s390/crc32be: convert to C

Convert CRC-32 BE variant to C.

Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
This commit is contained in:
Heiko Carstens 2024-02-03 11:45:27 +01:00
parent 37346951a8
commit c59bf4de01
3 changed files with 77 additions and 107 deletions

View File

@ -14,7 +14,7 @@
#include <linux/crc32.h>
#include <crypto/internal/hash.h>
#include <asm/fpu.h>
#include "crc32-vx.h"
#define CRC32_BLOCK_SIZE 1
#define CRC32_DIGEST_SIZE 4
@ -33,7 +33,6 @@ struct crc_desc_ctx {
/* Prototypes for functions in assembly files */
u32 crc32_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size);
u32 crc32_be_vgfm_16(u32 crc, unsigned char const *buf, size_t size);
u32 crc32c_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size);
/*

View File

@ -0,0 +1,10 @@
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _CRC32_VX_S390_H
#define _CRC32_VX_S390_H
#include <linux/types.h>
u32 crc32_be_vgfm_16(u32 crc, unsigned char const *buf, size_t size);
#endif /* _CRC32_VX_S390_H */

View File

@ -12,20 +12,17 @@
* Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
*/
#include <linux/linkage.h>
#include <asm/nospec-insn.h>
#include <asm/fpu-insn.h>
#include <linux/types.h>
#include <asm/fpu.h>
#include "crc32-vx.h"
/* Vector register range containing CRC-32 constants */
#define CONST_R1R2 %v9
#define CONST_R3R4 %v10
#define CONST_R5 %v11
#define CONST_R6 %v12
#define CONST_RU_POLY %v13
#define CONST_CRC_POLY %v14
.data
.balign 8
#define CONST_R1R2 9
#define CONST_R3R4 10
#define CONST_R5 11
#define CONST_R6 12
#define CONST_RU_POLY 13
#define CONST_CRC_POLY 14
/*
* The CRC-32 constant block contains reduction constants to fold and
@ -58,61 +55,46 @@
* P'(x) = 0xEDB88320
*/
SYM_DATA_START_LOCAL(constants_CRC_32_BE)
.quad 0x08833794c, 0x0e6228b11 # R1, R2
.quad 0x0c5b9cd4c, 0x0e8a45605 # R3, R4
.quad 0x0f200aa66, 1 << 32 # R5, x32
.quad 0x0490d678d, 1 # R6, 1
.quad 0x104d101df, 0 # u
.quad 0x104C11DB7, 0 # P(x)
SYM_DATA_END(constants_CRC_32_BE)
static unsigned long constants_CRC_32_BE[] = {
0x08833794c, 0x0e6228b11, /* R1, R2 */
0x0c5b9cd4c, 0x0e8a45605, /* R3, R4 */
0x0f200aa66, 1UL << 32, /* R5, x32 */
0x0490d678d, 1, /* R6, 1 */
0x104d101df, 0, /* u */
0x104C11DB7, 0, /* P(x) */
};
.previous
GEN_BR_THUNK %r14
.text
/*
* The CRC-32 function(s) use these calling conventions:
*
* Parameters:
*
* %r2: Initial CRC value, typically ~0; and final CRC (return) value.
* %r3: Input buffer pointer, performance might be improved if the
/**
* crc32_be_vgfm_16 - Compute CRC-32 (BE variant) with vector registers
* @crc: Initial CRC value, typically ~0.
* @buf: Input buffer pointer, performance might be improved if the
* buffer is on a doubleword boundary.
* %r4: Length of the buffer, must be 64 bytes or greater.
* @size: Size of the buffer, must be 64 bytes or greater.
*
* Register usage:
*
* %r5: CRC-32 constant pool base pointer.
* V0: Initial CRC value and intermediate constants and results.
* V1..V4: Data for CRC computation.
* V5..V8: Next data chunks that are fetched from the input buffer.
*
* V9..V14: CRC-32 constants.
*/
SYM_FUNC_START(crc32_be_vgfm_16)
u32 crc32_be_vgfm_16(u32 crc, unsigned char const *buf, size_t size)
{
/* Load CRC-32 constants */
larl %r5,constants_CRC_32_BE
VLM CONST_R1R2,CONST_CRC_POLY,0,%r5
fpu_vlm(CONST_R1R2, CONST_CRC_POLY, &constants_CRC_32_BE);
fpu_vzero(0);
/* Load the initial CRC value into the leftmost word of V0. */
VZERO %v0
VLVGF %v0,%r2,0
fpu_vlvgf(0, crc, 0);
/* Load a 64-byte data chunk and XOR with CRC */
VLM %v1,%v4,0,%r3 /* 64-bytes into V1..V4 */
VX %v1,%v0,%v1 /* V1 ^= CRC */
aghi %r3,64 /* BUF = BUF + 64 */
aghi %r4,-64 /* LEN = LEN - 64 */
fpu_vlm(1, 4, buf);
fpu_vx(1, 0, 1);
buf += 64;
size -= 64;
/* Check remaining buffer size and jump to proper folding method */
cghi %r4,64
jl .Lless_than_64bytes
.Lfold_64bytes_loop:
while (size >= 64) {
/* Load the next 64-byte data chunk into V5 to V8 */
VLM %v5,%v8,0,%r3
fpu_vlm(5, 8, buf);
/*
* Perform a GF(2) multiplication of the doublewords in V1 with
@ -121,42 +103,26 @@ SYM_FUNC_START(crc32_be_vgfm_16)
* stored in V1. Repeat this step for the register contents
* in V2, V3, and V4 respectively.
*/
VGFMAG %v1,CONST_R1R2,%v1,%v5
VGFMAG %v2,CONST_R1R2,%v2,%v6
VGFMAG %v3,CONST_R1R2,%v3,%v7
VGFMAG %v4,CONST_R1R2,%v4,%v8
fpu_vgfmag(1, CONST_R1R2, 1, 5);
fpu_vgfmag(2, CONST_R1R2, 2, 6);
fpu_vgfmag(3, CONST_R1R2, 3, 7);
fpu_vgfmag(4, CONST_R1R2, 4, 8);
buf += 64;
size -= 64;
}
/* Adjust buffer pointer and length for next loop */
aghi %r3,64 /* BUF = BUF + 64 */
aghi %r4,-64 /* LEN = LEN - 64 */
cghi %r4,64
jnl .Lfold_64bytes_loop
.Lless_than_64bytes:
/* Fold V1 to V4 into a single 128-bit value in V1 */
VGFMAG %v1,CONST_R3R4,%v1,%v2
VGFMAG %v1,CONST_R3R4,%v1,%v3
VGFMAG %v1,CONST_R3R4,%v1,%v4
fpu_vgfmag(1, CONST_R3R4, 1, 2);
fpu_vgfmag(1, CONST_R3R4, 1, 3);
fpu_vgfmag(1, CONST_R3R4, 1, 4);
/* Check whether to continue with 64-bit folding */
cghi %r4,16
jl .Lfinal_fold
while (size >= 16) {
fpu_vl(2, buf);
fpu_vgfmag(1, CONST_R3R4, 1, 2);
buf += 16;
size -= 16;
}
.Lfold_16bytes_loop:
VL %v2,0,,%r3 /* Load next data chunk */
VGFMAG %v1,CONST_R3R4,%v1,%v2 /* Fold next data chunk */
/* Adjust buffer pointer and size for folding next data chunk */
aghi %r3,16
aghi %r4,-16
/* Process remaining data chunks */
cghi %r4,16
jnl .Lfold_16bytes_loop
.Lfinal_fold:
/*
* The R5 constant is used to fold a 128-bit value into an 96-bit value
* that is XORed with the next 96-bit input data chunk. To use a single
@ -164,7 +130,7 @@ SYM_FUNC_START(crc32_be_vgfm_16)
* form an intermediate 96-bit value (with appended zeros) which is then
* XORed with the intermediate reduction result.
*/
VGFMG %v1,CONST_R5,%v1
fpu_vgfmg(1, CONST_R5, 1);
/*
* Further reduce the remaining 96-bit value to a 64-bit value using a
@ -173,7 +139,7 @@ SYM_FUNC_START(crc32_be_vgfm_16)
* doubleword with R6. The result is a 64-bit value and is subject to
* the Barret reduction.
*/
VGFMG %v1,CONST_R6,%v1
fpu_vgfmg(1, CONST_R6, 1);
/*
* The input values to the Barret reduction are the degree-63 polynomial
@ -194,20 +160,15 @@ SYM_FUNC_START(crc32_be_vgfm_16)
*/
/* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
VUPLLF %v2,%v1
VGFMG %v2,CONST_RU_POLY,%v2
fpu_vupllf(2, 1);
fpu_vgfmg(2, CONST_RU_POLY, 2);
/*
* Compute the GF(2) product of the CRC polynomial in VO with T1(x) in
* V2 and XOR the intermediate result, T2(x), with the value in V1.
* The final result is in the rightmost word of V2.
*/
VUPLLF %v2,%v2
VGFMAG %v2,CONST_CRC_POLY,%v2,%v1
.Ldone:
VLGVF %r2,%v2,3
BR_EX %r14
SYM_FUNC_END(crc32_be_vgfm_16)
.previous
fpu_vupllf(2, 2);
fpu_vgfmag(2, CONST_CRC_POLY, 2, 1);
return fpu_vlgvf(2, 3);
}