mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-26 15:54:18 +08:00
sh: Add kprobes support.
Initial support for kprobes/kretprobes for 32-bit SH platforms. [ General cleanup and some rework for the kretprobe hash lock. -- PFM ] Signed-off-by: Chris Smith <chris.smith@st.com> Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This commit is contained in:
parent
b6c20e4290
commit
d39f545014
@ -20,6 +20,8 @@ config SUPERH
|
||||
|
||||
config SUPERH32
|
||||
def_bool !SUPERH64
|
||||
select HAVE_KPROBES
|
||||
select HAVE_KRETPROBES
|
||||
|
||||
config SUPERH64
|
||||
def_bool y if CPU_SH5
|
||||
|
59
arch/sh/include/asm/kprobes.h
Normal file
59
arch/sh/include/asm/kprobes.h
Normal file
@ -0,0 +1,59 @@
|
||||
#ifndef __ASM_SH_KPROBES_H
|
||||
#define __ASM_SH_KPROBES_H
|
||||
|
||||
#ifdef CONFIG_KPROBES
|
||||
|
||||
#include <linux/types.h>
|
||||
#include <linux/ptrace.h>
|
||||
|
||||
struct pt_regs;
|
||||
|
||||
typedef u16 kprobe_opcode_t;
|
||||
#define BREAKPOINT_INSTRUCTION 0xc3ff
|
||||
|
||||
#define MAX_INSN_SIZE 16
|
||||
#define MAX_STACK_SIZE 64
|
||||
#define MIN_STACK_SIZE(ADDR) (((MAX_STACK_SIZE) < \
|
||||
(((unsigned long)current_thread_info()) + THREAD_SIZE - (ADDR))) \
|
||||
? (MAX_STACK_SIZE) \
|
||||
: (((unsigned long)current_thread_info()) + THREAD_SIZE - (ADDR)))
|
||||
|
||||
#define regs_return_value(regs) ((regs)->regs[0])
|
||||
#define flush_insn_slot(p) do { } while (0)
|
||||
#define kretprobe_blacklist_size 0
|
||||
|
||||
struct kprobe;
|
||||
|
||||
void arch_remove_kprobe(struct kprobe *);
|
||||
void kretprobe_trampoline(void);
|
||||
void jprobe_return_end(void);
|
||||
|
||||
/* Architecture specific copy of original instruction*/
|
||||
struct arch_specific_insn {
|
||||
/* copy of the original instruction */
|
||||
kprobe_opcode_t insn[MAX_INSN_SIZE];
|
||||
};
|
||||
|
||||
struct prev_kprobe {
|
||||
struct kprobe *kp;
|
||||
unsigned long status;
|
||||
};
|
||||
|
||||
/* per-cpu kprobe control block */
|
||||
struct kprobe_ctlblk {
|
||||
unsigned long kprobe_status;
|
||||
unsigned long jprobe_saved_r15;
|
||||
struct pt_regs jprobe_saved_regs;
|
||||
kprobe_opcode_t jprobes_stack[MAX_STACK_SIZE];
|
||||
struct prev_kprobe prev_kprobe;
|
||||
};
|
||||
|
||||
extern int kprobe_exceptions_notify(struct notifier_block *self,
|
||||
unsigned long val, void *data);
|
||||
extern int kprobe_handle_illslot(unsigned long pc);
|
||||
#else
|
||||
|
||||
#define kprobe_handle_illslot(pc) (-1)
|
||||
|
||||
#endif /* CONFIG_KPROBES */
|
||||
#endif /* __ASM_SH_KPROBES_H */
|
@ -23,5 +23,6 @@ obj-$(CONFIG_PM) += pm.o
|
||||
obj-$(CONFIG_STACKTRACE) += stacktrace.o
|
||||
obj-$(CONFIG_ELF_CORE) += dump_task.o
|
||||
obj-$(CONFIG_IO_TRAPPED) += io_trapped.o
|
||||
obj-$(CONFIG_KPROBES) += kprobes.o
|
||||
|
||||
EXTRA_CFLAGS += -Werror
|
||||
|
568
arch/sh/kernel/kprobes.c
Normal file
568
arch/sh/kernel/kprobes.c
Normal file
@ -0,0 +1,568 @@
|
||||
/*
|
||||
* Kernel probes (kprobes) for SuperH
|
||||
*
|
||||
* Copyright (C) 2007 Chris Smith <chris.smith@st.com>
|
||||
* Copyright (C) 2006 Lineo Solutions, Inc.
|
||||
*
|
||||
* This file is subject to the terms and conditions of the GNU General Public
|
||||
* License. See the file "COPYING" in the main directory of this archive
|
||||
* for more details.
|
||||
*/
|
||||
#include <linux/kprobes.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/ptrace.h>
|
||||
#include <linux/preempt.h>
|
||||
#include <linux/kdebug.h>
|
||||
#include <asm/cacheflush.h>
|
||||
#include <asm/uaccess.h>
|
||||
|
||||
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
|
||||
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
|
||||
|
||||
static struct kprobe saved_current_opcode;
|
||||
static struct kprobe saved_next_opcode;
|
||||
static struct kprobe saved_next_opcode2;
|
||||
|
||||
#define OPCODE_JMP(x) (((x) & 0xF0FF) == 0x402b)
|
||||
#define OPCODE_JSR(x) (((x) & 0xF0FF) == 0x400b)
|
||||
#define OPCODE_BRA(x) (((x) & 0xF000) == 0xa000)
|
||||
#define OPCODE_BRAF(x) (((x) & 0xF0FF) == 0x0023)
|
||||
#define OPCODE_BSR(x) (((x) & 0xF000) == 0xb000)
|
||||
#define OPCODE_BSRF(x) (((x) & 0xF0FF) == 0x0003)
|
||||
|
||||
#define OPCODE_BF_S(x) (((x) & 0xFF00) == 0x8f00)
|
||||
#define OPCODE_BT_S(x) (((x) & 0xFF00) == 0x8d00)
|
||||
|
||||
#define OPCODE_BF(x) (((x) & 0xFF00) == 0x8b00)
|
||||
#define OPCODE_BT(x) (((x) & 0xFF00) == 0x8900)
|
||||
|
||||
#define OPCODE_RTS(x) (((x) & 0x000F) == 0x000b)
|
||||
#define OPCODE_RTE(x) (((x) & 0xFFFF) == 0x002b)
|
||||
|
||||
int __kprobes arch_prepare_kprobe(struct kprobe *p)
|
||||
{
|
||||
kprobe_opcode_t opcode = *(kprobe_opcode_t *) (p->addr);
|
||||
|
||||
if (OPCODE_RTE(opcode))
|
||||
return -EFAULT; /* Bad breakpoint */
|
||||
|
||||
p->opcode = opcode;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void __kprobes arch_copy_kprobe(struct kprobe *p)
|
||||
{
|
||||
memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
|
||||
p->opcode = *p->addr;
|
||||
}
|
||||
|
||||
void __kprobes arch_arm_kprobe(struct kprobe *p)
|
||||
{
|
||||
*p->addr = BREAKPOINT_INSTRUCTION;
|
||||
flush_icache_range((unsigned long)p->addr,
|
||||
(unsigned long)p->addr + sizeof(kprobe_opcode_t));
|
||||
}
|
||||
|
||||
void __kprobes arch_disarm_kprobe(struct kprobe *p)
|
||||
{
|
||||
*p->addr = p->opcode;
|
||||
flush_icache_range((unsigned long)p->addr,
|
||||
(unsigned long)p->addr + sizeof(kprobe_opcode_t));
|
||||
}
|
||||
|
||||
int __kprobes arch_trampoline_kprobe(struct kprobe *p)
|
||||
{
|
||||
if (*p->addr == BREAKPOINT_INSTRUCTION)
|
||||
return 1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* If an illegal slot instruction exception occurs for an address
|
||||
* containing a kprobe, remove the probe.
|
||||
*
|
||||
* Returns 0 if the exception was handled successfully, 1 otherwise.
|
||||
*/
|
||||
int __kprobes kprobe_handle_illslot(unsigned long pc)
|
||||
{
|
||||
struct kprobe *p = get_kprobe((kprobe_opcode_t *) pc + 1);
|
||||
|
||||
if (p != NULL) {
|
||||
printk("Warning: removing kprobe from delay slot: 0x%.8x\n",
|
||||
(unsigned int)pc + 2);
|
||||
unregister_kprobe(p);
|
||||
return 0;
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
void __kprobes arch_remove_kprobe(struct kprobe *p)
|
||||
{
|
||||
if (saved_next_opcode.addr != 0x0) {
|
||||
arch_disarm_kprobe(p);
|
||||
arch_disarm_kprobe(&saved_next_opcode);
|
||||
saved_next_opcode.addr = 0x0;
|
||||
saved_next_opcode.opcode = 0x0;
|
||||
|
||||
if (saved_next_opcode2.addr != 0x0) {
|
||||
arch_disarm_kprobe(&saved_next_opcode2);
|
||||
saved_next_opcode2.addr = 0x0;
|
||||
saved_next_opcode2.opcode = 0x0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
|
||||
{
|
||||
kcb->prev_kprobe.kp = kprobe_running();
|
||||
kcb->prev_kprobe.status = kcb->kprobe_status;
|
||||
}
|
||||
|
||||
static inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
|
||||
{
|
||||
__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
|
||||
kcb->kprobe_status = kcb->prev_kprobe.status;
|
||||
}
|
||||
|
||||
static inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
|
||||
struct kprobe_ctlblk *kcb)
|
||||
{
|
||||
__get_cpu_var(current_kprobe) = p;
|
||||
}
|
||||
|
||||
/*
|
||||
* Singlestep is implemented by disabling the current kprobe and setting one
|
||||
* on the next instruction, following branches. Two probes are set if the
|
||||
* branch is conditional.
|
||||
*/
|
||||
static inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
|
||||
{
|
||||
kprobe_opcode_t *addr = NULL;
|
||||
saved_current_opcode.addr = (kprobe_opcode_t *) (regs->pc);
|
||||
addr = saved_current_opcode.addr;
|
||||
|
||||
if (p != NULL) {
|
||||
arch_disarm_kprobe(p);
|
||||
|
||||
if (OPCODE_JSR(p->opcode) || OPCODE_JMP(p->opcode)) {
|
||||
unsigned int reg_nr = ((p->opcode >> 8) & 0x000F);
|
||||
saved_next_opcode.addr =
|
||||
(kprobe_opcode_t *) regs->regs[reg_nr];
|
||||
} else if (OPCODE_BRA(p->opcode) || OPCODE_BSR(p->opcode)) {
|
||||
unsigned long disp = (p->opcode & 0x0FFF);
|
||||
saved_next_opcode.addr =
|
||||
(kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
|
||||
|
||||
} else if (OPCODE_BRAF(p->opcode) || OPCODE_BSRF(p->opcode)) {
|
||||
unsigned int reg_nr = ((p->opcode >> 8) & 0x000F);
|
||||
saved_next_opcode.addr =
|
||||
(kprobe_opcode_t *) (regs->pc + 4 +
|
||||
regs->regs[reg_nr]);
|
||||
|
||||
} else if (OPCODE_RTS(p->opcode)) {
|
||||
saved_next_opcode.addr = (kprobe_opcode_t *) regs->pr;
|
||||
|
||||
} else if (OPCODE_BF(p->opcode) || OPCODE_BT(p->opcode)) {
|
||||
unsigned long disp = (p->opcode & 0x00FF);
|
||||
/* case 1 */
|
||||
saved_next_opcode.addr = p->addr + 1;
|
||||
/* case 2 */
|
||||
saved_next_opcode2.addr =
|
||||
(kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
|
||||
saved_next_opcode2.opcode = *(saved_next_opcode2.addr);
|
||||
arch_arm_kprobe(&saved_next_opcode2);
|
||||
|
||||
} else if (OPCODE_BF_S(p->opcode) || OPCODE_BT_S(p->opcode)) {
|
||||
unsigned long disp = (p->opcode & 0x00FF);
|
||||
/* case 1 */
|
||||
saved_next_opcode.addr = p->addr + 2;
|
||||
/* case 2 */
|
||||
saved_next_opcode2.addr =
|
||||
(kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
|
||||
saved_next_opcode2.opcode = *(saved_next_opcode2.addr);
|
||||
arch_arm_kprobe(&saved_next_opcode2);
|
||||
|
||||
} else {
|
||||
saved_next_opcode.addr = p->addr + 1;
|
||||
}
|
||||
|
||||
saved_next_opcode.opcode = *(saved_next_opcode.addr);
|
||||
arch_arm_kprobe(&saved_next_opcode);
|
||||
}
|
||||
}
|
||||
|
||||
/* Called with kretprobe_lock held */
|
||||
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
|
||||
struct pt_regs *regs)
|
||||
{
|
||||
ri->ret_addr = (kprobe_opcode_t *) regs->pr;
|
||||
|
||||
/* Replace the return addr with trampoline addr */
|
||||
regs->pr = (unsigned long)kretprobe_trampoline;
|
||||
}
|
||||
|
||||
static int __kprobes kprobe_handler(struct pt_regs *regs)
|
||||
{
|
||||
struct kprobe *p;
|
||||
int ret = 0;
|
||||
kprobe_opcode_t *addr = NULL;
|
||||
struct kprobe_ctlblk *kcb;
|
||||
|
||||
/*
|
||||
* We don't want to be preempted for the entire
|
||||
* duration of kprobe processing
|
||||
*/
|
||||
preempt_disable();
|
||||
kcb = get_kprobe_ctlblk();
|
||||
|
||||
addr = (kprobe_opcode_t *) (regs->pc);
|
||||
|
||||
/* Check we're not actually recursing */
|
||||
if (kprobe_running()) {
|
||||
p = get_kprobe(addr);
|
||||
if (p) {
|
||||
if (kcb->kprobe_status == KPROBE_HIT_SS &&
|
||||
*p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
|
||||
goto no_kprobe;
|
||||
}
|
||||
/* We have reentered the kprobe_handler(), since
|
||||
* another probe was hit while within the handler.
|
||||
* We here save the original kprobes variables and
|
||||
* just single step on the instruction of the new probe
|
||||
* without calling any user handlers.
|
||||
*/
|
||||
save_previous_kprobe(kcb);
|
||||
set_current_kprobe(p, regs, kcb);
|
||||
kprobes_inc_nmissed_count(p);
|
||||
prepare_singlestep(p, regs);
|
||||
kcb->kprobe_status = KPROBE_REENTER;
|
||||
return 1;
|
||||
} else {
|
||||
p = __get_cpu_var(current_kprobe);
|
||||
if (p->break_handler && p->break_handler(p, regs)) {
|
||||
goto ss_probe;
|
||||
}
|
||||
}
|
||||
goto no_kprobe;
|
||||
}
|
||||
|
||||
p = get_kprobe(addr);
|
||||
if (!p) {
|
||||
/* Not one of ours: let kernel handle it */
|
||||
goto no_kprobe;
|
||||
}
|
||||
|
||||
set_current_kprobe(p, regs, kcb);
|
||||
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
|
||||
|
||||
if (p->pre_handler && p->pre_handler(p, regs))
|
||||
/* handler has already set things up, so skip ss setup */
|
||||
return 1;
|
||||
|
||||
ss_probe:
|
||||
prepare_singlestep(p, regs);
|
||||
kcb->kprobe_status = KPROBE_HIT_SS;
|
||||
return 1;
|
||||
|
||||
no_kprobe:
|
||||
preempt_enable_no_resched();
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* For function-return probes, init_kprobes() establishes a probepoint
|
||||
* here. When a retprobed function returns, this probe is hit and
|
||||
* trampoline_probe_handler() runs, calling the kretprobe's handler.
|
||||
*/
|
||||
void kretprobe_trampoline_holder(void)
|
||||
{
|
||||
asm volatile ("kretprobe_trampoline: \n" "nop\n");
|
||||
}
|
||||
|
||||
/*
|
||||
* Called when we hit the probe point at kretprobe_trampoline
|
||||
*/
|
||||
int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
|
||||
{
|
||||
struct kretprobe_instance *ri = NULL;
|
||||
struct hlist_head *head, empty_rp;
|
||||
struct hlist_node *node, *tmp;
|
||||
unsigned long flags, orig_ret_address = 0;
|
||||
unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
|
||||
|
||||
INIT_HLIST_HEAD(&empty_rp);
|
||||
kretprobe_hash_lock(current, &head, &flags);
|
||||
|
||||
/*
|
||||
* It is possible to have multiple instances associated with a given
|
||||
* task either because an multiple functions in the call path
|
||||
* have a return probe installed on them, and/or more then one return
|
||||
* return probe was registered for a target function.
|
||||
*
|
||||
* We can handle this because:
|
||||
* - instances are always inserted at the head of the list
|
||||
* - when multiple return probes are registered for the same
|
||||
* function, the first instance's ret_addr will point to the
|
||||
* real return address, and all the rest will point to
|
||||
* kretprobe_trampoline
|
||||
*/
|
||||
hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
|
||||
if (ri->task != current)
|
||||
/* another task is sharing our hash bucket */
|
||||
continue;
|
||||
|
||||
if (ri->rp && ri->rp->handler) {
|
||||
__get_cpu_var(current_kprobe) = &ri->rp->kp;
|
||||
ri->rp->handler(ri, regs);
|
||||
__get_cpu_var(current_kprobe) = NULL;
|
||||
}
|
||||
|
||||
orig_ret_address = (unsigned long)ri->ret_addr;
|
||||
recycle_rp_inst(ri, &empty_rp);
|
||||
|
||||
if (orig_ret_address != trampoline_address)
|
||||
/*
|
||||
* This is the real return address. Any other
|
||||
* instances associated with this task are for
|
||||
* other calls deeper on the call stack
|
||||
*/
|
||||
break;
|
||||
}
|
||||
|
||||
kretprobe_assert(ri, orig_ret_address, trampoline_address);
|
||||
|
||||
regs->pc = orig_ret_address;
|
||||
kretprobe_hash_unlock(current, &flags);
|
||||
|
||||
preempt_enable_no_resched();
|
||||
|
||||
hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
|
||||
hlist_del(&ri->hlist);
|
||||
kfree(ri);
|
||||
}
|
||||
|
||||
return orig_ret_address;
|
||||
}
|
||||
|
||||
static inline int post_kprobe_handler(struct pt_regs *regs)
|
||||
{
|
||||
struct kprobe *cur = kprobe_running();
|
||||
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
||||
kprobe_opcode_t *addr = NULL;
|
||||
struct kprobe *p = NULL;
|
||||
|
||||
if (!cur)
|
||||
return 0;
|
||||
|
||||
if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
|
||||
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
||||
cur->post_handler(cur, regs, 0);
|
||||
}
|
||||
|
||||
if (saved_next_opcode.addr != 0x0) {
|
||||
arch_disarm_kprobe(&saved_next_opcode);
|
||||
saved_next_opcode.addr = 0x0;
|
||||
saved_next_opcode.opcode = 0x0;
|
||||
|
||||
addr = saved_current_opcode.addr;
|
||||
saved_current_opcode.addr = 0x0;
|
||||
|
||||
p = get_kprobe(addr);
|
||||
arch_arm_kprobe(p);
|
||||
|
||||
if (saved_next_opcode2.addr != 0x0) {
|
||||
arch_disarm_kprobe(&saved_next_opcode2);
|
||||
saved_next_opcode2.addr = 0x0;
|
||||
saved_next_opcode2.opcode = 0x0;
|
||||
}
|
||||
}
|
||||
|
||||
/*Restore back the original saved kprobes variables and continue. */
|
||||
if (kcb->kprobe_status == KPROBE_REENTER) {
|
||||
restore_previous_kprobe(kcb);
|
||||
goto out;
|
||||
}
|
||||
reset_current_kprobe();
|
||||
|
||||
out:
|
||||
preempt_enable_no_resched();
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
|
||||
{
|
||||
struct kprobe *cur = kprobe_running();
|
||||
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
||||
const struct exception_table_entry *entry;
|
||||
|
||||
switch (kcb->kprobe_status) {
|
||||
case KPROBE_HIT_SS:
|
||||
case KPROBE_REENTER:
|
||||
/*
|
||||
* We are here because the instruction being single
|
||||
* stepped caused a page fault. We reset the current
|
||||
* kprobe, point the pc back to the probe address
|
||||
* and allow the page fault handler to continue as a
|
||||
* normal page fault.
|
||||
*/
|
||||
regs->pc = (unsigned long)cur->addr;
|
||||
if (kcb->kprobe_status == KPROBE_REENTER)
|
||||
restore_previous_kprobe(kcb);
|
||||
else
|
||||
reset_current_kprobe();
|
||||
preempt_enable_no_resched();
|
||||
break;
|
||||
case KPROBE_HIT_ACTIVE:
|
||||
case KPROBE_HIT_SSDONE:
|
||||
/*
|
||||
* We increment the nmissed count for accounting,
|
||||
* we can also use npre/npostfault count for accounting
|
||||
* these specific fault cases.
|
||||
*/
|
||||
kprobes_inc_nmissed_count(cur);
|
||||
|
||||
/*
|
||||
* We come here because instructions in the pre/post
|
||||
* handler caused the page_fault, this could happen
|
||||
* if handler tries to access user space by
|
||||
* copy_from_user(), get_user() etc. Let the
|
||||
* user-specified handler try to fix it first.
|
||||
*/
|
||||
if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
|
||||
return 1;
|
||||
|
||||
/*
|
||||
* In case the user-specified fault handler returned
|
||||
* zero, try to fix up.
|
||||
*/
|
||||
if ((entry = search_exception_tables(regs->pc)) != NULL) {
|
||||
regs->pc = entry->fixup;
|
||||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* fixup_exception() could not handle it,
|
||||
* Let do_page_fault() fix it.
|
||||
*/
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Wrapper routine to for handling exceptions.
|
||||
*/
|
||||
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
|
||||
unsigned long val, void *data)
|
||||
{
|
||||
struct kprobe *p = NULL;
|
||||
struct die_args *args = (struct die_args *)data;
|
||||
int ret = NOTIFY_DONE;
|
||||
kprobe_opcode_t *addr = NULL;
|
||||
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
||||
|
||||
addr = (kprobe_opcode_t *) (args->regs->pc);
|
||||
if (val == DIE_TRAP) {
|
||||
if (!kprobe_running()) {
|
||||
if (kprobe_handler(args->regs)) {
|
||||
ret = NOTIFY_STOP;
|
||||
} else {
|
||||
/* Not a kprobe trap */
|
||||
force_sig(SIGTRAP, current);
|
||||
}
|
||||
} else {
|
||||
p = get_kprobe(addr);
|
||||
if ((kcb->kprobe_status == KPROBE_HIT_SS) ||
|
||||
(kcb->kprobe_status == KPROBE_REENTER)) {
|
||||
if (post_kprobe_handler(args->regs))
|
||||
ret = NOTIFY_STOP;
|
||||
} else {
|
||||
if (kprobe_handler(args->regs)) {
|
||||
ret = NOTIFY_STOP;
|
||||
} else {
|
||||
p = __get_cpu_var(current_kprobe);
|
||||
if (p->break_handler
|
||||
&& p->break_handler(p, args->regs))
|
||||
ret = NOTIFY_STOP;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
|
||||
{
|
||||
struct jprobe *jp = container_of(p, struct jprobe, kp);
|
||||
unsigned long addr;
|
||||
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
||||
|
||||
kcb->jprobe_saved_regs = *regs;
|
||||
kcb->jprobe_saved_r15 = regs->regs[15];
|
||||
addr = kcb->jprobe_saved_r15;
|
||||
|
||||
/*
|
||||
* TBD: As Linus pointed out, gcc assumes that the callee
|
||||
* owns the argument space and could overwrite it, e.g.
|
||||
* tailcall optimization. So, to be absolutely safe
|
||||
* we also save and restore enough stack bytes to cover
|
||||
* the argument area.
|
||||
*/
|
||||
memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr,
|
||||
MIN_STACK_SIZE(addr));
|
||||
|
||||
regs->pc = (unsigned long)(jp->entry);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
void __kprobes jprobe_return(void)
|
||||
{
|
||||
__asm("trapa #-1\n\t" "jprobe_return_end:\n\t" "nop\n\t");
|
||||
|
||||
}
|
||||
|
||||
int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
|
||||
{
|
||||
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
||||
u8 *addr = (u8 *) regs->pc;
|
||||
unsigned long stack_addr = kcb->jprobe_saved_r15;
|
||||
|
||||
if ((addr >= (u8 *) jprobe_return)
|
||||
&& (addr <= (u8 *) jprobe_return_end)) {
|
||||
*regs = kcb->jprobe_saved_regs;
|
||||
|
||||
memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
|
||||
MIN_STACK_SIZE(stack_addr));
|
||||
|
||||
kcb->kprobe_status = KPROBE_HIT_SS;
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct kprobe trampoline_p = {
|
||||
.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
|
||||
.pre_handler = trampoline_probe_handler
|
||||
};
|
||||
|
||||
int __init arch_init_kprobes(void)
|
||||
{
|
||||
saved_next_opcode.addr = 0x0;
|
||||
saved_next_opcode.opcode = 0x0;
|
||||
|
||||
saved_current_opcode.addr = 0x0;
|
||||
saved_current_opcode.opcode = 0x0;
|
||||
|
||||
saved_next_opcode2.addr = 0x0;
|
||||
saved_next_opcode2.opcode = 0x0;
|
||||
|
||||
return register_kprobe(&trampoline_p);
|
||||
}
|
@ -26,6 +26,7 @@
|
||||
#include <asm/system.h>
|
||||
#include <asm/uaccess.h>
|
||||
#include <asm/fpu.h>
|
||||
#include <asm/kprobes.h>
|
||||
|
||||
#ifdef CONFIG_SH_KGDB
|
||||
#include <asm/kgdb.h>
|
||||
@ -743,6 +744,10 @@ asmlinkage void do_illegal_slot_inst(unsigned long r4, unsigned long r5,
|
||||
struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
|
||||
unsigned long error_code;
|
||||
struct task_struct *tsk = current;
|
||||
|
||||
if (kprobe_handle_illslot(regs->pc) == 0)
|
||||
return;
|
||||
|
||||
#ifdef CONFIG_SH_FPU_EMU
|
||||
unsigned short inst = 0;
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user