spi: spi-ep93xx: use the default master transfer queueing mechanism

Update this driver to the default implementation of transfer_one_message().

Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Signed-off-by: Chris Packham <chris.packham@alliedtelesis.co.nz>
Signed-off-by: Mark Brown <broonie@kernel.org>
This commit is contained in:
H Hartley Sweeten 2017-08-09 08:51:31 +12:00 committed by Mark Brown
parent c7a909cf25
commit d9a017713d

View File

@ -73,7 +73,6 @@
* @clk: clock for the controller * @clk: clock for the controller
* @mmio: pointer to ioremap()'d registers * @mmio: pointer to ioremap()'d registers
* @sspdr_phys: physical address of the SSPDR register * @sspdr_phys: physical address of the SSPDR register
* @wait: wait here until given transfer is completed
* @tx: current byte in transfer to transmit * @tx: current byte in transfer to transmit
* @rx: current byte in transfer to receive * @rx: current byte in transfer to receive
* @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
@ -91,7 +90,6 @@ struct ep93xx_spi {
struct clk *clk; struct clk *clk;
void __iomem *mmio; void __iomem *mmio;
unsigned long sspdr_phys; unsigned long sspdr_phys;
struct completion wait;
size_t tx; size_t tx;
size_t rx; size_t rx;
size_t fifo_level; size_t fifo_level;
@ -123,8 +121,7 @@ static int ep93xx_spi_calc_divisors(struct spi_master *master,
/* /*
* Make sure that max value is between values supported by the * Make sure that max value is between values supported by the
* controller. Note that minimum value is already checked in * controller.
* ep93xx_spi_transfer_one_message().
*/ */
rate = clamp(rate, master->min_speed_hz, master->max_speed_hz); rate = clamp(rate, master->min_speed_hz, master->max_speed_hz);
@ -149,15 +146,6 @@ static int ep93xx_spi_calc_divisors(struct spi_master *master,
return -EINVAL; return -EINVAL;
} }
static void ep93xx_spi_cs_control(struct spi_device *spi, bool enable)
{
if (spi->mode & SPI_CS_HIGH)
enable = !enable;
if (gpio_is_valid(spi->cs_gpio))
gpio_set_value(spi->cs_gpio, !enable);
}
static int ep93xx_spi_chip_setup(struct spi_master *master, static int ep93xx_spi_chip_setup(struct spi_master *master,
struct spi_device *spi, struct spi_device *spi,
struct spi_transfer *xfer) struct spi_transfer *xfer)
@ -188,34 +176,38 @@ static int ep93xx_spi_chip_setup(struct spi_master *master,
return 0; return 0;
} }
static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t) static void ep93xx_do_write(struct spi_master *master)
{ {
struct ep93xx_spi *espi = spi_master_get_devdata(master);
struct spi_transfer *xfer = master->cur_msg->state;
u32 val = 0; u32 val = 0;
if (t->bits_per_word > 8) { if (xfer->bits_per_word > 8) {
if (t->tx_buf) if (xfer->tx_buf)
val = ((u16 *)t->tx_buf)[espi->tx]; val = ((u16 *)xfer->tx_buf)[espi->tx];
espi->tx += 2; espi->tx += 2;
} else { } else {
if (t->tx_buf) if (xfer->tx_buf)
val = ((u8 *)t->tx_buf)[espi->tx]; val = ((u8 *)xfer->tx_buf)[espi->tx];
espi->tx += 1; espi->tx += 1;
} }
writel(val, espi->mmio + SSPDR); writel(val, espi->mmio + SSPDR);
} }
static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t) static void ep93xx_do_read(struct spi_master *master)
{ {
struct ep93xx_spi *espi = spi_master_get_devdata(master);
struct spi_transfer *xfer = master->cur_msg->state;
u32 val; u32 val;
val = readl(espi->mmio + SSPDR); val = readl(espi->mmio + SSPDR);
if (t->bits_per_word > 8) { if (xfer->bits_per_word > 8) {
if (t->rx_buf) if (xfer->rx_buf)
((u16 *)t->rx_buf)[espi->rx] = val; ((u16 *)xfer->rx_buf)[espi->rx] = val;
espi->rx += 2; espi->rx += 2;
} else { } else {
if (t->rx_buf) if (xfer->rx_buf)
((u8 *)t->rx_buf)[espi->rx] = val; ((u8 *)xfer->rx_buf)[espi->rx] = val;
espi->rx += 1; espi->rx += 1;
} }
} }
@ -234,45 +226,26 @@ static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
static int ep93xx_spi_read_write(struct spi_master *master) static int ep93xx_spi_read_write(struct spi_master *master)
{ {
struct ep93xx_spi *espi = spi_master_get_devdata(master); struct ep93xx_spi *espi = spi_master_get_devdata(master);
struct spi_transfer *t = master->cur_msg->state; struct spi_transfer *xfer = master->cur_msg->state;
/* read as long as RX FIFO has frames in it */ /* read as long as RX FIFO has frames in it */
while ((readl(espi->mmio + SSPSR) & SSPSR_RNE)) { while ((readl(espi->mmio + SSPSR) & SSPSR_RNE)) {
ep93xx_do_read(espi, t); ep93xx_do_read(master);
espi->fifo_level--; espi->fifo_level--;
} }
/* write as long as TX FIFO has room */ /* write as long as TX FIFO has room */
while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) { while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < xfer->len) {
ep93xx_do_write(espi, t); ep93xx_do_write(master);
espi->fifo_level++; espi->fifo_level++;
} }
if (espi->rx == t->len) if (espi->rx == xfer->len)
return 0; return 0;
return -EINPROGRESS; return -EINPROGRESS;
} }
static void ep93xx_spi_pio_transfer(struct spi_master *master)
{
struct ep93xx_spi *espi = spi_master_get_devdata(master);
/*
* Now everything is set up for the current transfer. We prime the TX
* FIFO, enable interrupts, and wait for the transfer to complete.
*/
if (ep93xx_spi_read_write(master)) {
u32 val;
val = readl(espi->mmio + SSPCR1);
val |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
writel(val, espi->mmio + SSPCR1);
wait_for_completion(&espi->wait);
}
}
/** /**
* ep93xx_spi_dma_prepare() - prepares a DMA transfer * ep93xx_spi_dma_prepare() - prepares a DMA transfer
* @master: SPI master * @master: SPI master
@ -287,7 +260,7 @@ ep93xx_spi_dma_prepare(struct spi_master *master,
enum dma_transfer_direction dir) enum dma_transfer_direction dir)
{ {
struct ep93xx_spi *espi = spi_master_get_devdata(master); struct ep93xx_spi *espi = spi_master_get_devdata(master);
struct spi_transfer *t = master->cur_msg->state; struct spi_transfer *xfer = master->cur_msg->state;
struct dma_async_tx_descriptor *txd; struct dma_async_tx_descriptor *txd;
enum dma_slave_buswidth buswidth; enum dma_slave_buswidth buswidth;
struct dma_slave_config conf; struct dma_slave_config conf;
@ -295,10 +268,10 @@ ep93xx_spi_dma_prepare(struct spi_master *master,
struct sg_table *sgt; struct sg_table *sgt;
struct dma_chan *chan; struct dma_chan *chan;
const void *buf, *pbuf; const void *buf, *pbuf;
size_t len = t->len; size_t len = xfer->len;
int i, ret, nents; int i, ret, nents;
if (t->bits_per_word > 8) if (xfer->bits_per_word > 8)
buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
else else
buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
@ -308,14 +281,14 @@ ep93xx_spi_dma_prepare(struct spi_master *master,
if (dir == DMA_DEV_TO_MEM) { if (dir == DMA_DEV_TO_MEM) {
chan = espi->dma_rx; chan = espi->dma_rx;
buf = t->rx_buf; buf = xfer->rx_buf;
sgt = &espi->rx_sgt; sgt = &espi->rx_sgt;
conf.src_addr = espi->sspdr_phys; conf.src_addr = espi->sspdr_phys;
conf.src_addr_width = buswidth; conf.src_addr_width = buswidth;
} else { } else {
chan = espi->dma_tx; chan = espi->dma_tx;
buf = t->tx_buf; buf = xfer->tx_buf;
sgt = &espi->tx_sgt; sgt = &espi->tx_sgt;
conf.dst_addr = espi->sspdr_phys; conf.dst_addr = espi->sspdr_phys;
@ -406,10 +379,15 @@ static void ep93xx_spi_dma_finish(struct spi_master *master,
static void ep93xx_spi_dma_callback(void *callback_param) static void ep93xx_spi_dma_callback(void *callback_param)
{ {
complete(callback_param); struct spi_master *master = callback_param;
ep93xx_spi_dma_finish(master, DMA_MEM_TO_DEV);
ep93xx_spi_dma_finish(master, DMA_DEV_TO_MEM);
spi_finalize_current_transfer(master);
} }
static void ep93xx_spi_dma_transfer(struct spi_master *master) static int ep93xx_spi_dma_transfer(struct spi_master *master)
{ {
struct ep93xx_spi *espi = spi_master_get_devdata(master); struct ep93xx_spi *espi = spi_master_get_devdata(master);
struct dma_async_tx_descriptor *rxd, *txd; struct dma_async_tx_descriptor *rxd, *txd;
@ -417,177 +395,29 @@ static void ep93xx_spi_dma_transfer(struct spi_master *master)
rxd = ep93xx_spi_dma_prepare(master, DMA_DEV_TO_MEM); rxd = ep93xx_spi_dma_prepare(master, DMA_DEV_TO_MEM);
if (IS_ERR(rxd)) { if (IS_ERR(rxd)) {
dev_err(&master->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd)); dev_err(&master->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
master->cur_msg->status = PTR_ERR(rxd); return PTR_ERR(rxd);
return;
} }
txd = ep93xx_spi_dma_prepare(master, DMA_MEM_TO_DEV); txd = ep93xx_spi_dma_prepare(master, DMA_MEM_TO_DEV);
if (IS_ERR(txd)) { if (IS_ERR(txd)) {
ep93xx_spi_dma_finish(master, DMA_DEV_TO_MEM); ep93xx_spi_dma_finish(master, DMA_DEV_TO_MEM);
dev_err(&master->dev, "DMA TX failed: %ld\n", PTR_ERR(txd)); dev_err(&master->dev, "DMA TX failed: %ld\n", PTR_ERR(txd));
master->cur_msg->status = PTR_ERR(txd); return PTR_ERR(txd);
return;
} }
/* We are ready when RX is done */ /* We are ready when RX is done */
rxd->callback = ep93xx_spi_dma_callback; rxd->callback = ep93xx_spi_dma_callback;
rxd->callback_param = &espi->wait; rxd->callback_param = master;
/* Now submit both descriptors and wait while they finish */ /* Now submit both descriptors and start DMA */
dmaengine_submit(rxd); dmaengine_submit(rxd);
dmaengine_submit(txd); dmaengine_submit(txd);
dma_async_issue_pending(espi->dma_rx); dma_async_issue_pending(espi->dma_rx);
dma_async_issue_pending(espi->dma_tx); dma_async_issue_pending(espi->dma_tx);
wait_for_completion(&espi->wait); /* signal that we need to wait for completion */
return 1;
ep93xx_spi_dma_finish(master, DMA_MEM_TO_DEV);
ep93xx_spi_dma_finish(master, DMA_DEV_TO_MEM);
}
/**
* ep93xx_spi_process_transfer() - processes one SPI transfer
* @master: SPI master
* @msg: current message
* @t: transfer to process
*
* This function processes one SPI transfer given in @t. Function waits until
* transfer is complete (may sleep) and updates @msg->status based on whether
* transfer was successfully processed or not.
*/
static void ep93xx_spi_process_transfer(struct spi_master *master,
struct spi_message *msg,
struct spi_transfer *t)
{
struct ep93xx_spi *espi = spi_master_get_devdata(master);
int err;
msg->state = t;
err = ep93xx_spi_chip_setup(master, msg->spi, t);
if (err) {
dev_err(&master->dev,
"failed to setup chip for transfer\n");
msg->status = err;
return;
}
espi->rx = 0;
espi->tx = 0;
/*
* There is no point of setting up DMA for the transfers which will
* fit into the FIFO and can be transferred with a single interrupt.
* So in these cases we will be using PIO and don't bother for DMA.
*/
if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
ep93xx_spi_dma_transfer(master);
else
ep93xx_spi_pio_transfer(master);
/*
* In case of error during transmit, we bail out from processing
* the message.
*/
if (msg->status)
return;
msg->actual_length += t->len;
/*
* After this transfer is finished, perform any possible
* post-transfer actions requested by the protocol driver.
*/
if (t->delay_usecs) {
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(usecs_to_jiffies(t->delay_usecs));
}
if (t->cs_change) {
if (!list_is_last(&t->transfer_list, &msg->transfers)) {
/*
* In case protocol driver is asking us to drop the
* chipselect briefly, we let the scheduler to handle
* any "delay" here.
*/
ep93xx_spi_cs_control(msg->spi, false);
cond_resched();
ep93xx_spi_cs_control(msg->spi, true);
}
}
}
/*
* ep93xx_spi_process_message() - process one SPI message
* @master: SPI master
* @msg: message to process
*
* This function processes a single SPI message. We go through all transfers in
* the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
* asserted during the whole message (unless per transfer cs_change is set).
*
* @msg->status contains %0 in case of success or negative error code in case of
* failure.
*/
static void ep93xx_spi_process_message(struct spi_master *master,
struct spi_message *msg)
{
struct ep93xx_spi *espi = spi_master_get_devdata(master);
unsigned long timeout;
struct spi_transfer *t;
/*
* Just to be sure: flush any data from RX FIFO.
*/
timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
while (readl(espi->mmio + SSPSR) & SSPSR_RNE) {
if (time_after(jiffies, timeout)) {
dev_warn(&master->dev,
"timeout while flushing RX FIFO\n");
msg->status = -ETIMEDOUT;
return;
}
readl(espi->mmio + SSPDR);
}
/*
* We explicitly handle FIFO level. This way we don't have to check TX
* FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
*/
espi->fifo_level = 0;
/*
* Assert the chipselect.
*/
ep93xx_spi_cs_control(msg->spi, true);
list_for_each_entry(t, &msg->transfers, transfer_list) {
ep93xx_spi_process_transfer(master, msg, t);
if (msg->status)
break;
}
/*
* Now the whole message is transferred (or failed for some reason). We
* deselect the device and disable the SPI controller.
*/
ep93xx_spi_cs_control(msg->spi, false);
}
static int ep93xx_spi_transfer_one_message(struct spi_master *master,
struct spi_message *msg)
{
struct ep93xx_spi *espi = spi_master_get_devdata(master);
msg->state = NULL;
msg->status = 0;
msg->actual_length = 0;
ep93xx_spi_process_message(master, msg);
spi_finalize_current_message(master);
return 0;
} }
static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id) static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
@ -630,11 +460,76 @@ static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
val &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE); val &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
writel(val, espi->mmio + SSPCR1); writel(val, espi->mmio + SSPCR1);
complete(&espi->wait); spi_finalize_current_transfer(master);
return IRQ_HANDLED; return IRQ_HANDLED;
} }
static int ep93xx_spi_transfer_one(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *xfer)
{
struct ep93xx_spi *espi = spi_master_get_devdata(master);
u32 val;
int ret;
ret = ep93xx_spi_chip_setup(master, spi, xfer);
if (ret) {
dev_err(&master->dev, "failed to setup chip for transfer\n");
return ret;
}
master->cur_msg->state = xfer;
espi->rx = 0;
espi->tx = 0;
/*
* There is no point of setting up DMA for the transfers which will
* fit into the FIFO and can be transferred with a single interrupt.
* So in these cases we will be using PIO and don't bother for DMA.
*/
if (espi->dma_rx && xfer->len > SPI_FIFO_SIZE)
return ep93xx_spi_dma_transfer(master);
/* Using PIO so prime the TX FIFO and enable interrupts */
ep93xx_spi_read_write(master);
val = readl(espi->mmio + SSPCR1);
val |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
writel(val, espi->mmio + SSPCR1);
/* signal that we need to wait for completion */
return 1;
}
static int ep93xx_spi_prepare_message(struct spi_master *master,
struct spi_message *msg)
{
struct ep93xx_spi *espi = spi_master_get_devdata(master);
unsigned long timeout;
/*
* Just to be sure: flush any data from RX FIFO.
*/
timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
while (readl(espi->mmio + SSPSR) & SSPSR_RNE) {
if (time_after(jiffies, timeout)) {
dev_warn(&master->dev,
"timeout while flushing RX FIFO\n");
return -ETIMEDOUT;
}
readl(espi->mmio + SSPDR);
}
/*
* We explicitly handle FIFO level. This way we don't have to check TX
* FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
*/
espi->fifo_level = 0;
return 0;
}
static int ep93xx_spi_prepare_hardware(struct spi_master *master) static int ep93xx_spi_prepare_hardware(struct spi_master *master)
{ {
struct ep93xx_spi *espi = spi_master_get_devdata(master); struct ep93xx_spi *espi = spi_master_get_devdata(master);
@ -769,7 +664,8 @@ static int ep93xx_spi_probe(struct platform_device *pdev)
master->prepare_transfer_hardware = ep93xx_spi_prepare_hardware; master->prepare_transfer_hardware = ep93xx_spi_prepare_hardware;
master->unprepare_transfer_hardware = ep93xx_spi_unprepare_hardware; master->unprepare_transfer_hardware = ep93xx_spi_unprepare_hardware;
master->transfer_one_message = ep93xx_spi_transfer_one_message; master->prepare_message = ep93xx_spi_prepare_message;
master->transfer_one = ep93xx_spi_transfer_one;
master->bus_num = pdev->id; master->bus_num = pdev->id;
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
@ -810,8 +706,6 @@ static int ep93xx_spi_probe(struct platform_device *pdev)
goto fail_release_master; goto fail_release_master;
} }
init_completion(&espi->wait);
/* /*
* Calculate maximum and minimum supported clock rates * Calculate maximum and minimum supported clock rates
* for the controller. * for the controller.