usb: documentation for usb port power off mechanisms

describe the mechanisms for controlling port power policy and
discovering the port power state.

[oliver]: fixes, clarification of wakeup vs port-power-control
[sarah]: wordsmithing
[djbw]: updates for peer port changes
[alan]: review and fixes
Cc: Oliver Neukum <oneukum@suse.de>
Signed-off-by: Lan Tianyu <tianyu.lan@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit is contained in:
Lan Tianyu 2014-05-29 12:58:52 -07:00 committed by Greg Kroah-Hartman
parent 3cd12f9151
commit f64c51975d

View File

@ -2,9 +2,28 @@
Alan Stern <stern@rowland.harvard.edu>
October 28, 2010
Last-updated: February 2014
Contents:
---------
* What is Power Management?
* What is Remote Wakeup?
* When is a USB device idle?
* Forms of dynamic PM
* The user interface for dynamic PM
* Changing the default idle-delay time
* Warnings
* The driver interface for Power Management
* The driver interface for autosuspend and autoresume
* Other parts of the driver interface
* Mutual exclusion
* Interaction between dynamic PM and system PM
* xHCI hardware link PM
* USB Port Power Control
* User Interface for Port Power Control
* Suggested Userspace Port Power Policy
What is Power Management?
-------------------------
@ -516,3 +535,225 @@ relevant attribute files is usb2_hardware_lpm.
driver will enable hardware LPM for the device. You
can write y/Y/1 or n/N/0 to the file to enable/disable
USB2 hardware LPM manually. This is for test purpose mainly.
USB Port Power Control
----------------------
In addition to suspending endpoint devices and enabling hardware
controlled link power management, the USB subsystem also has the
capability to disable power to ports under some conditions. Power is
controlled through Set/ClearPortFeature(PORT_POWER) requests to a hub.
In the case of a root or platform-internal hub the host controller
driver translates PORT_POWER requests into platform firmware (ACPI)
method calls to set the port power state. For more background see the
Linux Plumbers Conference 2012 slides [1] and video [2]:
Upon receiving a ClearPortFeature(PORT_POWER) request a USB port is
logically off, and may trigger the actual loss of VBUS to the port [3].
VBUS may be maintained in the case where a hub gangs multiple ports into
a shared power well causing power to remain until all ports in the gang
are turned off. VBUS may also be maintained by hub ports configured for
a charging application. In any event a logically off port will lose
connection with its device, not respond to hotplug events, and not
respond to remote wakeup events*.
WARNING: turning off a port may result in the inability to hot add a device.
Please see "User Interface for Port Power Control" for details.
As far as the effect on the device itself it is similar to what a device
goes through during system suspend, i.e. the power session is lost. Any
USB device or driver that misbehaves with system suspend will be
similarly affected by a port power cycle event. For this reason the
implementation shares the same device recovery path (and honors the same
quirks) as the system resume path for the hub.
[1]: http://dl.dropbox.com/u/96820575/sarah-sharp-lpt-port-power-off2-mini.pdf
[2]: http://linuxplumbers.ubicast.tv/videos/usb-port-power-off-kerneluserspace-api/
[3]: USB 3.1 Section 10.12
* wakeup note: if a device is configured to send wakeup events the port
power control implementation will block poweroff attempts on that
port.
User Interface for Port Power Control
-------------------------------------
The port power control mechanism uses the PM runtime system. Poweroff is
requested by clearing the power/pm_qos_no_power_off flag of the port device
(defaults to 1). If the port is disconnected it will immediately receive a
ClearPortFeature(PORT_POWER) request. Otherwise, it will honor the pm runtime
rules and require the attached child device and all descendants to be suspended.
This mechanism is dependent on the hub advertising port power switching in its
hub descriptor (wHubCharacteristics logical power switching mode field).
Note, some interface devices/drivers do not support autosuspend. Userspace may
need to unbind the interface drivers before the usb_device will suspend. An
unbound interface device is suspended by default. When unbinding, be careful
to unbind interface drivers, not the driver of the parent usb device. Also,
leave hub interface drivers bound. If the driver for the usb device (not
interface) is unbound the kernel is no longer able to resume the device. If a
hub interface driver is unbound, control of its child ports is lost and all
attached child-devices will disconnect. A good rule of thumb is that if the
'driver/module' link for a device points to /sys/module/usbcore then unbinding
it will interfere with port power control.
Example of the relevant files for port power control. Note, in this example
these files are relative to a usb hub device (prefix).
prefix=/sys/devices/pci0000:00/0000:00:14.0/usb3/3-1
attached child device +
hub port device + |
hub interface device + | |
v v v
$prefix/3-1:1.0/3-1-port1/device
$prefix/3-1:1.0/3-1-port1/power/pm_qos_no_power_off
$prefix/3-1:1.0/3-1-port1/device/power/control
$prefix/3-1:1.0/3-1-port1/device/3-1.1:<intf0>/driver/unbind
$prefix/3-1:1.0/3-1-port1/device/3-1.1:<intf1>/driver/unbind
...
$prefix/3-1:1.0/3-1-port1/device/3-1.1:<intfN>/driver/unbind
In addition to these files some ports may have a 'peer' link to a port on
another hub. The expectation is that all superspeed ports have a
hi-speed peer.
$prefix/3-1:1.0/3-1-port1/peer -> ../../../../usb2/2-1/2-1:1.0/2-1-port1
../../../../usb2/2-1/2-1:1.0/2-1-port1/peer -> ../../../../usb3/3-1/3-1:1.0/3-1-port1
Distinct from 'companion ports', or 'ehci/xhci shared switchover ports'
peer ports are simply the hi-speed and superspeed interface pins that
are combined into a single usb3 connector. Peer ports share the same
ancestor XHCI device.
While a superspeed port is powered off a device may downgrade its
connection and attempt to connect to the hi-speed pins. The
implementation takes steps to prevent this:
1/ Port suspend is sequenced to guarantee that hi-speed ports are powered-off
before their superspeed peer is permitted to power-off. The implication is
that the setting pm_qos_no_power_off to zero on a superspeed port may not cause
the port to power-off until its highspeed peer has gone to its runtime suspend
state. Userspace must take care to order the suspensions if it wants to
guarantee that a superspeed port will power-off.
2/ Port resume is sequenced to force a superspeed port to power-on prior to its
highspeed peer.
3/ Port resume always triggers an attached child device to resume. After a
power session is lost the device may have been removed, or need reset.
Resuming the child device when the parent port regains power resolves those
states and clamps the maximum port power cycle frequency at the rate the child
device can suspend (autosuspend-delay) and resume (reset-resume latency).
Sysfs files relevant for port power control:
<hubdev-portX>/power/pm_qos_no_power_off:
This writable flag controls the state of an idle port.
Once all children and descendants have suspended the
port may suspend/poweroff provided that
pm_qos_no_power_off is '0'. If pm_qos_no_power_off is
'1' the port will remain active/powered regardless of
the stats of descendants. Defaults to 1.
<hubdev-portX>/power/runtime_status:
This file reflects whether the port is 'active' (power is on)
or 'suspended' (logically off). There is no indication to
userspace whether VBUS is still supplied.
<hubdev-portX>/connect_type:
An advisory read-only flag to userspace indicating the
location and connection type of the port. It returns
one of four values 'hotplug', 'hardwired', 'not used',
and 'unknown'. All values, besides unknown, are set by
platform firmware.
"hotplug" indicates an externally connectable/visible
port on the platform. Typically userspace would choose
to keep such a port powered to handle new device
connection events.
"hardwired" refers to a port that is not visible but
connectable. Examples are internal ports for USB
bluetooth that can be disconnected via an external
switch or a port with a hardwired USB camera. It is
expected to be safe to allow these ports to suspend
provided pm_qos_no_power_off is coordinated with any
switch that gates connections. Userspace must arrange
for the device to be connected prior to the port
powering off, or to activate the port prior to enabling
connection via a switch.
"not used" refers to an internal port that is expected
to never have a device connected to it. These may be
empty internal ports, or ports that are not physically
exposed on a platform. Considered safe to be
powered-off at all times.
"unknown" means platform firmware does not provide
information for this port. Most commonly refers to
external hub ports which should be considered 'hotplug'
for policy decisions.
NOTE1: since we are relying on the BIOS to get this ACPI
information correct, the USB port descriptions may be
missing or wrong.
NOTE2: Take care in clearing pm_qos_no_power_off. Once
power is off this port will
not respond to new connect events.
Once a child device is attached additional constraints are
applied before the port is allowed to poweroff.
<child>/power/control:
Must be 'auto', and the port will not
power down until <child>/power/runtime_status
reflects the 'suspended' state. Default
value is controlled by child device driver.
<child>/power/persist:
This defaults to '1' for most devices and indicates if
kernel can persist the device's configuration across a
power session loss (suspend / port-power event). When
this value is '0' (quirky devices), port poweroff is
disabled.
<child>/driver/unbind:
Wakeup capable devices will block port poweroff. At
this time the only mechanism to clear the usb-internal
wakeup-capability for an interface device is to unbind
its driver.
Summary of poweroff pre-requisite settings relative to a port device:
echo 0 > power/pm_qos_no_power_off
echo 0 > peer/power/pm_qos_no_power_off # if it exists
echo auto > power/control # this is the default value
echo auto > <child>/power/control
echo 1 > <child>/power/persist # this is the default value
Suggested Userspace Port Power Policy
-------------------------------------
As noted above userspace needs to be careful and deliberate about what
ports are enabled for poweroff.
The default configuration is that all ports start with
power/pm_qos_no_power_off set to '1' causing ports to always remain
active.
Given confidence in the platform firmware's description of the ports
(ACPI _PLD record for a port populates 'connect_type') userspace can
clear pm_qos_no_power_off for all 'not used' ports. The same can be
done for 'hardwired' ports provided poweroff is coordinated with any
connection switch for the port.
A more aggressive userspace policy is to enable USB port power off for
all ports (set <hubdev-portX>/power/pm_qos_no_power_off to '0') when
some external factor indicates the user has stopped interacting with the
system. For example, a distro may want to enable power off all USB
ports when the screen blanks, and re-power them when the screen becomes
active. Smart phones and tablets may want to power off USB ports when
the user pushes the power button.