mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-25 07:14:36 +08:00
Merge VAS page fault handling into next
As described by Haren: On Power9, Virtual Accelerator Switchboard (VAS) allows user space or kernel to communicate with Nest Accelerator (NX) directly using COPY/PASTE instructions. NX provides various functionalities such as compression, encryption and etc. But only compression (842 and GZIP formats) is supported in Linux kernel on power9. 842 compression driver (drivers/crypto/nx/nx-842-powernv.c) is already included in Linux. Only GZIP support will be available from user space. Applications can issue GZIP compression / decompression requests to NX with COPY/PASTE instructions. When NX is processing these requests, can hit fault on the request buffer (not in memory). It issues an interrupt and pastes fault CRB in fault FIFO. Expects kernel to handle this fault and return credits for both send and fault windows after processing. This patch series adds IRQ and fault window setup, and NX fault handling: - Alloc IRQ and trigger port address, and configure IRQ per VAS instance. - Set port# for each window to generate an interrupt when noticed fault. - Set fault window and FIFO on which NX paste fault CRB. - Setup IRQ thread fault handler per VAS instance. - When receiving an interrupt, Read CRBs from fault FIFO and update coprocessor_status_block (CSB) in the corresponding CRB with translation failure (CSB_CC_TRANSLATION). After issuing NX requests, process polls on CSB address. When it sees translation error, can touch the request buffer to bring the page in to memory and reissue NX request. - If copy_to_user fails on user space CSB address, OS sends SEGV signal.
This commit is contained in:
commit
b96ea61665
@ -116,6 +116,9 @@ typedef struct {
|
||||
/* Number of users of the external (Nest) MMU */
|
||||
atomic_t copros;
|
||||
|
||||
/* Number of user space windows opened in process mm_context */
|
||||
atomic_t vas_windows;
|
||||
|
||||
struct hash_mm_context *hash_context;
|
||||
|
||||
unsigned long vdso_base;
|
||||
|
@ -108,6 +108,17 @@ struct data_descriptor_entry {
|
||||
__be64 address;
|
||||
} __packed __aligned(DDE_ALIGN);
|
||||
|
||||
/* 4.3.2 NX-stamped Fault CRB */
|
||||
|
||||
#define NX_STAMP_ALIGN (0x10)
|
||||
|
||||
struct nx_fault_stamp {
|
||||
__be64 fault_storage_addr;
|
||||
__be16 reserved;
|
||||
__u8 flags;
|
||||
__u8 fault_status;
|
||||
__be32 pswid;
|
||||
} __packed __aligned(NX_STAMP_ALIGN);
|
||||
|
||||
/* Chapter 6.5.2 Coprocessor-Request Block (CRB) */
|
||||
|
||||
@ -135,10 +146,15 @@ struct coprocessor_request_block {
|
||||
|
||||
struct coprocessor_completion_block ccb;
|
||||
|
||||
u8 reserved[48];
|
||||
union {
|
||||
struct nx_fault_stamp nx;
|
||||
u8 reserved[16];
|
||||
} stamp;
|
||||
|
||||
u8 reserved[32];
|
||||
|
||||
struct coprocessor_status_block csb;
|
||||
} __packed __aligned(CRB_ALIGN);
|
||||
} __packed;
|
||||
|
||||
|
||||
/* RFC02167 Initiate Coprocessor Instructions document
|
||||
|
@ -185,11 +185,41 @@ static inline void mm_context_remove_copro(struct mm_struct *mm)
|
||||
dec_mm_active_cpus(mm);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* vas_windows counter shows number of open windows in the mm
|
||||
* context. During context switch, use this counter to clear the
|
||||
* foreign real address mapping (CP_ABORT) for the thread / process
|
||||
* that intend to use COPY/PASTE. When a process closes all windows,
|
||||
* disable CP_ABORT which is expensive to run.
|
||||
*
|
||||
* For user context, register a copro so that TLBIs are seen by the
|
||||
* nest MMU. mm_context_add/remove_vas_window() are used only for user
|
||||
* space windows.
|
||||
*/
|
||||
static inline void mm_context_add_vas_window(struct mm_struct *mm)
|
||||
{
|
||||
atomic_inc(&mm->context.vas_windows);
|
||||
mm_context_add_copro(mm);
|
||||
}
|
||||
|
||||
static inline void mm_context_remove_vas_window(struct mm_struct *mm)
|
||||
{
|
||||
int v;
|
||||
|
||||
mm_context_remove_copro(mm);
|
||||
v = atomic_dec_if_positive(&mm->context.vas_windows);
|
||||
|
||||
/* Detect imbalance between add and remove */
|
||||
WARN_ON(v < 0);
|
||||
}
|
||||
#else
|
||||
static inline void inc_mm_active_cpus(struct mm_struct *mm) { }
|
||||
static inline void dec_mm_active_cpus(struct mm_struct *mm) { }
|
||||
static inline void mm_context_add_copro(struct mm_struct *mm) { }
|
||||
static inline void mm_context_remove_copro(struct mm_struct *mm) { }
|
||||
static inline void mm_context_add_vas_windows(struct mm_struct *mm) { }
|
||||
static inline void mm_context_remove_vas_windows(struct mm_struct *mm) { }
|
||||
#endif
|
||||
|
||||
|
||||
|
@ -272,7 +272,6 @@ struct thread_struct {
|
||||
unsigned mmcr0;
|
||||
|
||||
unsigned used_ebb;
|
||||
unsigned int used_vas;
|
||||
#endif
|
||||
};
|
||||
|
||||
|
@ -102,8 +102,6 @@ static inline void clear_task_ebb(struct task_struct *t)
|
||||
#endif
|
||||
}
|
||||
|
||||
extern int set_thread_uses_vas(void);
|
||||
|
||||
extern int set_thread_tidr(struct task_struct *t);
|
||||
|
||||
#endif /* _ASM_POWERPC_SWITCH_TO_H */
|
||||
|
@ -5,6 +5,8 @@
|
||||
#ifndef _ASM_POWERPC_XIVE_H
|
||||
#define _ASM_POWERPC_XIVE_H
|
||||
|
||||
#include <asm/opal-api.h>
|
||||
|
||||
#define XIVE_INVALID_VP 0xffffffff
|
||||
|
||||
#ifdef CONFIG_PPC_XIVE
|
||||
@ -108,7 +110,6 @@ void xive_native_free_vp_block(u32 vp_base);
|
||||
int xive_native_populate_irq_data(u32 hw_irq,
|
||||
struct xive_irq_data *data);
|
||||
void xive_cleanup_irq_data(struct xive_irq_data *xd);
|
||||
u32 xive_native_alloc_irq(void);
|
||||
void xive_native_free_irq(u32 irq);
|
||||
int xive_native_configure_irq(u32 hw_irq, u32 target, u8 prio, u32 sw_irq);
|
||||
|
||||
@ -137,6 +138,12 @@ int xive_native_set_queue_state(u32 vp_id, uint32_t prio, u32 qtoggle,
|
||||
u32 qindex);
|
||||
int xive_native_get_vp_state(u32 vp_id, u64 *out_state);
|
||||
bool xive_native_has_queue_state_support(void);
|
||||
extern u32 xive_native_alloc_irq_on_chip(u32 chip_id);
|
||||
|
||||
static inline u32 xive_native_alloc_irq(void)
|
||||
{
|
||||
return xive_native_alloc_irq_on_chip(OPAL_XIVE_ANY_CHIP);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
|
@ -1228,7 +1228,8 @@ struct task_struct *__switch_to(struct task_struct *prev,
|
||||
* mappings, we must issue a cp_abort to clear any state and
|
||||
* prevent snooping, corruption or a covert channel.
|
||||
*/
|
||||
if (current->thread.used_vas)
|
||||
if (current->mm &&
|
||||
atomic_read(¤t->mm->context.vas_windows))
|
||||
asm volatile(PPC_CP_ABORT);
|
||||
}
|
||||
#endif /* CONFIG_PPC_BOOK3S_64 */
|
||||
@ -1467,27 +1468,6 @@ void arch_setup_new_exec(void)
|
||||
}
|
||||
#endif
|
||||
|
||||
int set_thread_uses_vas(void)
|
||||
{
|
||||
#ifdef CONFIG_PPC_BOOK3S_64
|
||||
if (!cpu_has_feature(CPU_FTR_ARCH_300))
|
||||
return -EINVAL;
|
||||
|
||||
current->thread.used_vas = 1;
|
||||
|
||||
/*
|
||||
* Even a process that has no foreign real address mapping can use
|
||||
* an unpaired COPY instruction (to no real effect). Issue CP_ABORT
|
||||
* to clear any pending COPY and prevent a covert channel.
|
||||
*
|
||||
* __switch_to() will issue CP_ABORT on future context switches.
|
||||
*/
|
||||
asm volatile(PPC_CP_ABORT);
|
||||
|
||||
#endif /* CONFIG_PPC_BOOK3S_64 */
|
||||
return 0;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_PPC64
|
||||
/**
|
||||
* Assign a TIDR (thread ID) for task @t and set it in the thread
|
||||
|
@ -17,7 +17,7 @@ obj-$(CONFIG_MEMORY_FAILURE) += opal-memory-errors.o
|
||||
obj-$(CONFIG_OPAL_PRD) += opal-prd.o
|
||||
obj-$(CONFIG_PERF_EVENTS) += opal-imc.o
|
||||
obj-$(CONFIG_PPC_MEMTRACE) += memtrace.o
|
||||
obj-$(CONFIG_PPC_VAS) += vas.o vas-window.o vas-debug.o
|
||||
obj-$(CONFIG_PPC_VAS) += vas.o vas-window.o vas-debug.o vas-fault.o
|
||||
obj-$(CONFIG_OCXL_BASE) += ocxl.o
|
||||
obj-$(CONFIG_SCOM_DEBUGFS) += opal-xscom.o
|
||||
obj-$(CONFIG_PPC_SECURE_BOOT) += opal-secvar.o
|
||||
|
@ -38,7 +38,7 @@ static int info_show(struct seq_file *s, void *private)
|
||||
|
||||
seq_printf(s, "Type: %s, %s\n", cop_to_str(window->cop),
|
||||
window->tx_win ? "Send" : "Receive");
|
||||
seq_printf(s, "Pid : %d\n", window->pid);
|
||||
seq_printf(s, "Pid : %d\n", vas_window_pid(window));
|
||||
|
||||
unlock:
|
||||
mutex_unlock(&vas_mutex);
|
||||
|
382
arch/powerpc/platforms/powernv/vas-fault.c
Normal file
382
arch/powerpc/platforms/powernv/vas-fault.c
Normal file
@ -0,0 +1,382 @@
|
||||
// SPDX-License-Identifier: GPL-2.0+
|
||||
/*
|
||||
* VAS Fault handling.
|
||||
* Copyright 2019, IBM Corporation
|
||||
*/
|
||||
|
||||
#define pr_fmt(fmt) "vas: " fmt
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/uaccess.h>
|
||||
#include <linux/kthread.h>
|
||||
#include <linux/sched/signal.h>
|
||||
#include <linux/mmu_context.h>
|
||||
#include <asm/icswx.h>
|
||||
|
||||
#include "vas.h"
|
||||
|
||||
/*
|
||||
* The maximum FIFO size for fault window can be 8MB
|
||||
* (VAS_RX_FIFO_SIZE_MAX). Using 4MB FIFO since each VAS
|
||||
* instance will be having fault window.
|
||||
* 8MB FIFO can be used if expects more faults for each VAS
|
||||
* instance.
|
||||
*/
|
||||
#define VAS_FAULT_WIN_FIFO_SIZE (4 << 20)
|
||||
|
||||
static void dump_crb(struct coprocessor_request_block *crb)
|
||||
{
|
||||
struct data_descriptor_entry *dde;
|
||||
struct nx_fault_stamp *nx;
|
||||
|
||||
dde = &crb->source;
|
||||
pr_devel("SrcDDE: addr 0x%llx, len %d, count %d, idx %d, flags %d\n",
|
||||
be64_to_cpu(dde->address), be32_to_cpu(dde->length),
|
||||
dde->count, dde->index, dde->flags);
|
||||
|
||||
dde = &crb->target;
|
||||
pr_devel("TgtDDE: addr 0x%llx, len %d, count %d, idx %d, flags %d\n",
|
||||
be64_to_cpu(dde->address), be32_to_cpu(dde->length),
|
||||
dde->count, dde->index, dde->flags);
|
||||
|
||||
nx = &crb->stamp.nx;
|
||||
pr_devel("NX Stamp: PSWID 0x%x, FSA 0x%llx, flags 0x%x, FS 0x%x\n",
|
||||
be32_to_cpu(nx->pswid),
|
||||
be64_to_cpu(crb->stamp.nx.fault_storage_addr),
|
||||
nx->flags, nx->fault_status);
|
||||
}
|
||||
|
||||
/*
|
||||
* Update the CSB to indicate a translation error.
|
||||
*
|
||||
* User space will be polling on CSB after the request is issued.
|
||||
* If NX can handle the request without any issues, it updates CSB.
|
||||
* Whereas if NX encounters page fault, the kernel will handle the
|
||||
* fault and update CSB with translation error.
|
||||
*
|
||||
* If we are unable to update the CSB means copy_to_user failed due to
|
||||
* invalid csb_addr, send a signal to the process.
|
||||
*/
|
||||
static void update_csb(struct vas_window *window,
|
||||
struct coprocessor_request_block *crb)
|
||||
{
|
||||
struct coprocessor_status_block csb;
|
||||
struct kernel_siginfo info;
|
||||
struct task_struct *tsk;
|
||||
void __user *csb_addr;
|
||||
struct pid *pid;
|
||||
int rc;
|
||||
|
||||
/*
|
||||
* NX user space windows can not be opened for task->mm=NULL
|
||||
* and faults will not be generated for kernel requests.
|
||||
*/
|
||||
if (WARN_ON_ONCE(!window->mm || !window->user_win))
|
||||
return;
|
||||
|
||||
csb_addr = (void __user *)be64_to_cpu(crb->csb_addr);
|
||||
|
||||
memset(&csb, 0, sizeof(csb));
|
||||
csb.cc = CSB_CC_TRANSLATION;
|
||||
csb.ce = CSB_CE_TERMINATION;
|
||||
csb.cs = 0;
|
||||
csb.count = 0;
|
||||
|
||||
/*
|
||||
* NX operates and returns in BE format as defined CRB struct.
|
||||
* So saves fault_storage_addr in BE as NX pastes in FIFO and
|
||||
* expects user space to convert to CPU format.
|
||||
*/
|
||||
csb.address = crb->stamp.nx.fault_storage_addr;
|
||||
csb.flags = 0;
|
||||
|
||||
pid = window->pid;
|
||||
tsk = get_pid_task(pid, PIDTYPE_PID);
|
||||
/*
|
||||
* Process closes send window after all pending NX requests are
|
||||
* completed. In multi-thread applications, a child thread can
|
||||
* open a window and can exit without closing it. May be some
|
||||
* requests are pending or this window can be used by other
|
||||
* threads later. We should handle faults if NX encounters
|
||||
* pages faults on these requests. Update CSB with translation
|
||||
* error and fault address. If csb_addr passed by user space is
|
||||
* invalid, send SEGV signal to pid saved in window. If the
|
||||
* child thread is not running, send the signal to tgid.
|
||||
* Parent thread (tgid) will close this window upon its exit.
|
||||
*
|
||||
* pid and mm references are taken when window is opened by
|
||||
* process (pid). So tgid is used only when child thread opens
|
||||
* a window and exits without closing it.
|
||||
*/
|
||||
if (!tsk) {
|
||||
pid = window->tgid;
|
||||
tsk = get_pid_task(pid, PIDTYPE_PID);
|
||||
/*
|
||||
* Parent thread (tgid) will be closing window when it
|
||||
* exits. So should not get here.
|
||||
*/
|
||||
if (WARN_ON_ONCE(!tsk))
|
||||
return;
|
||||
}
|
||||
|
||||
/* Return if the task is exiting. */
|
||||
if (tsk->flags & PF_EXITING) {
|
||||
put_task_struct(tsk);
|
||||
return;
|
||||
}
|
||||
|
||||
use_mm(window->mm);
|
||||
rc = copy_to_user(csb_addr, &csb, sizeof(csb));
|
||||
/*
|
||||
* User space polls on csb.flags (first byte). So add barrier
|
||||
* then copy first byte with csb flags update.
|
||||
*/
|
||||
if (!rc) {
|
||||
csb.flags = CSB_V;
|
||||
/* Make sure update to csb.flags is visible now */
|
||||
smp_mb();
|
||||
rc = copy_to_user(csb_addr, &csb, sizeof(u8));
|
||||
}
|
||||
unuse_mm(window->mm);
|
||||
put_task_struct(tsk);
|
||||
|
||||
/* Success */
|
||||
if (!rc)
|
||||
return;
|
||||
|
||||
pr_debug("Invalid CSB address 0x%p signalling pid(%d)\n",
|
||||
csb_addr, pid_vnr(pid));
|
||||
|
||||
clear_siginfo(&info);
|
||||
info.si_signo = SIGSEGV;
|
||||
info.si_errno = EFAULT;
|
||||
info.si_code = SEGV_MAPERR;
|
||||
info.si_addr = csb_addr;
|
||||
|
||||
/*
|
||||
* process will be polling on csb.flags after request is sent to
|
||||
* NX. So generally CSB update should not fail except when an
|
||||
* application passes invalid csb_addr. So an error message will
|
||||
* be displayed and leave it to user space whether to ignore or
|
||||
* handle this signal.
|
||||
*/
|
||||
rcu_read_lock();
|
||||
rc = kill_pid_info(SIGSEGV, &info, pid);
|
||||
rcu_read_unlock();
|
||||
|
||||
pr_devel("%s(): pid %d kill_proc_info() rc %d\n", __func__,
|
||||
pid_vnr(pid), rc);
|
||||
}
|
||||
|
||||
static void dump_fifo(struct vas_instance *vinst, void *entry)
|
||||
{
|
||||
unsigned long *end = vinst->fault_fifo + vinst->fault_fifo_size;
|
||||
unsigned long *fifo = entry;
|
||||
int i;
|
||||
|
||||
pr_err("Fault fifo size %d, Max crbs %d\n", vinst->fault_fifo_size,
|
||||
vinst->fault_fifo_size / CRB_SIZE);
|
||||
|
||||
/* Dump 10 CRB entries or until end of FIFO */
|
||||
pr_err("Fault FIFO Dump:\n");
|
||||
for (i = 0; i < 10*(CRB_SIZE/8) && fifo < end; i += 4, fifo += 4) {
|
||||
pr_err("[%.3d, %p]: 0x%.16lx 0x%.16lx 0x%.16lx 0x%.16lx\n",
|
||||
i, fifo, *fifo, *(fifo+1), *(fifo+2), *(fifo+3));
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Process valid CRBs in fault FIFO.
|
||||
* NX process user space requests, return credit and update the status
|
||||
* in CRB. If it encounters transalation error when accessing CRB or
|
||||
* request buffers, raises interrupt on the CPU to handle the fault.
|
||||
* It takes credit on fault window, updates nx_fault_stamp in CRB with
|
||||
* the following information and pastes CRB in fault FIFO.
|
||||
*
|
||||
* pswid - window ID of the window on which the request is sent.
|
||||
* fault_storage_addr - fault address
|
||||
*
|
||||
* It can raise a single interrupt for multiple faults. Expects OS to
|
||||
* process all valid faults and return credit for each fault on user
|
||||
* space and fault windows. This fault FIFO control will be done with
|
||||
* credit mechanism. NX can continuously paste CRBs until credits are not
|
||||
* available on fault window. Otherwise, returns with RMA_reject.
|
||||
*
|
||||
* Total credits available on fault window: FIFO_SIZE(4MB)/CRBS_SIZE(128)
|
||||
*
|
||||
*/
|
||||
irqreturn_t vas_fault_thread_fn(int irq, void *data)
|
||||
{
|
||||
struct vas_instance *vinst = data;
|
||||
struct coprocessor_request_block *crb, *entry;
|
||||
struct coprocessor_request_block buf;
|
||||
struct vas_window *window;
|
||||
unsigned long flags;
|
||||
void *fifo;
|
||||
|
||||
crb = &buf;
|
||||
|
||||
/*
|
||||
* VAS can interrupt with multiple page faults. So process all
|
||||
* valid CRBs within fault FIFO until reaches invalid CRB.
|
||||
* We use CCW[0] and pswid to validate validate CRBs:
|
||||
*
|
||||
* CCW[0] Reserved bit. When NX pastes CRB, CCW[0]=0
|
||||
* OS sets this bit to 1 after reading CRB.
|
||||
* pswid NX assigns window ID. Set pswid to -1 after
|
||||
* reading CRB from fault FIFO.
|
||||
*
|
||||
* We exit this function if no valid CRBs are available to process.
|
||||
* So acquire fault_lock and reset fifo_in_progress to 0 before
|
||||
* exit.
|
||||
* In case kernel receives another interrupt with different page
|
||||
* fault, interrupt handler returns with IRQ_HANDLED if
|
||||
* fifo_in_progress is set. Means these new faults will be
|
||||
* handled by the current thread. Otherwise set fifo_in_progress
|
||||
* and return IRQ_WAKE_THREAD to wake up thread.
|
||||
*/
|
||||
while (true) {
|
||||
spin_lock_irqsave(&vinst->fault_lock, flags);
|
||||
/*
|
||||
* Advance the fault fifo pointer to next CRB.
|
||||
* Use CRB_SIZE rather than sizeof(*crb) since the latter is
|
||||
* aligned to CRB_ALIGN (256) but the CRB written to by VAS is
|
||||
* only CRB_SIZE in len.
|
||||
*/
|
||||
fifo = vinst->fault_fifo + (vinst->fault_crbs * CRB_SIZE);
|
||||
entry = fifo;
|
||||
|
||||
if ((entry->stamp.nx.pswid == cpu_to_be32(FIFO_INVALID_ENTRY))
|
||||
|| (entry->ccw & cpu_to_be32(CCW0_INVALID))) {
|
||||
vinst->fifo_in_progress = 0;
|
||||
spin_unlock_irqrestore(&vinst->fault_lock, flags);
|
||||
return IRQ_HANDLED;
|
||||
}
|
||||
|
||||
spin_unlock_irqrestore(&vinst->fault_lock, flags);
|
||||
vinst->fault_crbs++;
|
||||
if (vinst->fault_crbs == (vinst->fault_fifo_size / CRB_SIZE))
|
||||
vinst->fault_crbs = 0;
|
||||
|
||||
memcpy(crb, fifo, CRB_SIZE);
|
||||
entry->stamp.nx.pswid = cpu_to_be32(FIFO_INVALID_ENTRY);
|
||||
entry->ccw |= cpu_to_be32(CCW0_INVALID);
|
||||
/*
|
||||
* Return credit for the fault window.
|
||||
*/
|
||||
vas_return_credit(vinst->fault_win, false);
|
||||
|
||||
pr_devel("VAS[%d] fault_fifo %p, fifo %p, fault_crbs %d\n",
|
||||
vinst->vas_id, vinst->fault_fifo, fifo,
|
||||
vinst->fault_crbs);
|
||||
|
||||
dump_crb(crb);
|
||||
window = vas_pswid_to_window(vinst,
|
||||
be32_to_cpu(crb->stamp.nx.pswid));
|
||||
|
||||
if (IS_ERR(window)) {
|
||||
/*
|
||||
* We got an interrupt about a specific send
|
||||
* window but we can't find that window and we can't
|
||||
* even clean it up (return credit on user space
|
||||
* window).
|
||||
* But we should not get here.
|
||||
* TODO: Disable IRQ.
|
||||
*/
|
||||
dump_fifo(vinst, (void *)entry);
|
||||
pr_err("VAS[%d] fault_fifo %p, fifo %p, pswid 0x%x, fault_crbs %d bad CRB?\n",
|
||||
vinst->vas_id, vinst->fault_fifo, fifo,
|
||||
be32_to_cpu(crb->stamp.nx.pswid),
|
||||
vinst->fault_crbs);
|
||||
|
||||
WARN_ON_ONCE(1);
|
||||
} else {
|
||||
update_csb(window, crb);
|
||||
/*
|
||||
* Return credit for send window after processing
|
||||
* fault CRB.
|
||||
*/
|
||||
vas_return_credit(window, true);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
irqreturn_t vas_fault_handler(int irq, void *dev_id)
|
||||
{
|
||||
struct vas_instance *vinst = dev_id;
|
||||
irqreturn_t ret = IRQ_WAKE_THREAD;
|
||||
unsigned long flags;
|
||||
|
||||
/*
|
||||
* NX can generate an interrupt for multiple faults. So the
|
||||
* fault handler thread process all CRBs until finds invalid
|
||||
* entry. In case if NX sees continuous faults, it is possible
|
||||
* that the thread function entered with the first interrupt
|
||||
* can execute and process all valid CRBs.
|
||||
* So wake up thread only if the fault thread is not in progress.
|
||||
*/
|
||||
spin_lock_irqsave(&vinst->fault_lock, flags);
|
||||
|
||||
if (vinst->fifo_in_progress)
|
||||
ret = IRQ_HANDLED;
|
||||
else
|
||||
vinst->fifo_in_progress = 1;
|
||||
|
||||
spin_unlock_irqrestore(&vinst->fault_lock, flags);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Fault window is opened per VAS instance. NX pastes fault CRB in fault
|
||||
* FIFO upon page faults.
|
||||
*/
|
||||
int vas_setup_fault_window(struct vas_instance *vinst)
|
||||
{
|
||||
struct vas_rx_win_attr attr;
|
||||
|
||||
vinst->fault_fifo_size = VAS_FAULT_WIN_FIFO_SIZE;
|
||||
vinst->fault_fifo = kzalloc(vinst->fault_fifo_size, GFP_KERNEL);
|
||||
if (!vinst->fault_fifo) {
|
||||
pr_err("Unable to alloc %d bytes for fault_fifo\n",
|
||||
vinst->fault_fifo_size);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
/*
|
||||
* Invalidate all CRB entries. NX pastes valid entry for each fault.
|
||||
*/
|
||||
memset(vinst->fault_fifo, FIFO_INVALID_ENTRY, vinst->fault_fifo_size);
|
||||
vas_init_rx_win_attr(&attr, VAS_COP_TYPE_FAULT);
|
||||
|
||||
attr.rx_fifo_size = vinst->fault_fifo_size;
|
||||
attr.rx_fifo = vinst->fault_fifo;
|
||||
|
||||
/*
|
||||
* Max creds is based on number of CRBs can fit in the FIFO.
|
||||
* (fault_fifo_size/CRB_SIZE). If 8MB FIFO is used, max creds
|
||||
* will be 0xffff since the receive creds field is 16bits wide.
|
||||
*/
|
||||
attr.wcreds_max = vinst->fault_fifo_size / CRB_SIZE;
|
||||
attr.lnotify_lpid = 0;
|
||||
attr.lnotify_pid = mfspr(SPRN_PID);
|
||||
attr.lnotify_tid = mfspr(SPRN_PID);
|
||||
|
||||
vinst->fault_win = vas_rx_win_open(vinst->vas_id, VAS_COP_TYPE_FAULT,
|
||||
&attr);
|
||||
|
||||
if (IS_ERR(vinst->fault_win)) {
|
||||
pr_err("VAS: Error %ld opening FaultWin\n",
|
||||
PTR_ERR(vinst->fault_win));
|
||||
kfree(vinst->fault_fifo);
|
||||
return PTR_ERR(vinst->fault_win);
|
||||
}
|
||||
|
||||
pr_devel("VAS: Created FaultWin %d, LPID/PID/TID [%d/%d/%d]\n",
|
||||
vinst->fault_win->winid, attr.lnotify_lpid,
|
||||
attr.lnotify_pid, attr.lnotify_tid);
|
||||
|
||||
return 0;
|
||||
}
|
@ -12,6 +12,8 @@
|
||||
#include <linux/log2.h>
|
||||
#include <linux/rcupdate.h>
|
||||
#include <linux/cred.h>
|
||||
#include <linux/sched/mm.h>
|
||||
#include <linux/mmu_context.h>
|
||||
#include <asm/switch_to.h>
|
||||
#include <asm/ppc-opcode.h>
|
||||
#include "vas.h"
|
||||
@ -373,7 +375,7 @@ int init_winctx_regs(struct vas_window *window, struct vas_winctx *winctx)
|
||||
init_xlate_regs(window, winctx->user_win);
|
||||
|
||||
val = 0ULL;
|
||||
val = SET_FIELD(VAS_FAULT_TX_WIN, val, 0);
|
||||
val = SET_FIELD(VAS_FAULT_TX_WIN, val, winctx->fault_win_id);
|
||||
write_hvwc_reg(window, VREG(FAULT_TX_WIN), val);
|
||||
|
||||
/* In PowerNV, interrupts go to HV. */
|
||||
@ -748,6 +750,8 @@ static void init_winctx_for_rxwin(struct vas_window *rxwin,
|
||||
|
||||
winctx->min_scope = VAS_SCOPE_LOCAL;
|
||||
winctx->max_scope = VAS_SCOPE_VECTORED_GROUP;
|
||||
if (rxwin->vinst->virq)
|
||||
winctx->irq_port = rxwin->vinst->irq_port;
|
||||
}
|
||||
|
||||
static bool rx_win_args_valid(enum vas_cop_type cop,
|
||||
@ -768,7 +772,7 @@ static bool rx_win_args_valid(enum vas_cop_type cop,
|
||||
if (attr->rx_fifo_size > VAS_RX_FIFO_SIZE_MAX)
|
||||
return false;
|
||||
|
||||
if (attr->wcreds_max > VAS_RX_WCREDS_MAX)
|
||||
if (!attr->wcreds_max)
|
||||
return false;
|
||||
|
||||
if (attr->nx_win) {
|
||||
@ -827,9 +831,9 @@ void vas_init_rx_win_attr(struct vas_rx_win_attr *rxattr, enum vas_cop_type cop)
|
||||
rxattr->fault_win = true;
|
||||
rxattr->notify_disable = true;
|
||||
rxattr->rx_wcred_mode = true;
|
||||
rxattr->tx_wcred_mode = true;
|
||||
rxattr->rx_win_ord_mode = true;
|
||||
rxattr->tx_win_ord_mode = true;
|
||||
rxattr->rej_no_credit = true;
|
||||
rxattr->tc_mode = VAS_THRESH_DISABLED;
|
||||
} else if (cop == VAS_COP_TYPE_FTW) {
|
||||
rxattr->user_win = true;
|
||||
rxattr->intr_disable = true;
|
||||
@ -873,9 +877,7 @@ struct vas_window *vas_rx_win_open(int vasid, enum vas_cop_type cop,
|
||||
rxwin->nx_win = rxattr->nx_win;
|
||||
rxwin->user_win = rxattr->user_win;
|
||||
rxwin->cop = cop;
|
||||
rxwin->wcreds_max = rxattr->wcreds_max ?: VAS_WCREDS_DEFAULT;
|
||||
if (rxattr->user_win)
|
||||
rxwin->pid = task_pid_vnr(current);
|
||||
rxwin->wcreds_max = rxattr->wcreds_max;
|
||||
|
||||
init_winctx_for_rxwin(rxwin, rxattr, &winctx);
|
||||
init_winctx_regs(rxwin, &winctx);
|
||||
@ -944,13 +946,22 @@ static void init_winctx_for_txwin(struct vas_window *txwin,
|
||||
winctx->lpid = txattr->lpid;
|
||||
winctx->pidr = txattr->pidr;
|
||||
winctx->rx_win_id = txwin->rxwin->winid;
|
||||
/*
|
||||
* IRQ and fault window setup is successful. Set fault window
|
||||
* for the send window so that ready to handle faults.
|
||||
*/
|
||||
if (txwin->vinst->virq)
|
||||
winctx->fault_win_id = txwin->vinst->fault_win->winid;
|
||||
|
||||
winctx->dma_type = VAS_DMA_TYPE_INJECT;
|
||||
winctx->tc_mode = txattr->tc_mode;
|
||||
winctx->min_scope = VAS_SCOPE_LOCAL;
|
||||
winctx->max_scope = VAS_SCOPE_VECTORED_GROUP;
|
||||
if (txwin->vinst->virq)
|
||||
winctx->irq_port = txwin->vinst->irq_port;
|
||||
|
||||
winctx->pswid = 0;
|
||||
winctx->pswid = txattr->pswid ? txattr->pswid :
|
||||
encode_pswid(txwin->vinst->vas_id, txwin->winid);
|
||||
}
|
||||
|
||||
static bool tx_win_args_valid(enum vas_cop_type cop,
|
||||
@ -1016,7 +1027,6 @@ struct vas_window *vas_tx_win_open(int vasid, enum vas_cop_type cop,
|
||||
txwin->tx_win = 1;
|
||||
txwin->rxwin = rxwin;
|
||||
txwin->nx_win = txwin->rxwin->nx_win;
|
||||
txwin->pid = attr->pid;
|
||||
txwin->user_win = attr->user_win;
|
||||
txwin->wcreds_max = attr->wcreds_max ?: VAS_WCREDS_DEFAULT;
|
||||
|
||||
@ -1040,12 +1050,59 @@ struct vas_window *vas_tx_win_open(int vasid, enum vas_cop_type cop,
|
||||
}
|
||||
} else {
|
||||
/*
|
||||
* A user mapping must ensure that context switch issues
|
||||
* CP_ABORT for this thread.
|
||||
* Interrupt hanlder or fault window setup failed. Means
|
||||
* NX can not generate fault for page fault. So not
|
||||
* opening for user space tx window.
|
||||
*/
|
||||
rc = set_thread_uses_vas();
|
||||
if (rc)
|
||||
if (!vinst->virq) {
|
||||
rc = -ENODEV;
|
||||
goto free_window;
|
||||
}
|
||||
|
||||
/*
|
||||
* Window opened by a child thread may not be closed when
|
||||
* it exits. So take reference to its pid and release it
|
||||
* when the window is free by parent thread.
|
||||
* Acquire a reference to the task's pid to make sure
|
||||
* pid will not be re-used - needed only for multithread
|
||||
* applications.
|
||||
*/
|
||||
txwin->pid = get_task_pid(current, PIDTYPE_PID);
|
||||
/*
|
||||
* Acquire a reference to the task's mm.
|
||||
*/
|
||||
txwin->mm = get_task_mm(current);
|
||||
|
||||
if (!txwin->mm) {
|
||||
put_pid(txwin->pid);
|
||||
pr_err("VAS: pid(%d): mm_struct is not found\n",
|
||||
current->pid);
|
||||
rc = -EPERM;
|
||||
goto free_window;
|
||||
}
|
||||
|
||||
mmgrab(txwin->mm);
|
||||
mmput(txwin->mm);
|
||||
mm_context_add_vas_window(txwin->mm);
|
||||
/*
|
||||
* Process closes window during exit. In the case of
|
||||
* multithread application, the child thread can open
|
||||
* window and can exit without closing it. Expects parent
|
||||
* thread to use and close the window. So do not need
|
||||
* to take pid reference for parent thread.
|
||||
*/
|
||||
txwin->tgid = find_get_pid(task_tgid_vnr(current));
|
||||
/*
|
||||
* Even a process that has no foreign real address mapping can
|
||||
* use an unpaired COPY instruction (to no real effect). Issue
|
||||
* CP_ABORT to clear any pending COPY and prevent a covert
|
||||
* channel.
|
||||
*
|
||||
* __switch_to() will issue CP_ABORT on future context switches
|
||||
* if process / thread has any open VAS window (Use
|
||||
* current->mm->context.vas_windows).
|
||||
*/
|
||||
asm volatile(PPC_CP_ABORT);
|
||||
}
|
||||
|
||||
set_vinst_win(vinst, txwin);
|
||||
@ -1128,6 +1185,7 @@ static void poll_window_credits(struct vas_window *window)
|
||||
{
|
||||
u64 val;
|
||||
int creds, mode;
|
||||
int count = 0;
|
||||
|
||||
val = read_hvwc_reg(window, VREG(WINCTL));
|
||||
if (window->tx_win)
|
||||
@ -1146,10 +1204,27 @@ retry:
|
||||
creds = GET_FIELD(VAS_LRX_WCRED, val);
|
||||
}
|
||||
|
||||
/*
|
||||
* Takes around few milliseconds to complete all pending requests
|
||||
* and return credits.
|
||||
* TODO: Scan fault FIFO and invalidate CRBs points to this window
|
||||
* and issue CRB Kill to stop all pending requests. Need only
|
||||
* if there is a bug in NX or fault handling in kernel.
|
||||
*/
|
||||
if (creds < window->wcreds_max) {
|
||||
val = 0;
|
||||
set_current_state(TASK_UNINTERRUPTIBLE);
|
||||
schedule_timeout(msecs_to_jiffies(10));
|
||||
count++;
|
||||
/*
|
||||
* Process can not close send window until all credits are
|
||||
* returned.
|
||||
*/
|
||||
if (!(count % 1000))
|
||||
pr_warn_ratelimited("VAS: pid %d stuck. Waiting for credits returned for Window(%d). creds %d, Retries %d\n",
|
||||
vas_window_pid(window), window->winid,
|
||||
creds, count);
|
||||
|
||||
goto retry;
|
||||
}
|
||||
}
|
||||
@ -1163,6 +1238,7 @@ static void poll_window_busy_state(struct vas_window *window)
|
||||
{
|
||||
int busy;
|
||||
u64 val;
|
||||
int count = 0;
|
||||
|
||||
retry:
|
||||
val = read_hvwc_reg(window, VREG(WIN_STATUS));
|
||||
@ -1170,7 +1246,16 @@ retry:
|
||||
if (busy) {
|
||||
val = 0;
|
||||
set_current_state(TASK_UNINTERRUPTIBLE);
|
||||
schedule_timeout(msecs_to_jiffies(5));
|
||||
schedule_timeout(msecs_to_jiffies(10));
|
||||
count++;
|
||||
/*
|
||||
* Takes around few milliseconds to process all pending
|
||||
* requests.
|
||||
*/
|
||||
if (!(count % 1000))
|
||||
pr_warn_ratelimited("VAS: pid %d stuck. Window (ID=%d) is in busy state. Retries %d\n",
|
||||
vas_window_pid(window), window->winid, count);
|
||||
|
||||
goto retry;
|
||||
}
|
||||
}
|
||||
@ -1235,22 +1320,118 @@ int vas_win_close(struct vas_window *window)
|
||||
|
||||
unmap_paste_region(window);
|
||||
|
||||
clear_vinst_win(window);
|
||||
|
||||
poll_window_busy_state(window);
|
||||
|
||||
unpin_close_window(window);
|
||||
|
||||
poll_window_credits(window);
|
||||
|
||||
clear_vinst_win(window);
|
||||
|
||||
poll_window_castout(window);
|
||||
|
||||
/* if send window, drop reference to matching receive window */
|
||||
if (window->tx_win)
|
||||
if (window->tx_win) {
|
||||
if (window->user_win) {
|
||||
/* Drop references to pid and mm */
|
||||
put_pid(window->pid);
|
||||
if (window->mm) {
|
||||
mm_context_remove_vas_window(window->mm);
|
||||
mmdrop(window->mm);
|
||||
}
|
||||
}
|
||||
put_rx_win(window->rxwin);
|
||||
}
|
||||
|
||||
vas_window_free(window);
|
||||
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(vas_win_close);
|
||||
|
||||
/*
|
||||
* Return credit for the given window.
|
||||
* Send windows and fault window uses credit mechanism as follows:
|
||||
*
|
||||
* Send windows:
|
||||
* - The default number of credits available for each send window is
|
||||
* 1024. It means 1024 requests can be issued asynchronously at the
|
||||
* same time. If the credit is not available, that request will be
|
||||
* returned with RMA_Busy.
|
||||
* - One credit is taken when NX request is issued.
|
||||
* - This credit is returned after NX processed that request.
|
||||
* - If NX encounters translation error, kernel will return the
|
||||
* credit on the specific send window after processing the fault CRB.
|
||||
*
|
||||
* Fault window:
|
||||
* - The total number credits available is FIFO_SIZE/CRB_SIZE.
|
||||
* Means 4MB/128 in the current implementation. If credit is not
|
||||
* available, RMA_Reject is returned.
|
||||
* - A credit is taken when NX pastes CRB in fault FIFO.
|
||||
* - The kernel with return credit on fault window after reading entry
|
||||
* from fault FIFO.
|
||||
*/
|
||||
void vas_return_credit(struct vas_window *window, bool tx)
|
||||
{
|
||||
uint64_t val;
|
||||
|
||||
val = 0ULL;
|
||||
if (tx) { /* send window */
|
||||
val = SET_FIELD(VAS_TX_WCRED, val, 1);
|
||||
write_hvwc_reg(window, VREG(TX_WCRED_ADDER), val);
|
||||
} else {
|
||||
val = SET_FIELD(VAS_LRX_WCRED, val, 1);
|
||||
write_hvwc_reg(window, VREG(LRX_WCRED_ADDER), val);
|
||||
}
|
||||
}
|
||||
|
||||
struct vas_window *vas_pswid_to_window(struct vas_instance *vinst,
|
||||
uint32_t pswid)
|
||||
{
|
||||
struct vas_window *window;
|
||||
int winid;
|
||||
|
||||
if (!pswid) {
|
||||
pr_devel("%s: called for pswid 0!\n", __func__);
|
||||
return ERR_PTR(-ESRCH);
|
||||
}
|
||||
|
||||
decode_pswid(pswid, NULL, &winid);
|
||||
|
||||
if (winid >= VAS_WINDOWS_PER_CHIP)
|
||||
return ERR_PTR(-ESRCH);
|
||||
|
||||
/*
|
||||
* If application closes the window before the hardware
|
||||
* returns the fault CRB, we should wait in vas_win_close()
|
||||
* for the pending requests. so the window must be active
|
||||
* and the process alive.
|
||||
*
|
||||
* If its a kernel process, we should not get any faults and
|
||||
* should not get here.
|
||||
*/
|
||||
window = vinst->windows[winid];
|
||||
|
||||
if (!window) {
|
||||
pr_err("PSWID decode: Could not find window for winid %d pswid %d vinst 0x%p\n",
|
||||
winid, pswid, vinst);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
* Do some sanity checks on the decoded window. Window should be
|
||||
* NX GZIP user send window. FTW windows should not incur faults
|
||||
* since their CRBs are ignored (not queued on FIFO or processed
|
||||
* by NX).
|
||||
*/
|
||||
if (!window->tx_win || !window->user_win || !window->nx_win ||
|
||||
window->cop == VAS_COP_TYPE_FAULT ||
|
||||
window->cop == VAS_COP_TYPE_FTW) {
|
||||
pr_err("PSWID decode: id %d, tx %d, user %d, nx %d, cop %d\n",
|
||||
winid, window->tx_win, window->user_win,
|
||||
window->nx_win, window->cop);
|
||||
WARN_ON(1);
|
||||
}
|
||||
|
||||
return window;
|
||||
}
|
||||
|
@ -14,7 +14,10 @@
|
||||
#include <linux/of_platform.h>
|
||||
#include <linux/of_address.h>
|
||||
#include <linux/of.h>
|
||||
#include <linux/irqdomain.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <asm/prom.h>
|
||||
#include <asm/xive.h>
|
||||
|
||||
#include "vas.h"
|
||||
|
||||
@ -23,12 +26,37 @@ static LIST_HEAD(vas_instances);
|
||||
|
||||
static DEFINE_PER_CPU(int, cpu_vas_id);
|
||||
|
||||
static int vas_irq_fault_window_setup(struct vas_instance *vinst)
|
||||
{
|
||||
char devname[64];
|
||||
int rc = 0;
|
||||
|
||||
snprintf(devname, sizeof(devname), "vas-%d", vinst->vas_id);
|
||||
rc = request_threaded_irq(vinst->virq, vas_fault_handler,
|
||||
vas_fault_thread_fn, 0, devname, vinst);
|
||||
|
||||
if (rc) {
|
||||
pr_err("VAS[%d]: Request IRQ(%d) failed with %d\n",
|
||||
vinst->vas_id, vinst->virq, rc);
|
||||
goto out;
|
||||
}
|
||||
|
||||
rc = vas_setup_fault_window(vinst);
|
||||
if (rc)
|
||||
free_irq(vinst->virq, vinst);
|
||||
|
||||
out:
|
||||
return rc;
|
||||
}
|
||||
|
||||
static int init_vas_instance(struct platform_device *pdev)
|
||||
{
|
||||
int rc, cpu, vasid;
|
||||
struct resource *res;
|
||||
struct vas_instance *vinst;
|
||||
struct device_node *dn = pdev->dev.of_node;
|
||||
struct vas_instance *vinst;
|
||||
struct xive_irq_data *xd;
|
||||
uint32_t chipid, hwirq;
|
||||
struct resource *res;
|
||||
int rc, cpu, vasid;
|
||||
|
||||
rc = of_property_read_u32(dn, "ibm,vas-id", &vasid);
|
||||
if (rc) {
|
||||
@ -36,6 +64,12 @@ static int init_vas_instance(struct platform_device *pdev)
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
rc = of_property_read_u32(dn, "ibm,chip-id", &chipid);
|
||||
if (rc) {
|
||||
pr_err("No ibm,chip-id property for %s?\n", pdev->name);
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
if (pdev->num_resources != 4) {
|
||||
pr_err("Unexpected DT configuration for [%s, %d]\n",
|
||||
pdev->name, vasid);
|
||||
@ -69,9 +103,32 @@ static int init_vas_instance(struct platform_device *pdev)
|
||||
|
||||
vinst->paste_win_id_shift = 63 - res->end;
|
||||
|
||||
pr_devel("Initialized instance [%s, %d], paste_base 0x%llx, "
|
||||
"paste_win_id_shift 0x%llx\n", pdev->name, vasid,
|
||||
vinst->paste_base_addr, vinst->paste_win_id_shift);
|
||||
hwirq = xive_native_alloc_irq_on_chip(chipid);
|
||||
if (!hwirq) {
|
||||
pr_err("Inst%d: Unable to allocate global irq for chip %d\n",
|
||||
vinst->vas_id, chipid);
|
||||
return -ENOENT;
|
||||
}
|
||||
|
||||
vinst->virq = irq_create_mapping(NULL, hwirq);
|
||||
if (!vinst->virq) {
|
||||
pr_err("Inst%d: Unable to map global irq %d\n",
|
||||
vinst->vas_id, hwirq);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
xd = irq_get_handler_data(vinst->virq);
|
||||
if (!xd) {
|
||||
pr_err("Inst%d: Invalid virq %d\n",
|
||||
vinst->vas_id, vinst->virq);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
vinst->irq_port = xd->trig_page;
|
||||
pr_devel("Initialized instance [%s, %d] paste_base 0x%llx paste_win_id_shift 0x%llx IRQ %d Port 0x%llx\n",
|
||||
pdev->name, vasid, vinst->paste_base_addr,
|
||||
vinst->paste_win_id_shift, vinst->virq,
|
||||
vinst->irq_port);
|
||||
|
||||
for_each_possible_cpu(cpu) {
|
||||
if (cpu_to_chip_id(cpu) == of_get_ibm_chip_id(dn))
|
||||
@ -82,6 +139,22 @@ static int init_vas_instance(struct platform_device *pdev)
|
||||
list_add(&vinst->node, &vas_instances);
|
||||
mutex_unlock(&vas_mutex);
|
||||
|
||||
spin_lock_init(&vinst->fault_lock);
|
||||
/*
|
||||
* IRQ and fault handling setup is needed only for user space
|
||||
* send windows.
|
||||
*/
|
||||
if (vinst->virq) {
|
||||
rc = vas_irq_fault_window_setup(vinst);
|
||||
/*
|
||||
* Fault window is used only for user space send windows.
|
||||
* So if vinst->virq is NULL, tx_win_open returns -ENODEV
|
||||
* for user space.
|
||||
*/
|
||||
if (rc)
|
||||
vinst->virq = 0;
|
||||
}
|
||||
|
||||
vas_instance_init_dbgdir(vinst);
|
||||
|
||||
dev_set_drvdata(&pdev->dev, vinst);
|
||||
|
@ -101,11 +101,9 @@
|
||||
/*
|
||||
* Initial per-process credits.
|
||||
* Max send window credits: 4K-1 (12-bits in VAS_TX_WCRED)
|
||||
* Max receive window credits: 64K-1 (16 bits in VAS_LRX_WCRED)
|
||||
*
|
||||
* TODO: Needs tuning for per-process credits
|
||||
*/
|
||||
#define VAS_RX_WCREDS_MAX ((64 << 10) - 1)
|
||||
#define VAS_TX_WCREDS_MAX ((4 << 10) - 1)
|
||||
#define VAS_WCREDS_DEFAULT (1 << 10)
|
||||
|
||||
@ -295,6 +293,22 @@ enum vas_notify_after_count {
|
||||
VAS_NOTIFY_AFTER_2
|
||||
};
|
||||
|
||||
/*
|
||||
* NX can generate an interrupt for multiple faults and expects kernel
|
||||
* to process all of them. So read all valid CRB entries until find the
|
||||
* invalid one. So use pswid which is pasted by NX and ccw[0] (reserved
|
||||
* bit in BE) to check valid CRB. CCW[0] will not be touched by user
|
||||
* space. Application gets CRB formt error if it updates this bit.
|
||||
*
|
||||
* Invalidate FIFO during allocation and process all entries from last
|
||||
* successful read until finds invalid pswid and ccw[0] values.
|
||||
* After reading each CRB entry from fault FIFO, the kernel invalidate
|
||||
* it by updating pswid with FIFO_INVALID_ENTRY and CCW[0] with
|
||||
* CCW0_INVALID.
|
||||
*/
|
||||
#define FIFO_INVALID_ENTRY 0xffffffff
|
||||
#define CCW0_INVALID 1
|
||||
|
||||
/*
|
||||
* One per instance of VAS. Each instance will have a separate set of
|
||||
* receive windows, one per coprocessor type.
|
||||
@ -313,6 +327,15 @@ struct vas_instance {
|
||||
u64 paste_base_addr;
|
||||
u64 paste_win_id_shift;
|
||||
|
||||
u64 irq_port;
|
||||
int virq;
|
||||
int fault_crbs;
|
||||
int fault_fifo_size;
|
||||
int fifo_in_progress; /* To wake up thread or return IRQ_HANDLED */
|
||||
spinlock_t fault_lock; /* Protects fifo_in_progress update */
|
||||
void *fault_fifo;
|
||||
struct vas_window *fault_win; /* Fault window */
|
||||
|
||||
struct mutex mutex;
|
||||
struct vas_window *rxwin[VAS_COP_TYPE_MAX];
|
||||
struct vas_window *windows[VAS_WINDOWS_PER_CHIP];
|
||||
@ -333,7 +356,9 @@ struct vas_window {
|
||||
bool user_win; /* True if user space window */
|
||||
void *hvwc_map; /* HV window context */
|
||||
void *uwc_map; /* OS/User window context */
|
||||
pid_t pid; /* Linux process id of owner */
|
||||
struct pid *pid; /* Linux process id of owner */
|
||||
struct pid *tgid; /* Thread group ID of owner */
|
||||
struct mm_struct *mm; /* Linux process mm_struct */
|
||||
int wcreds_max; /* Window credits */
|
||||
|
||||
char *dbgname;
|
||||
@ -406,6 +431,17 @@ extern void vas_init_dbgdir(void);
|
||||
extern void vas_instance_init_dbgdir(struct vas_instance *vinst);
|
||||
extern void vas_window_init_dbgdir(struct vas_window *win);
|
||||
extern void vas_window_free_dbgdir(struct vas_window *win);
|
||||
extern int vas_setup_fault_window(struct vas_instance *vinst);
|
||||
extern irqreturn_t vas_fault_thread_fn(int irq, void *data);
|
||||
extern irqreturn_t vas_fault_handler(int irq, void *dev_id);
|
||||
extern void vas_return_credit(struct vas_window *window, bool tx);
|
||||
extern struct vas_window *vas_pswid_to_window(struct vas_instance *vinst,
|
||||
uint32_t pswid);
|
||||
|
||||
static inline int vas_window_pid(struct vas_window *window)
|
||||
{
|
||||
return pid_vnr(window->pid);
|
||||
}
|
||||
|
||||
static inline void vas_log_write(struct vas_window *win, char *name,
|
||||
void *regptr, u64 val)
|
||||
@ -444,6 +480,21 @@ static inline u64 read_hvwc_reg(struct vas_window *win,
|
||||
return in_be64(win->hvwc_map+reg);
|
||||
}
|
||||
|
||||
/*
|
||||
* Encode/decode the Partition Send Window ID (PSWID) for a window in
|
||||
* a way that we can uniquely identify any window in the system. i.e.
|
||||
* we should be able to locate the 'struct vas_window' given the PSWID.
|
||||
*
|
||||
* Bits Usage
|
||||
* 0:7 VAS id (8 bits)
|
||||
* 8:15 Unused, 0 (3 bits)
|
||||
* 16:31 Window id (16 bits)
|
||||
*/
|
||||
static inline u32 encode_pswid(int vasid, int winid)
|
||||
{
|
||||
return ((u32)winid | (vasid << (31 - 7)));
|
||||
}
|
||||
|
||||
static inline void decode_pswid(u32 pswid, int *vasid, int *winid)
|
||||
{
|
||||
if (vasid)
|
||||
|
@ -280,12 +280,12 @@ static int xive_native_get_ipi(unsigned int cpu, struct xive_cpu *xc)
|
||||
}
|
||||
#endif /* CONFIG_SMP */
|
||||
|
||||
u32 xive_native_alloc_irq(void)
|
||||
u32 xive_native_alloc_irq_on_chip(u32 chip_id)
|
||||
{
|
||||
s64 rc;
|
||||
|
||||
for (;;) {
|
||||
rc = opal_xive_allocate_irq(OPAL_XIVE_ANY_CHIP);
|
||||
rc = opal_xive_allocate_irq(chip_id);
|
||||
if (rc != OPAL_BUSY)
|
||||
break;
|
||||
msleep(OPAL_BUSY_DELAY_MS);
|
||||
@ -294,7 +294,7 @@ u32 xive_native_alloc_irq(void)
|
||||
return 0;
|
||||
return rc;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(xive_native_alloc_irq);
|
||||
EXPORT_SYMBOL_GPL(xive_native_alloc_irq_on_chip);
|
||||
|
||||
void xive_native_free_irq(u32 irq)
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user