arm64: cpuinfo: Expose MIDR_EL1 and REVIDR_EL1 to sysfs

It can be useful for JIT software to be aware of MIDR_EL1 and
REVIDR_EL1 to ascertain the presence of any core errata that could
affect code generation.

This patch exposes these registers through sysfs:

/sys/devices/system/cpu/cpu$ID/regs/identification/midr_el1
/sys/devices/system/cpu/cpu$ID/regs/identification/revidr_el1

where $ID is the cpu number. For big.LITTLE systems, one can have a
mixture of cores (e.g. Cortex A53 and Cortex A57), thus all CPUs need
to be enumerated.

If the kernel does not have valid information to populate these entries
with, an empty string is returned to userspace.

Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Steve Capper <steve.capper@linaro.org>
[suzuki.poulose@arm.com: ABI documentation updates, hotplug notifiers, kobject changes]
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This commit is contained in:
Steve Capper 2016-07-08 16:01:13 +01:00 committed by Catalin Marinas
parent 49eea433b3
commit f8d9f92452
3 changed files with 132 additions and 0 deletions

View File

@ -340,3 +340,13 @@ Description: POWERNV CPUFreq driver's frequency throttle stats directory and
'policyX/throttle_stats' directory and all the attributes are same as
the /sys/devices/system/cpu/cpuX/cpufreq/throttle_stats directory and
attributes which give the frequency throttle information of the chip.
What: /sys/devices/system/cpu/cpuX/regs/
/sys/devices/system/cpu/cpuX/regs/identification/
/sys/devices/system/cpu/cpuX/regs/identification/midr_el1
/sys/devices/system/cpu/cpuX/regs/identification/revidr_el1
Date: June 2016
Contact: Linux ARM Kernel Mailing list <linux-arm-kernel@lists.infradead.org>
Description: AArch64 CPU registers
'identification' directory exposes the CPU ID registers for
identifying model and revision of the CPU.

View File

@ -25,10 +25,12 @@
*/
struct cpuinfo_arm64 {
struct cpu cpu;
struct kobject kobj;
u32 reg_ctr;
u32 reg_cntfrq;
u32 reg_dczid;
u32 reg_midr;
u32 reg_revidr;
u64 reg_id_aa64dfr0;
u64 reg_id_aa64dfr1;

View File

@ -183,6 +183,123 @@ const struct seq_operations cpuinfo_op = {
.show = c_show
};
static struct kobj_type cpuregs_kobj_type = {
.sysfs_ops = &kobj_sysfs_ops,
};
/*
* The ARM ARM uses the phrase "32-bit register" to describe a register
* whose upper 32 bits are RES0 (per C5.1.1, ARM DDI 0487A.i), however
* no statement is made as to whether the upper 32 bits will or will not
* be made use of in future, and between ARM DDI 0487A.c and ARM DDI
* 0487A.d CLIDR_EL1 was expanded from 32-bit to 64-bit.
*
* Thus, while both MIDR_EL1 and REVIDR_EL1 are described as 32-bit
* registers, we expose them both as 64 bit values to cater for possible
* future expansion without an ABI break.
*/
#define kobj_to_cpuinfo(kobj) container_of(kobj, struct cpuinfo_arm64, kobj)
#define CPUREGS_ATTR_RO(_name, _field) \
static ssize_t _name##_show(struct kobject *kobj, \
struct kobj_attribute *attr, char *buf) \
{ \
struct cpuinfo_arm64 *info = kobj_to_cpuinfo(kobj); \
\
if (info->reg_midr) \
return sprintf(buf, "0x%016x\n", info->reg_##_field); \
else \
return 0; \
} \
static struct kobj_attribute cpuregs_attr_##_name = __ATTR_RO(_name)
CPUREGS_ATTR_RO(midr_el1, midr);
CPUREGS_ATTR_RO(revidr_el1, revidr);
static struct attribute *cpuregs_id_attrs[] = {
&cpuregs_attr_midr_el1.attr,
&cpuregs_attr_revidr_el1.attr,
NULL
};
static struct attribute_group cpuregs_attr_group = {
.attrs = cpuregs_id_attrs,
.name = "identification"
};
static int cpuid_add_regs(int cpu)
{
int rc;
struct device *dev;
struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
dev = get_cpu_device(cpu);
if (!dev) {
rc = -ENODEV;
goto out;
}
rc = kobject_add(&info->kobj, &dev->kobj, "regs");
if (rc)
goto out;
rc = sysfs_create_group(&info->kobj, &cpuregs_attr_group);
if (rc)
kobject_del(&info->kobj);
out:
return rc;
}
static int cpuid_remove_regs(int cpu)
{
struct device *dev;
struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
dev = get_cpu_device(cpu);
if (!dev)
return -ENODEV;
if (info->kobj.parent) {
sysfs_remove_group(&info->kobj, &cpuregs_attr_group);
kobject_del(&info->kobj);
}
return 0;
}
static int cpuid_callback(struct notifier_block *nb,
unsigned long action, void *hcpu)
{
int rc = 0;
unsigned long cpu = (unsigned long)hcpu;
switch (action & ~CPU_TASKS_FROZEN) {
case CPU_ONLINE:
rc = cpuid_add_regs(cpu);
break;
case CPU_DEAD:
rc = cpuid_remove_regs(cpu);
break;
}
return notifier_from_errno(rc);
}
static int __init cpuinfo_regs_init(void)
{
int cpu;
cpu_notifier_register_begin();
for_each_possible_cpu(cpu) {
struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
kobject_init(&info->kobj, &cpuregs_kobj_type);
if (cpu_online(cpu))
cpuid_add_regs(cpu);
}
__hotcpu_notifier(cpuid_callback, 0);
cpu_notifier_register_done();
return 0;
}
static void cpuinfo_detect_icache_policy(struct cpuinfo_arm64 *info)
{
unsigned int cpu = smp_processor_id();
@ -212,6 +329,7 @@ static void __cpuinfo_store_cpu(struct cpuinfo_arm64 *info)
info->reg_ctr = read_cpuid_cachetype();
info->reg_dczid = read_cpuid(DCZID_EL0);
info->reg_midr = read_cpuid_id();
info->reg_revidr = read_cpuid(REVIDR_EL1);
info->reg_id_aa64dfr0 = read_cpuid(ID_AA64DFR0_EL1);
info->reg_id_aa64dfr1 = read_cpuid(ID_AA64DFR1_EL1);
@ -264,3 +382,5 @@ void __init cpuinfo_store_boot_cpu(void)
boot_cpu_data = *info;
init_cpu_features(&boot_cpu_data);
}
device_initcall(cpuinfo_regs_init);