# find edir/ -type f | xargs stat -c %i | sort | uniq | wc -l
100000
# sync
# echo 3 > /proc/sys/vm/drop_caches
# keyctl new_session
# find edir/ -type f | xargs stat -c %i | sort | uniq | wc -l
2004
# rm -rf edir/
rm: cannot remove 'edir/_A7nNFi3rhkEQlJ6P,hdzluhODKOeWx5V': Structure needs cleaning
...
To fix this, when presenting long encrypted filenames, encode the
second-to-last block of ciphertext rather than the last 16 bytes.
Although it would be nice to solve this without depending on a specific
encryption mode, that would mean doing a cryptographic hash like SHA-256
which would be much less efficient. This way is sufficient for now, and
it's still compatible with encryption modes like HEH which are strong
pseudorandom permutations. Also, changing the presented names is still
allowed at any time because they are only provided to allow applications
to do things like delete encrypted directories. They're not designed to
be used to persistently identify files --- which would be hard to do
anyway, given that they're encrypted after all.
For ease of backports, this patch only makes the minimal fix to both
ext4 and f2fs. It leaves ubifs as-is, since ubifs doesn't compare the
ciphertext block yet. Follow-on patches will clean things up properly
and make the filesystems use a shared helper function.
Fixes: 5de0b4d0cd ("ext4 crypto: simplify and speed up filename encryption")
Reported-by: Gwendal Grignou <gwendal@chromium.org>
Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
To mitigate some types of offline attacks, filesystem encryption is
designed to enforce that all files in an encrypted directory tree use
the same encryption policy (i.e. the same encryption context excluding
the nonce). However, the fscrypt_has_permitted_context() function which
enforces this relies on comparing struct fscrypt_info's, which are only
available when we have the encryption keys. This can cause two
incorrect behaviors:
1. If we have the parent directory's key but not the child's key, or
vice versa, then fscrypt_has_permitted_context() returned false,
causing applications to see EPERM or ENOKEY. This is incorrect if
the encryption contexts are in fact consistent. Although we'd
normally have either both keys or neither key in that case since the
master_key_descriptors would be the same, this is not guaranteed
because keys can be added or removed from keyrings at any time.
2. If we have neither the parent's key nor the child's key, then
fscrypt_has_permitted_context() returned true, causing applications
to see no error (or else an error for some other reason). This is
incorrect if the encryption contexts are in fact inconsistent, since
in that case we should deny access.
To fix this, retrieve and compare the fscrypt_contexts if we are unable
to set up both fscrypt_infos.
While this slightly hurts performance when accessing an encrypted
directory tree without the key, this isn't a case we really need to be
optimizing for; access *with* the key is much more important.
Furthermore, the performance hit is barely noticeable given that we are
already retrieving the fscrypt_context and doing two keyring searches in
fscrypt_get_encryption_info(). If we ever actually wanted to optimize
this case we might start by caching the fscrypt_contexts.
Cc: stable@vger.kernel.org # 4.0+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
This commit exposes the necessary constants and structures for a
userspace program to pass filesystem encryption keys into the keyring.
The fscrypt_key structure was already part of the kernel ABI, this
change just makes it so programs no longer have to redeclare these
structures (like e4crypt in e2fsprogs currently does).
Note that we do not expose the other FS_*_KEY_SIZE constants as they are
not necessary. Only XTS is supported for contents_encryption_mode, so
currently FS_MAX_KEY_SIZE bytes of key material must always be passed to
the kernel.
This commit also removes __packed from fscrypt_key as it does not
contain any implicit padding and does not refer to an on-disk structure.
Signed-off-by: Joe Richey <joerichey@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
The functions in fs/crypto/*.c are only called by filesystems configured
with encryption support. Since the ->get_context(), ->set_context(),
and ->empty_dir() operations are always provided in that case (and must
be, otherwise there would be no way to get/set encryption policies, or
in the case of ->get_context() even access encrypted files at all),
there is no need to check for these operations being NULL and we can
remove these unneeded checks.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEEK2m5VNv+CHkogTfJ8vlZVpUNgaMFAljW4wYACgkQ8vlZVpUN
gaPYugf9ExFbJhN+iYqUVbGXPvlr5VpEtDeVt7IfO3a37hqCEQ0IEPzksNIfUFul
B8/rYXpz0B5gqCJeo66CGLkb1SVvSoSKCq9/BTQtugohxM7sGxDFTmdB+A+u0QJH
leILfaMFuj0DhVOrdYVpGh7e1XPgSTUWy6/G42OJqf3SV2WxGRJtyBfmghZxEdiY
XYCGqjq47yOIPvzB+ufKe1hnphKMgxlHeuPvByzPCvOs58GlxAYR3Ycuvjc/nz+8
QVlAEPpGhf9ytEXELsxq/ZbsNj9xtXsNAzkAoMK+xZ2JCxIHRcS1ay/iAwxw+d9r
bnlpI+8tQ79GIGCv3cusJSwq7j1iuQ==
=wPlW
-----END PGP SIGNATURE-----
Merge tag 'fscrypt-for-linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/fscrypt
Pull fscrypto fixes from Ted Ts'o:
"A code cleanup and bugfix for fs/crypto"
* tag 'fscrypt-for-linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/fscrypt:
fscrypt: eliminate ->prepare_context() operation
fscrypt: remove broken support for detecting keyring key revocation
The only use of the ->prepare_context() fscrypt operation was to allow
ext4 to evict inline data from the inode before ->set_context().
However, there is no reason why this cannot be done as simply the first
step in ->set_context(), and in fact it makes more sense to do it that
way because then the policy modes and flags get validated before any
real work is done. Therefore, merge ext4_prepare_context() into
ext4_set_context(), and remove ->prepare_context().
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Filesystem encryption ostensibly supported revoking a keyring key that
had been used to "unlock" encrypted files, causing those files to become
"locked" again. This was, however, buggy for several reasons, the most
severe of which was that when key revocation happened to be detected for
an inode, its fscrypt_info was immediately freed, even while other
threads could be using it for encryption or decryption concurrently.
This could be exploited to crash the kernel or worse.
This patch fixes the use-after-free by removing the code which detects
the keyring key having been revoked, invalidated, or expired. Instead,
an encrypted inode that is "unlocked" now simply remains unlocked until
it is evicted from memory. Note that this is no worse than the case for
block device-level encryption, e.g. dm-crypt, and it still remains
possible for a privileged user to evict unused pages, inodes, and
dentries by running 'sync; echo 3 > /proc/sys/vm/drop_caches', or by
simply unmounting the filesystem. In fact, one of those actions was
already needed anyway for key revocation to work even somewhat sanely.
This change is not expected to break any applications.
In the future I'd like to implement a real API for fscrypt key
revocation that interacts sanely with ongoing filesystem operations ---
waiting for existing operations to complete and blocking new operations,
and invalidating and sanitizing key material and plaintext from the VFS
caches. But this is a hard problem, and for now this bug must be fixed.
This bug affected almost all versions of ext4, f2fs, and ubifs
encryption, and it was potentially reachable in any kernel configured
with encryption support (CONFIG_EXT4_ENCRYPTION=y,
CONFIG_EXT4_FS_ENCRYPTION=y, CONFIG_F2FS_FS_ENCRYPTION=y, or
CONFIG_UBIFS_FS_ENCRYPTION=y). Note that older kernels did not use the
shared fs/crypto/ code, but due to the potential security implications
of this bug, it may still be worthwhile to backport this fix to them.
Fixes: b7236e21d5 ("ext4 crypto: reorganize how we store keys in the inode")
Cc: stable@vger.kernel.org # v4.2+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Acked-by: Michael Halcrow <mhalcrow@google.com>
rcu_dereference_key() and user_key_payload() are currently being used in
two different, incompatible ways:
(1) As a wrapper to rcu_dereference() - when only the RCU read lock used
to protect the key.
(2) As a wrapper to rcu_dereference_protected() - when the key semaphor is
used to protect the key and the may be being modified.
Fix this by splitting both of the key wrappers to produce:
(1) RCU accessors for keys when caller has the key semaphore locked:
dereference_key_locked()
user_key_payload_locked()
(2) RCU accessors for keys when caller holds the RCU read lock:
dereference_key_rcu()
user_key_payload_rcu()
This should fix following warning in the NFS idmapper
===============================
[ INFO: suspicious RCU usage. ]
4.10.0 #1 Tainted: G W
-------------------------------
./include/keys/user-type.h:53 suspicious rcu_dereference_protected() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 0
1 lock held by mount.nfs/5987:
#0: (rcu_read_lock){......}, at: [<d000000002527abc>] nfs_idmap_get_key+0x15c/0x420 [nfsv4]
stack backtrace:
CPU: 1 PID: 5987 Comm: mount.nfs Tainted: G W 4.10.0 #1
Call Trace:
dump_stack+0xe8/0x154 (unreliable)
lockdep_rcu_suspicious+0x140/0x190
nfs_idmap_get_key+0x380/0x420 [nfsv4]
nfs_map_name_to_uid+0x2a0/0x3b0 [nfsv4]
decode_getfattr_attrs+0xfac/0x16b0 [nfsv4]
decode_getfattr_generic.constprop.106+0xbc/0x150 [nfsv4]
nfs4_xdr_dec_lookup_root+0xac/0xb0 [nfsv4]
rpcauth_unwrap_resp+0xe8/0x140 [sunrpc]
call_decode+0x29c/0x910 [sunrpc]
__rpc_execute+0x140/0x8f0 [sunrpc]
rpc_run_task+0x170/0x200 [sunrpc]
nfs4_call_sync_sequence+0x68/0xa0 [nfsv4]
_nfs4_lookup_root.isra.44+0xd0/0xf0 [nfsv4]
nfs4_lookup_root+0xe0/0x350 [nfsv4]
nfs4_lookup_root_sec+0x70/0xa0 [nfsv4]
nfs4_find_root_sec+0xc4/0x100 [nfsv4]
nfs4_proc_get_rootfh+0x5c/0xf0 [nfsv4]
nfs4_get_rootfh+0x6c/0x190 [nfsv4]
nfs4_server_common_setup+0xc4/0x260 [nfsv4]
nfs4_create_server+0x278/0x3c0 [nfsv4]
nfs4_remote_mount+0x50/0xb0 [nfsv4]
mount_fs+0x74/0x210
vfs_kern_mount+0x78/0x220
nfs_do_root_mount+0xb0/0x140 [nfsv4]
nfs4_try_mount+0x60/0x100 [nfsv4]
nfs_fs_mount+0x5ec/0xda0 [nfs]
mount_fs+0x74/0x210
vfs_kern_mount+0x78/0x220
do_mount+0x254/0xf70
SyS_mount+0x94/0x100
system_call+0x38/0xe0
Reported-by: Jan Stancek <jstancek@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Jan Stancek <jstancek@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
When a completion is declared on-stack we have to use
COMPLETION_INITIALIZER_ONSTACK().
Fixes: 0b81d07790 ("fs crypto: move per-file encryption from f2fs
tree to fs/crypto")
Signed-off-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Previously, each filesystem configured without encryption support would
define all the public fscrypt functions to their notsupp_* stubs. This
list of #defines had to be updated in every filesystem whenever a change
was made to the public fscrypt functions. To make things more
maintainable now that we have three filesystems using fscrypt, split the
old header fscrypto.h into several new headers. fscrypt_supp.h contains
the real declarations and is included by filesystems when configured
with encryption support, whereas fscrypt_notsupp.h contains the inline
stubs and is included by filesystems when configured without encryption
support. fscrypt_common.h contains common declarations needed by both.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
res is assigned to sizeof(ctx), however, this is unused and res
is updated later on without that assigned value to res ever being
used. Remove this redundant assignment.
Fixes CoverityScan CID#1395546 "Unused value"
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
There was an unnecessary amount of complexity around requesting the
filesystem-specific key prefix. It was unclear why; perhaps it was
envisioned that different instances of the same filesystem type could
use different key prefixes, or that key prefixes could be binary.
However, neither of those things were implemented or really make sense
at all. So simplify the code by making key_prefix a const char *.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Currently, the test_dummy_encryption ext4 mount option, which exists
only to test encrypted I/O paths with xfstests, overrides all
per-inode encryption keys with a fixed key.
This change minimizes test_dummy_encryption-specific code path changes
by supplying a fake context for directories which are not encrypted
for use when creating new directories, files, or symlinks. This
allows us to properly exercise the keyring lookup, derivation, and
context inheritance code paths.
Before mounting a file system using test_dummy_encryption, userspace
must execute the following shell commands:
mode='\x00\x00\x00\x00'
raw="$(printf ""\\\\x%02x"" $(seq 0 63))"
if lscpu | grep "Byte Order" | grep -q Little ; then
size='\x40\x00\x00\x00'
else
size='\x00\x00\x00\x40'
fi
key="${mode}${raw}${size}"
keyctl new_session
echo -n -e "${key}" | keyctl padd logon fscrypt:4242424242424242 @s
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
That way we can get rid of the direct dependency on CONFIG_BLOCK.
Fixes: d475a50745 ("ubifs: Add skeleton for fscrypto")
Reported-by: Arnd Bergmann <arnd@arndb.de>
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Gstir <david@sigma-star.at>
Signed-off-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
It was possible for the ->get_context() operation to fail with a
specific error code, which was then not returned to the caller of
FS_IOC_SET_ENCRYPTION_POLICY or FS_IOC_GET_ENCRYPTION_POLICY. Make sure
to pass through these error codes. Also reorganize the code so that
->get_context() only needs to be called one time when setting an
encryption policy, and handle contexts of unrecognized sizes more
appropriately.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Several warning messages were not rate limited and were user-triggerable
from FS_IOC_SET_ENCRYPTION_POLICY. These shouldn't really have been
there in the first place, but either way they aren't as useful now that
the error codes have been improved. So just remove them.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
As part of an effort to clean up fscrypt-related error codes, make
FS_IOC_SET_ENCRYPTION_POLICY fail with EEXIST when the file already uses
a different encryption policy. This is more descriptive than EINVAL,
which was ambiguous with some of the other error cases.
I am not aware of any users who might be relying on the previous error
code of EINVAL, which was never documented anywhere.
This failure case will be exercised by an xfstest.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
As part of an effort to clean up fscrypt-related error codes, make
FS_IOC_SET_ENCRYPTION_POLICY fail with ENOTDIR when the file descriptor
does not refer to a directory. This is more descriptive than EINVAL,
which was ambiguous with some of the other error cases.
I am not aware of any users who might be relying on the previous error
code of EINVAL, which was never documented anywhere, and in some buggy
kernels did not exist at all as the S_ISDIR() check was missing.
This failure case will be exercised by an xfstest.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
As part of an effort to clean up fscrypt-related error codes, make
attempting to create a file in an encrypted directory that hasn't been
"unlocked" fail with ENOKEY. Previously, several error codes were used
for this case, including ENOENT, EACCES, and EPERM, and they were not
consistent between and within filesystems. ENOKEY is a better choice
because it expresses that the failure is due to lacking the encryption
key. It also matches the error code returned when trying to open an
encrypted regular file without the key.
I am not aware of any users who might be relying on the previous
inconsistent error codes, which were never documented anywhere.
This failure case will be exercised by an xfstest.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Attempting to link a device node, named pipe, or socket file into an
encrypted directory through rename(2) or link(2) always failed with
EPERM. This happened because fscrypt_has_permitted_context() saw that
the file was unencrypted and forbid creating the link. This behavior
was unexpected because such files are never encrypted; only regular
files, directories, and symlinks can be encrypted.
To fix this, make fscrypt_has_permitted_context() always return true on
special files.
This will be covered by a test in my encryption xfstests patchset.
Fixes: 9bd8212f98 ("ext4 crypto: add encryption policy and password salt support")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Richard Weinberger <richard@nod.at>
Cc: stable@vger.kernel.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Commit f1c131b454: "crypto: xts - Convert to skcipher" now fails
the setkey operation if the AES key is the same as the tweak key.
Previously this check was only done if FIPS mode is enabled. Now this
check is also done if weak key checking was requested. This is
reasonable, but since we were using the dummy key which was a constant
series of 0x42 bytes, it now caused dummy encrpyption test mode to
fail.
Fix this by using 0x42... and 0x24... for the two keys, so they are
different.
Fixes: f1c131b454
Cc: stable@vger.kernel.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
... to better explain its purpose after introducing in-place encryption
without bounce buffer.
Signed-off-by: David Gstir <david@sigma-star.at>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Since fscrypt users can now indicated if fscrypt_encrypt_page() should
use a bounce page, we can delay the bounce page pool initialization util
it is really needed. That is until fscrypt_operations has no
FS_CFLG_OWN_PAGES flag set.
Signed-off-by: David Gstir <david@sigma-star.at>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Rename the FS_CFLG_INPLACE_ENCRYPTION flag to FS_CFLG_OWN_PAGES which,
when set, indicates that the fs uses pages under its own control as
opposed to writeback pages which require locking and a bounce buffer for
encryption.
Signed-off-by: David Gstir <david@sigma-star.at>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
In case of in-place encryption fscrypt_ctx was allocated but never
released. Since we don't need it for in-place encryption, we skip
allocating it.
Fixes: 1c7dcf69ee ("fscrypt: Add in-place encryption mode")
Signed-off-by: David Gstir <david@sigma-star.at>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Actually use the fs-provided index instead of always using page->index
which is only set for page-cache pages.
Fixes: 9c4bb8a3a9 ("fscrypt: Let fs select encryption index/tweak")
Signed-off-by: David Gstir <david@sigma-star.at>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
The fscrypt_initalize() function isn't used outside fs/crypto, so
there's no point making it be an exported symbol.
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Eric Biggers <ebiggers@google.com>
To avoid namespace collisions, rename get_crypt_info() to
fscrypt_get_crypt_info(). The function is only used inside the
fs/crypto directory, so declare it in the new header file,
fscrypt_private.h.
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Multiple bugs were recently fixed in the "set encryption policy" ioctl.
To make it clear that fscrypt_process_policy() and fscrypt_get_policy()
implement ioctls and therefore their implementations must take standard
security and correctness precautions, rename them to
fscrypt_ioctl_set_policy() and fscrypt_ioctl_get_policy(). Make the
latter take in a struct file * to make it consistent with the former.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
SHA256 and ENCRYPTED_KEYS are not needed. CTR shouldn't be needed
either, but I left it for now because it was intentionally added by
commit 71dea01ea2 ("ext4 crypto: require CONFIG_CRYPTO_CTR if ext4
encryption is enabled"). So it sounds like there may be a dependency
problem elsewhere, which I have not been able to identify specifically,
that must be solved before CTR can be removed.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
With the new (in 4.9) option to use a virtually-mapped stack
(CONFIG_VMAP_STACK), stack buffers cannot be used as input/output for
the scatterlist crypto API because they may not be directly mappable to
struct page. get_crypt_info() was using a stack buffer to hold the
output from the encryption operation used to derive the per-file key.
Fix it by using a heap buffer.
This bug could most easily be observed in a CONFIG_DEBUG_SG kernel
because this allowed the BUG in sg_set_buf() to be triggered.
Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
With the new (in 4.9) option to use a virtually-mapped stack
(CONFIG_VMAP_STACK), stack buffers cannot be used as input/output for
the scatterlist crypto API because they may not be directly mappable to
struct page. For short filenames, fname_encrypt() was encrypting a
stack buffer holding the padded filename. Fix it by encrypting the
filename in-place in the output buffer, thereby making the temporary
buffer unnecessary.
This bug could most easily be observed in a CONFIG_DEBUG_SG kernel
because this allowed the BUG in sg_set_buf() to be triggered.
Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Avoid re-use of page index as tweak for AES-XTS when multiple parts of
same page are encrypted. This will happen on multiple (partial) calls of
fscrypt_encrypt_page on same page.
page->index is only valid for writeback pages.
Signed-off-by: David Gstir <david@sigma-star.at>
Signed-off-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Some filesystems, such as UBIFS, maintain a const pointer for struct
inode.
Signed-off-by: David Gstir <david@sigma-star.at>
Signed-off-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Not all filesystems work on full pages, thus we should allow them to
hand partial pages to fscrypt for en/decryption.
Signed-off-by: David Gstir <david@sigma-star.at>
Signed-off-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Some filesystem might pass pages which do not have page->mapping->host
set to the encrypted inode. We want the caller to explicitly pass the
corresponding inode.
Signed-off-by: David Gstir <david@sigma-star.at>
Signed-off-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
ext4 and f2fs require a bounce page when encrypting pages. However, not
all filesystems will need that (eg. UBIFS). This is handled via a
flag on fscrypt_operations where a fs implementation can select in-place
encryption over using a bounce page (which is the default).
Signed-off-by: David Gstir <david@sigma-star.at>
Signed-off-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
i_rwsem needs to be acquired while setting an encryption policy so that
concurrent calls to FS_IOC_SET_ENCRYPTION_POLICY are correctly
serialized (especially the ->get_context() + ->set_context() pair), and
so that new files cannot be created in the directory during or after the
->empty_dir() check.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Richard Weinberger <richard@nod.at>
Cc: stable@vger.kernel.org
The XTS tweak (or IV) was initialized differently on little endian and
big endian systems. Because the ciphertext depends on the XTS tweak, it
was not possible to use an encrypted filesystem created by a little
endian system on a big endian system and vice versa, even if they shared
the same PAGE_SIZE. Fix this by always using little endian.
This will break hypothetical big endian users of ext4 or f2fs
encryption. However, all users we are aware of are little endian, and
it's believed that "real" big endian users are unlikely to exist yet.
So this might as well be fixed now before it's too late.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@vger.kernel.org
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJX9pA6AAoJEPL5WVaVDYGj7fwH/0YcdQWBg0O5d7iXFnTcimh9
fiYkqKniBWQhgBAOFPMoNPRIW4tyeQmTtu8Rywx2Hr+v4lzJvuOaT18NDANdq/pp
u5eDrnJ4R+uqPJlgxVOzopLVJ6I2glgSSRdvAKYxwTYcv8F88ObzVfsJ4M415gPq
cbEKF+JT3l5hTGENR5sqmYvHYaNfOFkOqt4gulPtgk1eshy+BH/05M+qBSeA5a6k
srdon0pFRoUV68m+T4G8FqOZxdybeT5Yx6X0GJf0eQJoX7IaiQTPcDrXzlrbDBbN
rrzbpwsDeDKtgSOckbarCBroZKdToHFekfnOJ7IPWYq8IwYTSnZKFCWIRKO6z38=
=IvhS
-----END PGP SIGNATURE-----
Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
Pull ext4 updates from Ted Ts'o:
"Lots of bug fixes and cleanups"
* tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: (40 commits)
ext4: remove unused variable
ext4: use journal inode to determine journal overhead
ext4: create function to read journal inode
ext4: unmap metadata when zeroing blocks
ext4: remove plugging from ext4_file_write_iter()
ext4: allow unlocked direct IO when pages are cached
ext4: require encryption feature for EXT4_IOC_SET_ENCRYPTION_POLICY
fscrypto: use standard macros to compute length of fname ciphertext
ext4: do not unnecessarily null-terminate encrypted symlink data
ext4: release bh in make_indexed_dir
ext4: Allow parallel DIO reads
ext4: allow DAX writeback for hole punch
jbd2: fix lockdep annotation in add_transaction_credits()
blockgroup_lock.h: simplify definition of NR_BG_LOCKS
blockgroup_lock.h: remove debris from bgl_lock_ptr() conversion
fscrypto: make filename crypto functions return 0 on success
fscrypto: rename completion callbacks to reflect usage
fscrypto: remove unnecessary includes
fscrypto: improved validation when loading inode encryption metadata
ext4: fix memory leak when symlink decryption fails
...
Several filename crypto functions: fname_decrypt(),
fscrypt_fname_disk_to_usr(), and fscrypt_fname_usr_to_disk(), returned
the output length on success or -errno on failure. However, the output
length was redundant with the value written to 'oname->len'. It is also
potentially error-prone to make callers have to check for '< 0' instead
of '!= 0'.
Therefore, make these functions return 0 instead of a length, and make
the callers who cared about the return value being a length use
'oname->len' instead. For consistency also make other callers check for
a nonzero result rather than a negative result.
This change also fixes the inconsistency of fname_encrypt() actually
already returning 0 on success, not a length like the other filename
crypto functions and as documented in its function comment.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Andreas Dilger <adilger@dilger.ca>
Acked-by: Jaegeuk Kim <jaegeuk@kernel.org>
fscrypt_complete() was used only for data pages, not for all
encryption/decryption. Rename it to page_crypt_complete().
dir_crypt_complete() was used for filename encryption/decryption for
both directory entries and symbolic links. Rename it to
fname_crypt_complete().
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
This patch removes some #includes that are clearly not needed, such as a
reference to ecryptfs, which is unrelated to the new filesystem
encryption code.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
- Validate fscrypt_context.format and fscrypt_context.flags. If
unrecognized values are set, then the kernel may not know how to
interpret the encrypted file, so it should fail the operation.
- Validate that AES_256_XTS is used for contents and that AES_256_CTS is
used for filenames. It was previously possible for the kernel to
accept these reversed, though it would have taken manual editing of
the block device. This was not intended.
- Fail cleanly rather than BUG()-ing if a file has an unexpected type.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Since setting an encryption policy requires writing metadata to the
filesystem, it should be guarded by mnt_want_write/mnt_drop_write.
Otherwise, a user could cause a write to a frozen or readonly
filesystem. This was handled correctly by f2fs but not by ext4. Make
fscrypt_process_policy() handle it rather than relying on the filesystem
to get it right.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Cc: stable@vger.kernel.org # 4.1+; check fs/{ext4,f2fs}
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Acked-by: Jaegeuk Kim <jaegeuk@kernel.org>
The FS_IOC_SET_ENCRYPTION_POLICY ioctl allowed setting an encryption
policy on nondirectory files. This was unintentional, and in the case
of nonempty regular files did not behave as expected because existing
data was not actually encrypted by the ioctl.
In the case of ext4, the user could also trigger filesystem errors in
->empty_dir(), e.g. due to mismatched "directory" checksums when the
kernel incorrectly tried to interpret a regular file as a directory.
This bug affected ext4 with kernels v4.8-rc1 or later and f2fs with
kernels v4.6 and later. It appears that older kernels only permitted
directories and that the check was accidentally lost during the
refactoring to share the file encryption code between ext4 and f2fs.
This patch restores the !S_ISDIR() check that was present in older
kernels.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
On an ext4 or f2fs filesystem with file encryption supported, a user
could set an encryption policy on any empty directory(*) to which they
had readonly access. This is obviously problematic, since such a
directory might be owned by another user and the new encryption policy
would prevent that other user from creating files in their own directory
(for example).
Fix this by requiring inode_owner_or_capable() permission to set an
encryption policy. This means that either the caller must own the file,
or the caller must have the capability CAP_FOWNER.
(*) Or also on any regular file, for f2fs v4.6 and later and ext4
v4.8-rc1 and later; a separate bug fix is coming for that.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Cc: stable@vger.kernel.org # 4.1+; check fs/{ext4,f2fs}
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
This patch converts the simple bi_rw use cases in the block,
drivers, mm and fs code to set/get the bio operation using
bio_set_op_attrs/bio_op
These should be simple one or two liner cases, so I just did them
in one patch. The next patches handle the more complicated
cases in a module per patch.
Signed-off-by: Mike Christie <mchristi@redhat.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
This has callers of submit_bio/submit_bio_wait set the bio->bi_rw
instead of passing it in. This makes that use the same as
generic_make_request and how we set the other bio fields.
Signed-off-by: Mike Christie <mchristi@redhat.com>
Fixed up fs/ext4/crypto.c
Signed-off-by: Jens Axboe <axboe@fb.com>
This patch allows fscrypto to handle a second key prefix given by filesystem.
The main reason is to provide backward compatibility, since previously f2fs
used "f2fs:" as a crypto prefix instead of "fscrypt:".
Later, ext4 should also provide key_prefix() to give "ext4:".
One concern decribed by Ted would be kinda double check overhead of prefixes.
In x86, for example, validate_user_key consumes 8 ms after boot-up, which turns
out derive_key_aes() consumed most of the time to load specific crypto module.
After such the cold miss, it shows almost zero latencies, which treats as a
negligible overhead.
Note that request_key() detects wrong prefix in prior to derive_key_aes() even.
Cc: Ted Tso <tytso@mit.edu>
Cc: stable@vger.kernel.org # v4.6
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
As Al pointed, d_revalidate should return RCU lookup before using d_inode.
This was originally introduced by:
commit 34286d6662 ("fs: rcu-walk aware d_revalidate method").
Reported-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: stable <stable@vger.kernel.org>
This patch fixes the issue introduced by the ext4 crypto fix in a same manner.
For F2FS, however, we flush the pending IOs and wait for a while to acquire free
memory.
Fixes: c9af28fdd4 ("ext4 crypto: don't let data integrity writebacks fail with ENOMEM")
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
This patch updates fscrypto along with the below ext4 crypto change.
Fixes: 3d43bcfef5 ("ext4 crypto: use dget_parent() in ext4_d_revalidate()")
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE. And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.
Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.
Let's stop pretending that pages in page cache are special. They are
not.
The changes are pretty straight-forward:
- <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
- page_cache_get() -> get_page();
- page_cache_release() -> put_page();
This patch contains automated changes generated with coccinelle using
script below. For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.
The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.
There are few places in the code where coccinelle didn't reach. I'll
fix them manually in a separate patch. Comments and documentation also
will be addressed with the separate patch.
virtual patch
@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT
@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE
@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK
@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)
@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)
@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 0b81d07790 ("fs crypto: move per-file encryption from f2fs
tree to fs/crypto") moved the f2fs crypto files to fs/crypto/ and
renamed the symbol prefixes from "f2fs_" to "fscrypt_" (and from "F2FS_"
to just "FS" for preprocessor symbols).
Because of the symbol renaming, it's a bit hard to see it as a file
move: use
git show -M30 0b81d07790
to lower the rename detection to just 30% similarity and make git show
the files as renamed (the header file won't be shown as a rename even
then - since all it contains is symbol definitions, it looks almost
completely different).
Even with the renames showing as renames, the diffs are not all that
easy to read, since so much is just the renames. But Eric Biggers
noticed that it's not just all renames: the initialization of the
xts_tweak had been broken too, using the inode number rather than the
page offset.
That's not right - it makes the xfs_tweak the same for all pages of each
inode. It _might_ make sense to make the xfs_tweak contain both the
offset _and_ the inode number, but not just the inode number.
Reported-by: Eric Biggers <ebiggers3@gmail.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull f2fs updates from Jaegeuk Kim:
"New Features:
- uplift filesystem encryption into fs/crypto/
- give sysfs entries to control memroy consumption
Enhancements:
- aio performance by preallocating blocks in ->write_iter
- use writepages lock for only WB_SYNC_ALL
- avoid redundant inline_data conversion
- enhance forground GC
- use wait_for_stable_page as possible
- speed up SEEK_DATA and fiiemap
Bug Fixes:
- corner case in terms of -ENOSPC for inline_data
- hung task caused by long latency in shrinker
- corruption between atomic write and f2fs_trace_pid
- avoid garbage lengths in dentries
- revoke atomicly written pages if an error occurs
In addition, there are various minor bug fixes and clean-ups"
* tag 'for-f2fs-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs: (81 commits)
f2fs: submit node page write bios when really required
f2fs: add missing argument to f2fs_setxattr stub
f2fs: fix to avoid unneeded unlock_new_inode
f2fs: clean up opened code with f2fs_update_dentry
f2fs: declare static functions
f2fs: use cryptoapi crc32 functions
f2fs: modify the readahead method in ra_node_page()
f2fs crypto: sync ext4_lookup and ext4_file_open
fs crypto: move per-file encryption from f2fs tree to fs/crypto
f2fs: mutex can't be used by down_write_nest_lock()
f2fs: recovery missing dot dentries in root directory
f2fs: fix to avoid deadlock when merging inline data
f2fs: introduce f2fs_flush_merged_bios for cleanup
f2fs: introduce f2fs_update_data_blkaddr for cleanup
f2fs crypto: fix incorrect positioning for GCing encrypted data page
f2fs: fix incorrect upper bound when iterating inode mapping tree
f2fs: avoid hungtask problem caused by losing wake_up
f2fs: trace old block address for CoWed page
f2fs: try to flush inode after merging inline data
f2fs: show more info about superblock recovery
...
This patch adds the renamed functions moved from the f2fs crypto files.
1. definitions for per-file encryption used by ext4 and f2fs.
2. crypto.c for encrypt/decrypt functions
a. IO preparation:
- fscrypt_get_ctx / fscrypt_release_ctx
b. before IOs:
- fscrypt_encrypt_page
- fscrypt_decrypt_page
- fscrypt_zeroout_range
c. after IOs:
- fscrypt_decrypt_bio_pages
- fscrypt_pullback_bio_page
- fscrypt_restore_control_page
3. policy.c supporting context management.
a. For ioctls:
- fscrypt_process_policy
- fscrypt_get_policy
b. For context permission
- fscrypt_has_permitted_context
- fscrypt_inherit_context
4. keyinfo.c to handle permissions
- fscrypt_get_encryption_info
- fscrypt_free_encryption_info
5. fname.c to support filename encryption
a. general wrapper functions
- fscrypt_fname_disk_to_usr
- fscrypt_fname_usr_to_disk
- fscrypt_setup_filename
- fscrypt_free_filename
b. specific filename handling functions
- fscrypt_fname_alloc_buffer
- fscrypt_fname_free_buffer
6. Makefile and Kconfig
Cc: Al Viro <viro@ftp.linux.org.uk>
Signed-off-by: Michael Halcrow <mhalcrow@google.com>
Signed-off-by: Ildar Muslukhov <ildarm@google.com>
Signed-off-by: Uday Savagaonkar <savagaon@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>