Merge remote-tracking branches 'ras/edac-drivers', 'ras/edac-misc' and 'ras/edac-amd-atl' into edac-updates-for-v6.9

* ras/edac-drivers:
  EDAC/i10nm: Add Intel Grand Ridge micro-server support
  EDAC/igen6: Add one more Intel Alder Lake-N SoC support

* ras/edac-misc:
  EDAC/versal: Convert to platform remove callback returning void
  EDAC/versal: Make the bit position of injected errors configurable
  EDAC/synopsys: Convert to devm_platform_ioremap_resource()

* ras/edac-amd-atl:
  RAS/AMD/FMPM: Fix off by one when unwinding on error
  RAS/AMD/FMPM: Add debugfs interface to print record entries
  RAS/AMD/FMPM: Save SPA values
  RAS: Export helper to get ras_debugfs_dir
  RAS/AMD/ATL: Fix bit overflow in denorm_addr_df4_np2()
  RAS: Introduce a FRU memory poison manager
  RAS/AMD/ATL: Add MI300 row retirement support
  Documentation: Move RAS section to admin-guide
  RAS/AMD/ATL: Add MI300 DRAM to normalized address translation support
  RAS/AMD/ATL: Fix array overflow in get_logical_coh_st_fabric_id_mi300()
  RAS/AMD/ATL: Add MI300 support
  Documentation: RAS: Add index and address translation section
  EDAC/amd64: Use new AMD Address Translation Library
  RAS: Introduce AMD Address Translation Library

Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
This commit is contained in:
Borislav Petkov (AMD) 2024-03-11 16:24:20 +01:00
commit af65545a0f
30 changed files with 5161 additions and 335 deletions

View File

@ -0,0 +1,24 @@
.. SPDX-License-Identifier: GPL-2.0
Address translation
===================
x86 AMD
-------
Zen-based AMD systems include a Data Fabric that manages the layout of
physical memory. Devices attached to the Fabric, like memory controllers,
I/O, etc., may not have a complete view of the system physical memory map.
These devices may provide a "normalized", i.e. device physical, address
when reporting memory errors. Normalized addresses must be translated to
a system physical address for the kernel to action on the memory.
AMD Address Translation Library (CONFIG_AMD_ATL) provides translation for
this case.
Glossary of acronyms used in address translation for Zen-based systems
* CCM = Cache Coherent Moderator
* COD = Cluster-on-Die
* COH_ST = Coherent Station
* DF = Data Fabric

View File

@ -1,15 +1,10 @@
.. SPDX-License-Identifier: GPL-2.0
Reliability, Availability and Serviceability features
=====================================================
This documents different aspects of the RAS functionality present in the
kernel.
Error decoding
---------------
==============
* x86
x86
---
Error decoding on AMD systems should be done using the rasdaemon tool:
https://github.com/mchehab/rasdaemon/

View File

@ -0,0 +1,7 @@
.. SPDX-License-Identifier: GPL-2.0
.. toctree::
:maxdepth: 2
main
error-decoding
address-translation

View File

@ -1,8 +1,12 @@
.. SPDX-License-Identifier: GPL-2.0
.. include:: <isonum.txt>
============================================
Reliability, Availability and Serviceability
============================================
==================================================
Reliability, Availability and Serviceability (RAS)
==================================================
This documents different aspects of the RAS functionality present in the
kernel.
RAS concepts
************

View File

@ -122,7 +122,7 @@ configure specific aspects of kernel behavior to your liking.
pmf
pnp
rapidio
ras
RAS/index
rtc
serial-console
svga

View File

@ -113,7 +113,6 @@ to ReStructured Text format, or are simply too old.
:maxdepth: 1
staging/index
RAS/ras
Translations

View File

@ -897,6 +897,12 @@ Q: https://patchwork.kernel.org/project/linux-rdma/list/
F: drivers/infiniband/hw/efa/
F: include/uapi/rdma/efa-abi.h
AMD ADDRESS TRANSLATION LIBRARY (ATL)
M: Yazen Ghannam <Yazen.Ghannam@amd.com>
L: linux-edac@vger.kernel.org
S: Supported
F: drivers/ras/amd/atl/*
AMD AXI W1 DRIVER
M: Kris Chaplin <kris.chaplin@amd.com>
R: Thomas Delev <thomas.delev@amd.com>
@ -7578,7 +7584,6 @@ R: Robert Richter <rric@kernel.org>
L: linux-edac@vger.kernel.org
S: Supported
T: git git://git.kernel.org/pub/scm/linux/kernel/git/ras/ras.git edac-for-next
F: Documentation/admin-guide/ras.rst
F: Documentation/driver-api/edac.rst
F: drivers/edac/
F: include/linux/edac.h
@ -18353,11 +18358,17 @@ M: Tony Luck <tony.luck@intel.com>
M: Borislav Petkov <bp@alien8.de>
L: linux-edac@vger.kernel.org
S: Maintained
F: Documentation/admin-guide/ras.rst
F: Documentation/admin-guide/RAS
F: drivers/ras/
F: include/linux/ras.h
F: include/ras/ras_event.h
RAS FRU MEMORY POISON MANAGER (FMPM)
M: Yazen Ghannam <Yazen.Ghannam@amd.com>
L: linux-edac@vger.kernel.org
S: Maintained
F: drivers/ras/amd/fmpm.c
RC-CORE / LIRC FRAMEWORK
M: Sean Young <sean@mess.org>
L: linux-media@vger.kernel.org

View File

@ -78,6 +78,7 @@ config EDAC_GHES
config EDAC_AMD64
tristate "AMD64 (Opteron, Athlon64)"
depends on AMD_NB && EDAC_DECODE_MCE
imply AMD_ATL
help
Support for error detection and correction of DRAM ECC errors on
the AMD64 families (>= K8) of memory controllers.

View File

@ -1,4 +1,5 @@
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/ras.h>
#include "amd64_edac.h"
#include <asm/amd_nb.h>
@ -1051,281 +1052,6 @@ static int fixup_node_id(int node_id, struct mce *m)
return nid - gpu_node_map.base_node_id + 1;
}
/* Protect the PCI config register pairs used for DF indirect access. */
static DEFINE_MUTEX(df_indirect_mutex);
/*
* Data Fabric Indirect Access uses FICAA/FICAD.
*
* Fabric Indirect Configuration Access Address (FICAA): Constructed based
* on the device's Instance Id and the PCI function and register offset of
* the desired register.
*
* Fabric Indirect Configuration Access Data (FICAD): There are FICAD LO
* and FICAD HI registers but so far we only need the LO register.
*
* Use Instance Id 0xFF to indicate a broadcast read.
*/
#define DF_BROADCAST 0xFF
static int __df_indirect_read(u16 node, u8 func, u16 reg, u8 instance_id, u32 *lo)
{
struct pci_dev *F4;
u32 ficaa;
int err = -ENODEV;
if (node >= amd_nb_num())
goto out;
F4 = node_to_amd_nb(node)->link;
if (!F4)
goto out;
ficaa = (instance_id == DF_BROADCAST) ? 0 : 1;
ficaa |= reg & 0x3FC;
ficaa |= (func & 0x7) << 11;
ficaa |= instance_id << 16;
mutex_lock(&df_indirect_mutex);
err = pci_write_config_dword(F4, 0x5C, ficaa);
if (err) {
pr_warn("Error writing DF Indirect FICAA, FICAA=0x%x\n", ficaa);
goto out_unlock;
}
err = pci_read_config_dword(F4, 0x98, lo);
if (err)
pr_warn("Error reading DF Indirect FICAD LO, FICAA=0x%x.\n", ficaa);
out_unlock:
mutex_unlock(&df_indirect_mutex);
out:
return err;
}
static int df_indirect_read_instance(u16 node, u8 func, u16 reg, u8 instance_id, u32 *lo)
{
return __df_indirect_read(node, func, reg, instance_id, lo);
}
static int df_indirect_read_broadcast(u16 node, u8 func, u16 reg, u32 *lo)
{
return __df_indirect_read(node, func, reg, DF_BROADCAST, lo);
}
struct addr_ctx {
u64 ret_addr;
u32 tmp;
u16 nid;
u8 inst_id;
};
static int umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr)
{
u64 dram_base_addr, dram_limit_addr, dram_hole_base;
u8 die_id_shift, die_id_mask, socket_id_shift, socket_id_mask;
u8 intlv_num_dies, intlv_num_chan, intlv_num_sockets;
u8 intlv_addr_sel, intlv_addr_bit;
u8 num_intlv_bits, hashed_bit;
u8 lgcy_mmio_hole_en, base = 0;
u8 cs_mask, cs_id = 0;
bool hash_enabled = false;
struct addr_ctx ctx;
memset(&ctx, 0, sizeof(ctx));
/* Start from the normalized address */
ctx.ret_addr = norm_addr;
ctx.nid = nid;
ctx.inst_id = umc;
/* Read D18F0x1B4 (DramOffset), check if base 1 is used. */
if (df_indirect_read_instance(nid, 0, 0x1B4, umc, &ctx.tmp))
goto out_err;
/* Remove HiAddrOffset from normalized address, if enabled: */
if (ctx.tmp & BIT(0)) {
u64 hi_addr_offset = (ctx.tmp & GENMASK_ULL(31, 20)) << 8;
if (norm_addr >= hi_addr_offset) {
ctx.ret_addr -= hi_addr_offset;
base = 1;
}
}
/* Read D18F0x110 (DramBaseAddress). */
if (df_indirect_read_instance(nid, 0, 0x110 + (8 * base), umc, &ctx.tmp))
goto out_err;
/* Check if address range is valid. */
if (!(ctx.tmp & BIT(0))) {
pr_err("%s: Invalid DramBaseAddress range: 0x%x.\n",
__func__, ctx.tmp);
goto out_err;
}
lgcy_mmio_hole_en = ctx.tmp & BIT(1);
intlv_num_chan = (ctx.tmp >> 4) & 0xF;
intlv_addr_sel = (ctx.tmp >> 8) & 0x7;
dram_base_addr = (ctx.tmp & GENMASK_ULL(31, 12)) << 16;
/* {0, 1, 2, 3} map to address bits {8, 9, 10, 11} respectively */
if (intlv_addr_sel > 3) {
pr_err("%s: Invalid interleave address select %d.\n",
__func__, intlv_addr_sel);
goto out_err;
}
/* Read D18F0x114 (DramLimitAddress). */
if (df_indirect_read_instance(nid, 0, 0x114 + (8 * base), umc, &ctx.tmp))
goto out_err;
intlv_num_sockets = (ctx.tmp >> 8) & 0x1;
intlv_num_dies = (ctx.tmp >> 10) & 0x3;
dram_limit_addr = ((ctx.tmp & GENMASK_ULL(31, 12)) << 16) | GENMASK_ULL(27, 0);
intlv_addr_bit = intlv_addr_sel + 8;
/* Re-use intlv_num_chan by setting it equal to log2(#channels) */
switch (intlv_num_chan) {
case 0: intlv_num_chan = 0; break;
case 1: intlv_num_chan = 1; break;
case 3: intlv_num_chan = 2; break;
case 5: intlv_num_chan = 3; break;
case 7: intlv_num_chan = 4; break;
case 8: intlv_num_chan = 1;
hash_enabled = true;
break;
default:
pr_err("%s: Invalid number of interleaved channels %d.\n",
__func__, intlv_num_chan);
goto out_err;
}
num_intlv_bits = intlv_num_chan;
if (intlv_num_dies > 2) {
pr_err("%s: Invalid number of interleaved nodes/dies %d.\n",
__func__, intlv_num_dies);
goto out_err;
}
num_intlv_bits += intlv_num_dies;
/* Add a bit if sockets are interleaved. */
num_intlv_bits += intlv_num_sockets;
/* Assert num_intlv_bits <= 4 */
if (num_intlv_bits > 4) {
pr_err("%s: Invalid interleave bits %d.\n",
__func__, num_intlv_bits);
goto out_err;
}
if (num_intlv_bits > 0) {
u64 temp_addr_x, temp_addr_i, temp_addr_y;
u8 die_id_bit, sock_id_bit, cs_fabric_id;
/*
* Read FabricBlockInstanceInformation3_CS[BlockFabricID].
* This is the fabric id for this coherent slave. Use
* umc/channel# as instance id of the coherent slave
* for FICAA.
*/
if (df_indirect_read_instance(nid, 0, 0x50, umc, &ctx.tmp))
goto out_err;
cs_fabric_id = (ctx.tmp >> 8) & 0xFF;
die_id_bit = 0;
/* If interleaved over more than 1 channel: */
if (intlv_num_chan) {
die_id_bit = intlv_num_chan;
cs_mask = (1 << die_id_bit) - 1;
cs_id = cs_fabric_id & cs_mask;
}
sock_id_bit = die_id_bit;
/* Read D18F1x208 (SystemFabricIdMask). */
if (intlv_num_dies || intlv_num_sockets)
if (df_indirect_read_broadcast(nid, 1, 0x208, &ctx.tmp))
goto out_err;
/* If interleaved over more than 1 die. */
if (intlv_num_dies) {
sock_id_bit = die_id_bit + intlv_num_dies;
die_id_shift = (ctx.tmp >> 24) & 0xF;
die_id_mask = (ctx.tmp >> 8) & 0xFF;
cs_id |= ((cs_fabric_id & die_id_mask) >> die_id_shift) << die_id_bit;
}
/* If interleaved over more than 1 socket. */
if (intlv_num_sockets) {
socket_id_shift = (ctx.tmp >> 28) & 0xF;
socket_id_mask = (ctx.tmp >> 16) & 0xFF;
cs_id |= ((cs_fabric_id & socket_id_mask) >> socket_id_shift) << sock_id_bit;
}
/*
* The pre-interleaved address consists of XXXXXXIIIYYYYY
* where III is the ID for this CS, and XXXXXXYYYYY are the
* address bits from the post-interleaved address.
* "num_intlv_bits" has been calculated to tell us how many "I"
* bits there are. "intlv_addr_bit" tells us how many "Y" bits
* there are (where "I" starts).
*/
temp_addr_y = ctx.ret_addr & GENMASK_ULL(intlv_addr_bit - 1, 0);
temp_addr_i = (cs_id << intlv_addr_bit);
temp_addr_x = (ctx.ret_addr & GENMASK_ULL(63, intlv_addr_bit)) << num_intlv_bits;
ctx.ret_addr = temp_addr_x | temp_addr_i | temp_addr_y;
}
/* Add dram base address */
ctx.ret_addr += dram_base_addr;
/* If legacy MMIO hole enabled */
if (lgcy_mmio_hole_en) {
if (df_indirect_read_broadcast(nid, 0, 0x104, &ctx.tmp))
goto out_err;
dram_hole_base = ctx.tmp & GENMASK(31, 24);
if (ctx.ret_addr >= dram_hole_base)
ctx.ret_addr += (BIT_ULL(32) - dram_hole_base);
}
if (hash_enabled) {
/* Save some parentheses and grab ls-bit at the end. */
hashed_bit = (ctx.ret_addr >> 12) ^
(ctx.ret_addr >> 18) ^
(ctx.ret_addr >> 21) ^
(ctx.ret_addr >> 30) ^
cs_id;
hashed_bit &= BIT(0);
if (hashed_bit != ((ctx.ret_addr >> intlv_addr_bit) & BIT(0)))
ctx.ret_addr ^= BIT(intlv_addr_bit);
}
/* Is calculated system address is above DRAM limit address? */
if (ctx.ret_addr > dram_limit_addr)
goto out_err;
*sys_addr = ctx.ret_addr;
return 0;
out_err:
return -EINVAL;
}
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
/*
@ -3073,9 +2799,10 @@ static void decode_umc_error(int node_id, struct mce *m)
{
u8 ecc_type = (m->status >> 45) & 0x3;
struct mem_ctl_info *mci;
unsigned long sys_addr;
struct amd64_pvt *pvt;
struct atl_err a_err;
struct err_info err;
u64 sys_addr;
node_id = fixup_node_id(node_id, m);
@ -3106,7 +2833,12 @@ static void decode_umc_error(int node_id, struct mce *m)
pvt->ops->get_err_info(m, &err);
if (umc_normaddr_to_sysaddr(m->addr, pvt->mc_node_id, err.channel, &sys_addr)) {
a_err.addr = m->addr;
a_err.ipid = m->ipid;
a_err.cpu = m->extcpu;
sys_addr = amd_convert_umc_mca_addr_to_sys_addr(&a_err);
if (IS_ERR_VALUE(sys_addr)) {
err.err_code = ERR_NORM_ADDR;
goto log_error;
}

View File

@ -1324,11 +1324,9 @@ static int mc_probe(struct platform_device *pdev)
struct synps_edac_priv *priv;
struct mem_ctl_info *mci;
void __iomem *baseaddr;
struct resource *res;
int rc;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
baseaddr = devm_ioremap_resource(&pdev->dev, res);
baseaddr = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(baseaddr))
return PTR_ERR(baseaddr);

View File

@ -42,8 +42,11 @@
#define ECCW0_FLIP_CTRL 0x109C
#define ECCW0_FLIP0_OFFSET 0x10A0
#define ECCW0_FLIP0_BITS 31
#define ECCW0_FLIP1_OFFSET 0x10A4
#define ECCW1_FLIP_CTRL 0x10AC
#define ECCW1_FLIP0_OFFSET 0x10B0
#define ECCW1_FLIP1_OFFSET 0x10B4
#define ECCR0_CERR_STAT_OFFSET 0x10BC
#define ECCR0_CE_ADDR_LO_OFFSET 0x10C0
#define ECCR0_CE_ADDR_HI_OFFSET 0x10C4
@ -116,9 +119,6 @@
#define XDDR_BUS_WIDTH_32 1
#define XDDR_BUS_WIDTH_16 2
#define ECC_CEPOISON_MASK 0x1
#define ECC_UEPOISON_MASK 0x3
#define XDDR_MAX_ROW_CNT 18
#define XDDR_MAX_COL_CNT 10
#define XDDR_MAX_RANK_CNT 2
@ -133,6 +133,7 @@
* https://docs.xilinx.com/r/en-US/am012-versal-register-reference/PCSR_LOCK-XRAM_SLCR-Register
*/
#define PCSR_UNLOCK_VAL 0xF9E8D7C6
#define PCSR_LOCK_VAL 1
#define XDDR_ERR_TYPE_CE 0
#define XDDR_ERR_TYPE_UE 1
@ -142,6 +143,7 @@
#define XILINX_DRAM_SIZE_12G 3
#define XILINX_DRAM_SIZE_16G 4
#define XILINX_DRAM_SIZE_32G 5
#define NUM_UE_BITPOS 2
/**
* struct ecc_error_info - ECC error log information.
@ -479,7 +481,7 @@ static void err_callback(const u32 *payload, void *data)
writel(regval, priv->ddrmc_baseaddr + XDDR_ISR_OFFSET);
/* Lock the PCSR registers */
writel(1, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET);
writel(PCSR_LOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET);
edac_dbg(3, "Total error count CE %d UE %d\n",
priv->ce_cnt, priv->ue_cnt);
}
@ -650,7 +652,7 @@ static void enable_intr(struct edac_priv *priv)
writel(XDDR_IRQ_UE_MASK,
priv->ddrmc_baseaddr + XDDR_IRQ1_EN_OFFSET);
/* Lock the PCSR registers */
writel(1, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET);
writel(PCSR_LOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET);
}
static void disable_intr(struct edac_priv *priv)
@ -663,7 +665,7 @@ static void disable_intr(struct edac_priv *priv)
priv->ddrmc_baseaddr + XDDR_IRQ_DIS_OFFSET);
/* Lock the PCSR registers */
writel(1, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET);
writel(PCSR_LOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET);
}
#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
@ -734,38 +736,63 @@ static void poison_setup(struct edac_priv *priv)
writel(regval, priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC15_OFFSET);
}
static ssize_t xddr_inject_data_poison_store(struct mem_ctl_info *mci,
const char __user *data)
static void xddr_inject_data_ce_store(struct mem_ctl_info *mci, u8 ce_bitpos)
{
u32 ecc0_flip0, ecc1_flip0, ecc0_flip1, ecc1_flip1;
struct edac_priv *priv = mci->pvt_info;
writel(0, priv->ddrmc_baseaddr + ECCW0_FLIP0_OFFSET);
writel(0, priv->ddrmc_baseaddr + ECCW1_FLIP0_OFFSET);
if (strncmp(data, "CE", 2) == 0) {
writel(ECC_CEPOISON_MASK, priv->ddrmc_baseaddr +
ECCW0_FLIP0_OFFSET);
writel(ECC_CEPOISON_MASK, priv->ddrmc_baseaddr +
ECCW1_FLIP0_OFFSET);
if (ce_bitpos < ECCW0_FLIP0_BITS) {
ecc0_flip0 = BIT(ce_bitpos);
ecc1_flip0 = BIT(ce_bitpos);
ecc0_flip1 = 0;
ecc1_flip1 = 0;
} else {
writel(ECC_UEPOISON_MASK, priv->ddrmc_baseaddr +
ECCW0_FLIP0_OFFSET);
writel(ECC_UEPOISON_MASK, priv->ddrmc_baseaddr +
ECCW1_FLIP0_OFFSET);
ce_bitpos = ce_bitpos - ECCW0_FLIP0_BITS;
ecc0_flip1 = BIT(ce_bitpos);
ecc1_flip1 = BIT(ce_bitpos);
ecc0_flip0 = 0;
ecc1_flip0 = 0;
}
/* Lock the PCSR registers */
writel(1, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET);
return 0;
writel(ecc0_flip0, priv->ddrmc_baseaddr + ECCW0_FLIP0_OFFSET);
writel(ecc1_flip0, priv->ddrmc_baseaddr + ECCW1_FLIP0_OFFSET);
writel(ecc0_flip1, priv->ddrmc_baseaddr + ECCW0_FLIP1_OFFSET);
writel(ecc1_flip1, priv->ddrmc_baseaddr + ECCW1_FLIP1_OFFSET);
}
static ssize_t inject_data_poison_store(struct file *file, const char __user *data,
size_t count, loff_t *ppos)
/*
* To inject a correctable error, the following steps are needed:
*
* - Write the correctable error bit position value:
* echo <bit_pos val> > /sys/kernel/debug/edac/<controller instance>/inject_ce
*
* poison_setup() derives the row, column, bank, group and rank and
* writes to the ADEC registers based on the address given by the user.
*
* The ADEC12 and ADEC13 are mask registers; write 0 to make sure default
* configuration is there and no addresses are masked.
*
* The row, column, bank, group and rank registers are written to the
* match ADEC bit to generate errors at the particular address. ADEC14
* and ADEC15 have the match bits.
*
* xddr_inject_data_ce_store() updates the ECC FLIP registers with the
* bits to be corrupted based on the bit position given by the user.
*
* Upon doing a read to the address the errors are injected.
*/
static ssize_t inject_data_ce_store(struct file *file, const char __user *data,
size_t count, loff_t *ppos)
{
struct device *dev = file->private_data;
struct mem_ctl_info *mci = to_mci(dev);
struct edac_priv *priv = mci->pvt_info;
u8 ce_bitpos;
int ret;
ret = kstrtou8_from_user(data, count, 0, &ce_bitpos);
if (ret)
return ret;
/* Unlock the PCSR registers */
writel(PCSR_UNLOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET);
@ -773,17 +800,110 @@ static ssize_t inject_data_poison_store(struct file *file, const char __user *da
poison_setup(priv);
xddr_inject_data_ce_store(mci, ce_bitpos);
ret = count;
/* Lock the PCSR registers */
writel(1, priv->ddrmc_noc_baseaddr + XDDR_PCSR_OFFSET);
writel(PCSR_LOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET);
writel(PCSR_LOCK_VAL, priv->ddrmc_noc_baseaddr + XDDR_PCSR_OFFSET);
xddr_inject_data_poison_store(mci, data);
return ret;
}
static const struct file_operations xddr_inject_ce_fops = {
.open = simple_open,
.write = inject_data_ce_store,
.llseek = generic_file_llseek,
};
static void xddr_inject_data_ue_store(struct mem_ctl_info *mci, u32 val0, u32 val1)
{
struct edac_priv *priv = mci->pvt_info;
writel(val0, priv->ddrmc_baseaddr + ECCW0_FLIP0_OFFSET);
writel(val0, priv->ddrmc_baseaddr + ECCW0_FLIP1_OFFSET);
writel(val1, priv->ddrmc_baseaddr + ECCW1_FLIP1_OFFSET);
writel(val1, priv->ddrmc_baseaddr + ECCW1_FLIP1_OFFSET);
}
/*
* To inject an uncorrectable error, the following steps are needed:
* echo <bit_pos val> > /sys/kernel/debug/edac/<controller instance>/inject_ue
*
* poison_setup() derives the row, column, bank, group and rank and
* writes to the ADEC registers based on the address given by the user.
*
* The ADEC12 and ADEC13 are mask registers; write 0 so that none of the
* addresses are masked. The row, column, bank, group and rank registers
* are written to the match ADEC bit to generate errors at the
* particular address. ADEC14 and ADEC15 have the match bits.
*
* xddr_inject_data_ue_store() updates the ECC FLIP registers with the
* bits to be corrupted based on the bit position given by the user. For
* uncorrectable errors
* 2 bit errors are injected.
*
* Upon doing a read to the address the errors are injected.
*/
static ssize_t inject_data_ue_store(struct file *file, const char __user *data,
size_t count, loff_t *ppos)
{
struct device *dev = file->private_data;
struct mem_ctl_info *mci = to_mci(dev);
struct edac_priv *priv = mci->pvt_info;
char buf[6], *pbuf, *token[2];
u32 val0 = 0, val1 = 0;
u8 len, ue0, ue1;
int i, ret;
len = min_t(size_t, count, sizeof(buf));
if (copy_from_user(buf, data, len))
return -EFAULT;
buf[len] = '\0';
pbuf = &buf[0];
for (i = 0; i < NUM_UE_BITPOS; i++)
token[i] = strsep(&pbuf, ",");
ret = kstrtou8(token[0], 0, &ue0);
if (ret)
return ret;
ret = kstrtou8(token[1], 0, &ue1);
if (ret)
return ret;
if (ue0 < ECCW0_FLIP0_BITS) {
val0 = BIT(ue0);
} else {
ue0 = ue0 - ECCW0_FLIP0_BITS;
val1 = BIT(ue0);
}
if (ue1 < ECCW0_FLIP0_BITS) {
val0 |= BIT(ue1);
} else {
ue1 = ue1 - ECCW0_FLIP0_BITS;
val1 |= BIT(ue1);
}
/* Unlock the PCSR registers */
writel(PCSR_UNLOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET);
writel(PCSR_UNLOCK_VAL, priv->ddrmc_noc_baseaddr + XDDR_PCSR_OFFSET);
poison_setup(priv);
xddr_inject_data_ue_store(mci, val0, val1);
/* Lock the PCSR registers */
writel(PCSR_LOCK_VAL, priv->ddrmc_noc_baseaddr + XDDR_PCSR_OFFSET);
writel(PCSR_LOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET);
return count;
}
static const struct file_operations xddr_inject_enable_fops = {
static const struct file_operations xddr_inject_ue_fops = {
.open = simple_open,
.write = inject_data_poison_store,
.write = inject_data_ue_store,
.llseek = generic_file_llseek,
};
@ -795,8 +915,17 @@ static void create_debugfs_attributes(struct mem_ctl_info *mci)
if (!priv->debugfs)
return;
edac_debugfs_create_file("inject_error", 0200, priv->debugfs,
&mci->dev, &xddr_inject_enable_fops);
if (!edac_debugfs_create_file("inject_ce", 0200, priv->debugfs,
&mci->dev, &xddr_inject_ce_fops)) {
debugfs_remove_recursive(priv->debugfs);
return;
}
if (!edac_debugfs_create_file("inject_ue", 0200, priv->debugfs,
&mci->dev, &xddr_inject_ue_fops)) {
debugfs_remove_recursive(priv->debugfs);
return;
}
debugfs_create_x64("address", 0600, priv->debugfs,
&priv->err_inject_addr);
mci->debugfs = priv->debugfs;
@ -1031,7 +1160,7 @@ free_edac_mc:
return rc;
}
static int mc_remove(struct platform_device *pdev)
static void mc_remove(struct platform_device *pdev)
{
struct mem_ctl_info *mci = platform_get_drvdata(pdev);
struct edac_priv *priv = mci->pvt_info;
@ -1049,8 +1178,6 @@ static int mc_remove(struct platform_device *pdev)
XPM_EVENT_ERROR_MASK_DDRMC_NCR, err_callback, mci);
edac_mc_del_mc(&pdev->dev);
edac_mc_free(mci);
return 0;
}
static struct platform_driver xilinx_ddr_edac_mc_driver = {
@ -1059,7 +1186,7 @@ static struct platform_driver xilinx_ddr_edac_mc_driver = {
.of_match_table = xlnx_edac_match,
},
.probe = mc_probe,
.remove = mc_remove,
.remove_new = mc_remove,
};
module_platform_driver(xilinx_ddr_edac_mc_driver);

View File

@ -32,5 +32,18 @@ menuconfig RAS
if RAS
source "arch/x86/ras/Kconfig"
source "drivers/ras/amd/atl/Kconfig"
config RAS_FMPM
tristate "FRU Memory Poison Manager"
default m
depends on AMD_ATL && ACPI_APEI
help
Support saving and restoring memory error information across reboot
using ACPI ERST as persistent storage. Error information is saved with
the UEFI CPER "FRU Memory Poison" section format.
Memory will be retired during boot time and run time depending on
platform-specific policies.
endif

View File

@ -2,3 +2,6 @@
obj-$(CONFIG_RAS) += ras.o
obj-$(CONFIG_DEBUG_FS) += debugfs.o
obj-$(CONFIG_RAS_CEC) += cec.o
obj-$(CONFIG_RAS_FMPM) += amd/fmpm.o
obj-y += amd/atl/

View File

@ -0,0 +1,21 @@
# SPDX-License-Identifier: GPL-2.0-or-later
#
# AMD Address Translation Library Kconfig
#
# Copyright (c) 2023, Advanced Micro Devices, Inc.
# All Rights Reserved.
#
# Author: Yazen Ghannam <Yazen.Ghannam@amd.com>
config AMD_ATL
tristate "AMD Address Translation Library"
depends on AMD_NB && X86_64 && RAS
depends on MEMORY_FAILURE
default N
help
This library includes support for implementation-specific
address translation procedures needed for various error
handling cases.
Enable this option if using DRAM ECC on Zen-based systems
and OS-based error handling.

View File

@ -0,0 +1,18 @@
# SPDX-License-Identifier: GPL-2.0-or-later
#
# AMD Address Translation Library Makefile
#
# Copyright (c) 2023, Advanced Micro Devices, Inc.
# All Rights Reserved.
#
# Author: Yazen Ghannam <Yazen.Ghannam@amd.com>
amd_atl-y := access.o
amd_atl-y += core.o
amd_atl-y += dehash.o
amd_atl-y += denormalize.o
amd_atl-y += map.o
amd_atl-y += system.o
amd_atl-y += umc.o
obj-$(CONFIG_AMD_ATL) += amd_atl.o

View File

@ -0,0 +1,133 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* AMD Address Translation Library
*
* access.c : DF Indirect Access functions
*
* Copyright (c) 2023, Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Author: Yazen Ghannam <Yazen.Ghannam@amd.com>
*/
#include "internal.h"
/* Protect the PCI config register pairs used for DF indirect access. */
static DEFINE_MUTEX(df_indirect_mutex);
/*
* Data Fabric Indirect Access uses FICAA/FICAD.
*
* Fabric Indirect Configuration Access Address (FICAA): constructed based
* on the device's Instance Id and the PCI function and register offset of
* the desired register.
*
* Fabric Indirect Configuration Access Data (FICAD): there are FICAD
* low and high registers but so far only the low register is needed.
*
* Use Instance Id 0xFF to indicate a broadcast read.
*/
#define DF_BROADCAST 0xFF
#define DF_FICAA_INST_EN BIT(0)
#define DF_FICAA_REG_NUM GENMASK(10, 1)
#define DF_FICAA_FUNC_NUM GENMASK(13, 11)
#define DF_FICAA_INST_ID GENMASK(23, 16)
#define DF_FICAA_REG_NUM_LEGACY GENMASK(10, 2)
static u16 get_accessible_node(u16 node)
{
/*
* On heterogeneous systems, not all AMD Nodes are accessible
* through software-visible registers. The Node ID needs to be
* adjusted for register accesses. But its value should not be
* changed for the translation methods.
*/
if (df_cfg.flags.heterogeneous) {
/* Only Node 0 is accessible on DF3.5 systems. */
if (df_cfg.rev == DF3p5)
node = 0;
/*
* Only the first Node in each Socket is accessible on
* DF4.5 systems, and this is visible to software as one
* Fabric per Socket. The Socket ID can be derived from
* the Node ID and global shift values.
*/
if (df_cfg.rev == DF4p5)
node >>= df_cfg.socket_id_shift - df_cfg.node_id_shift;
}
return node;
}
static int __df_indirect_read(u16 node, u8 func, u16 reg, u8 instance_id, u32 *lo)
{
u32 ficaa_addr = 0x8C, ficad_addr = 0xB8;
struct pci_dev *F4;
int err = -ENODEV;
u32 ficaa = 0;
node = get_accessible_node(node);
if (node >= amd_nb_num())
goto out;
F4 = node_to_amd_nb(node)->link;
if (!F4)
goto out;
/* Enable instance-specific access. */
if (instance_id != DF_BROADCAST) {
ficaa |= FIELD_PREP(DF_FICAA_INST_EN, 1);
ficaa |= FIELD_PREP(DF_FICAA_INST_ID, instance_id);
}
/*
* The two least-significant bits are masked when inputing the
* register offset to FICAA.
*/
reg >>= 2;
if (df_cfg.flags.legacy_ficaa) {
ficaa_addr = 0x5C;
ficad_addr = 0x98;
ficaa |= FIELD_PREP(DF_FICAA_REG_NUM_LEGACY, reg);
} else {
ficaa |= FIELD_PREP(DF_FICAA_REG_NUM, reg);
}
ficaa |= FIELD_PREP(DF_FICAA_FUNC_NUM, func);
mutex_lock(&df_indirect_mutex);
err = pci_write_config_dword(F4, ficaa_addr, ficaa);
if (err) {
pr_warn("Error writing DF Indirect FICAA, FICAA=0x%x\n", ficaa);
goto out_unlock;
}
err = pci_read_config_dword(F4, ficad_addr, lo);
if (err)
pr_warn("Error reading DF Indirect FICAD LO, FICAA=0x%x.\n", ficaa);
pr_debug("node=%u inst=0x%x func=0x%x reg=0x%x val=0x%x",
node, instance_id, func, reg << 2, *lo);
out_unlock:
mutex_unlock(&df_indirect_mutex);
out:
return err;
}
int df_indirect_read_instance(u16 node, u8 func, u16 reg, u8 instance_id, u32 *lo)
{
return __df_indirect_read(node, func, reg, instance_id, lo);
}
int df_indirect_read_broadcast(u16 node, u8 func, u16 reg, u32 *lo)
{
return __df_indirect_read(node, func, reg, DF_BROADCAST, lo);
}

225
drivers/ras/amd/atl/core.c Normal file
View File

@ -0,0 +1,225 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* AMD Address Translation Library
*
* core.c : Module init and base translation functions
*
* Copyright (c) 2023, Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Author: Yazen Ghannam <Yazen.Ghannam@amd.com>
*/
#include <linux/module.h>
#include <asm/cpu_device_id.h>
#include "internal.h"
struct df_config df_cfg __read_mostly;
static int addr_over_limit(struct addr_ctx *ctx)
{
u64 dram_limit_addr;
if (df_cfg.rev >= DF4)
dram_limit_addr = FIELD_GET(DF4_DRAM_LIMIT_ADDR, ctx->map.limit);
else
dram_limit_addr = FIELD_GET(DF2_DRAM_LIMIT_ADDR, ctx->map.limit);
dram_limit_addr <<= DF_DRAM_BASE_LIMIT_LSB;
dram_limit_addr |= GENMASK(DF_DRAM_BASE_LIMIT_LSB - 1, 0);
/* Is calculated system address above DRAM limit address? */
if (ctx->ret_addr > dram_limit_addr) {
atl_debug(ctx, "Calculated address (0x%016llx) > DRAM limit (0x%016llx)",
ctx->ret_addr, dram_limit_addr);
return -EINVAL;
}
return 0;
}
static bool legacy_hole_en(struct addr_ctx *ctx)
{
u32 reg = ctx->map.base;
if (df_cfg.rev >= DF4)
reg = ctx->map.ctl;
return FIELD_GET(DF_LEGACY_MMIO_HOLE_EN, reg);
}
static int add_legacy_hole(struct addr_ctx *ctx)
{
u32 dram_hole_base;
u8 func = 0;
if (!legacy_hole_en(ctx))
return 0;
if (df_cfg.rev >= DF4)
func = 7;
if (df_indirect_read_broadcast(ctx->node_id, func, 0x104, &dram_hole_base))
return -EINVAL;
dram_hole_base &= DF_DRAM_HOLE_BASE_MASK;
if (ctx->ret_addr >= dram_hole_base)
ctx->ret_addr += (BIT_ULL(32) - dram_hole_base);
return 0;
}
static u64 get_base_addr(struct addr_ctx *ctx)
{
u64 base_addr;
if (df_cfg.rev >= DF4)
base_addr = FIELD_GET(DF4_BASE_ADDR, ctx->map.base);
else
base_addr = FIELD_GET(DF2_BASE_ADDR, ctx->map.base);
return base_addr << DF_DRAM_BASE_LIMIT_LSB;
}
static int add_base_and_hole(struct addr_ctx *ctx)
{
ctx->ret_addr += get_base_addr(ctx);
if (add_legacy_hole(ctx))
return -EINVAL;
return 0;
}
static bool late_hole_remove(struct addr_ctx *ctx)
{
if (df_cfg.rev == DF3p5)
return true;
if (df_cfg.rev == DF4)
return true;
if (ctx->map.intlv_mode == DF3_6CHAN)
return true;
return false;
}
unsigned long norm_to_sys_addr(u8 socket_id, u8 die_id, u8 coh_st_inst_id, unsigned long addr)
{
struct addr_ctx ctx;
if (df_cfg.rev == UNKNOWN)
return -EINVAL;
memset(&ctx, 0, sizeof(ctx));
/* Start from the normalized address */
ctx.ret_addr = addr;
ctx.inst_id = coh_st_inst_id;
ctx.inputs.norm_addr = addr;
ctx.inputs.socket_id = socket_id;
ctx.inputs.die_id = die_id;
ctx.inputs.coh_st_inst_id = coh_st_inst_id;
if (determine_node_id(&ctx, socket_id, die_id))
return -EINVAL;
if (get_address_map(&ctx))
return -EINVAL;
if (denormalize_address(&ctx))
return -EINVAL;
if (!late_hole_remove(&ctx) && add_base_and_hole(&ctx))
return -EINVAL;
if (dehash_address(&ctx))
return -EINVAL;
if (late_hole_remove(&ctx) && add_base_and_hole(&ctx))
return -EINVAL;
if (addr_over_limit(&ctx))
return -EINVAL;
return ctx.ret_addr;
}
static void check_for_legacy_df_access(void)
{
/*
* All Zen-based systems before Family 19h use the legacy
* DF Indirect Access (FICAA/FICAD) offsets.
*/
if (boot_cpu_data.x86 < 0x19) {
df_cfg.flags.legacy_ficaa = true;
return;
}
/* All systems after Family 19h use the current offsets. */
if (boot_cpu_data.x86 > 0x19)
return;
/* Some Family 19h systems use the legacy offsets. */
switch (boot_cpu_data.x86_model) {
case 0x00 ... 0x0f:
case 0x20 ... 0x5f:
df_cfg.flags.legacy_ficaa = true;
}
}
/*
* This library provides functionality for AMD-based systems with a Data Fabric.
* The set of systems with a Data Fabric is equivalent to the set of Zen-based systems
* and the set of systems with the Scalable MCA feature at this time. However, these
* are technically independent things.
*
* It's possible to match on the PCI IDs of the Data Fabric devices, but this will be
* an ever expanding list. Instead, match on the SMCA and Zen features to cover all
* relevant systems.
*/
static const struct x86_cpu_id amd_atl_cpuids[] = {
X86_MATCH_FEATURE(X86_FEATURE_SMCA, NULL),
X86_MATCH_FEATURE(X86_FEATURE_ZEN, NULL),
{ }
};
MODULE_DEVICE_TABLE(x86cpu, amd_atl_cpuids);
static int __init amd_atl_init(void)
{
if (!x86_match_cpu(amd_atl_cpuids))
return -ENODEV;
if (!amd_nb_num())
return -ENODEV;
check_for_legacy_df_access();
if (get_df_system_info())
return -ENODEV;
/* Increment this module's recount so that it can't be easily unloaded. */
__module_get(THIS_MODULE);
amd_atl_register_decoder(convert_umc_mca_addr_to_sys_addr);
pr_info("AMD Address Translation Library initialized");
return 0;
}
/*
* Exit function is only needed for testing and debug. Module unload must be
* forced to override refcount check.
*/
static void __exit amd_atl_exit(void)
{
amd_atl_unregister_decoder();
}
module_init(amd_atl_init);
module_exit(amd_atl_exit);
MODULE_LICENSE("GPL");

View File

@ -0,0 +1,500 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* AMD Address Translation Library
*
* dehash.c : Functions to account for hashing bits
*
* Copyright (c) 2023, Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Author: Yazen Ghannam <Yazen.Ghannam@amd.com>
*/
#include "internal.h"
/*
* Verify the interleave bits are correct in the different interleaving
* settings.
*
* If @num_intlv_dies and/or @num_intlv_sockets are 1, it means the
* respective interleaving is disabled.
*/
static inline bool map_bits_valid(struct addr_ctx *ctx, u8 bit1, u8 bit2,
u8 num_intlv_dies, u8 num_intlv_sockets)
{
if (!(ctx->map.intlv_bit_pos == bit1 || ctx->map.intlv_bit_pos == bit2)) {
pr_debug("Invalid interleave bit: %u", ctx->map.intlv_bit_pos);
return false;
}
if (ctx->map.num_intlv_dies > num_intlv_dies) {
pr_debug("Invalid number of interleave dies: %u", ctx->map.num_intlv_dies);
return false;
}
if (ctx->map.num_intlv_sockets > num_intlv_sockets) {
pr_debug("Invalid number of interleave sockets: %u", ctx->map.num_intlv_sockets);
return false;
}
return true;
}
static int df2_dehash_addr(struct addr_ctx *ctx)
{
u8 hashed_bit, intlv_bit, intlv_bit_pos;
if (!map_bits_valid(ctx, 8, 9, 1, 1))
return -EINVAL;
intlv_bit_pos = ctx->map.intlv_bit_pos;
intlv_bit = !!(BIT_ULL(intlv_bit_pos) & ctx->ret_addr);
hashed_bit = intlv_bit;
hashed_bit ^= FIELD_GET(BIT_ULL(12), ctx->ret_addr);
hashed_bit ^= FIELD_GET(BIT_ULL(18), ctx->ret_addr);
hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr);
hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr);
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(intlv_bit_pos);
return 0;
}
static int df3_dehash_addr(struct addr_ctx *ctx)
{
bool hash_ctl_64k, hash_ctl_2M, hash_ctl_1G;
u8 hashed_bit, intlv_bit, intlv_bit_pos;
if (!map_bits_valid(ctx, 8, 9, 1, 1))
return -EINVAL;
hash_ctl_64k = FIELD_GET(DF3_HASH_CTL_64K, ctx->map.ctl);
hash_ctl_2M = FIELD_GET(DF3_HASH_CTL_2M, ctx->map.ctl);
hash_ctl_1G = FIELD_GET(DF3_HASH_CTL_1G, ctx->map.ctl);
intlv_bit_pos = ctx->map.intlv_bit_pos;
intlv_bit = !!(BIT_ULL(intlv_bit_pos) & ctx->ret_addr);
hashed_bit = intlv_bit;
hashed_bit ^= FIELD_GET(BIT_ULL(14), ctx->ret_addr);
hashed_bit ^= FIELD_GET(BIT_ULL(18), ctx->ret_addr) & hash_ctl_64k;
hashed_bit ^= FIELD_GET(BIT_ULL(23), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(32), ctx->ret_addr) & hash_ctl_1G;
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(intlv_bit_pos);
/* Calculation complete for 2 channels. Continue for 4 and 8 channels. */
if (ctx->map.intlv_mode == DF3_COD4_2CHAN_HASH)
return 0;
intlv_bit = FIELD_GET(BIT_ULL(12), ctx->ret_addr);
hashed_bit = intlv_bit;
hashed_bit ^= FIELD_GET(BIT_ULL(16), ctx->ret_addr) & hash_ctl_64k;
hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr) & hash_ctl_1G;
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(12);
/* Calculation complete for 4 channels. Continue for 8 channels. */
if (ctx->map.intlv_mode == DF3_COD2_4CHAN_HASH)
return 0;
intlv_bit = FIELD_GET(BIT_ULL(13), ctx->ret_addr);
hashed_bit = intlv_bit;
hashed_bit ^= FIELD_GET(BIT_ULL(17), ctx->ret_addr) & hash_ctl_64k;
hashed_bit ^= FIELD_GET(BIT_ULL(22), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(31), ctx->ret_addr) & hash_ctl_1G;
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(13);
return 0;
}
static int df3_6chan_dehash_addr(struct addr_ctx *ctx)
{
u8 intlv_bit_pos = ctx->map.intlv_bit_pos;
u8 hashed_bit, intlv_bit, num_intlv_bits;
bool hash_ctl_2M, hash_ctl_1G;
if (ctx->map.intlv_mode != DF3_6CHAN) {
atl_debug_on_bad_intlv_mode(ctx);
return -EINVAL;
}
num_intlv_bits = ilog2(ctx->map.num_intlv_chan) + 1;
hash_ctl_2M = FIELD_GET(DF3_HASH_CTL_2M, ctx->map.ctl);
hash_ctl_1G = FIELD_GET(DF3_HASH_CTL_1G, ctx->map.ctl);
intlv_bit = !!(BIT_ULL(intlv_bit_pos) & ctx->ret_addr);
hashed_bit = intlv_bit;
hashed_bit ^= !!(BIT_ULL(intlv_bit_pos + num_intlv_bits) & ctx->ret_addr);
hashed_bit ^= FIELD_GET(BIT_ULL(23), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(32), ctx->ret_addr) & hash_ctl_1G;
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(intlv_bit_pos);
intlv_bit_pos++;
intlv_bit = !!(BIT_ULL(intlv_bit_pos) & ctx->ret_addr);
hashed_bit = intlv_bit;
hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr) & hash_ctl_1G;
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(intlv_bit_pos);
intlv_bit_pos++;
intlv_bit = !!(BIT_ULL(intlv_bit_pos) & ctx->ret_addr);
hashed_bit = intlv_bit;
hashed_bit ^= FIELD_GET(BIT_ULL(22), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(31), ctx->ret_addr) & hash_ctl_1G;
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(intlv_bit_pos);
return 0;
}
static int df4_dehash_addr(struct addr_ctx *ctx)
{
bool hash_ctl_64k, hash_ctl_2M, hash_ctl_1G;
u8 hashed_bit, intlv_bit;
if (!map_bits_valid(ctx, 8, 8, 1, 2))
return -EINVAL;
hash_ctl_64k = FIELD_GET(DF4_HASH_CTL_64K, ctx->map.ctl);
hash_ctl_2M = FIELD_GET(DF4_HASH_CTL_2M, ctx->map.ctl);
hash_ctl_1G = FIELD_GET(DF4_HASH_CTL_1G, ctx->map.ctl);
intlv_bit = FIELD_GET(BIT_ULL(8), ctx->ret_addr);
hashed_bit = intlv_bit;
hashed_bit ^= FIELD_GET(BIT_ULL(16), ctx->ret_addr) & hash_ctl_64k;
hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr) & hash_ctl_1G;
if (ctx->map.num_intlv_sockets == 1)
hashed_bit ^= FIELD_GET(BIT_ULL(14), ctx->ret_addr);
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(8);
/*
* Hashing is possible with socket interleaving, so check the total number
* of channels in the system rather than DRAM map interleaving mode.
*
* Calculation complete for 2 channels. Continue for 4, 8, and 16 channels.
*/
if (ctx->map.total_intlv_chan <= 2)
return 0;
intlv_bit = FIELD_GET(BIT_ULL(12), ctx->ret_addr);
hashed_bit = intlv_bit;
hashed_bit ^= FIELD_GET(BIT_ULL(17), ctx->ret_addr) & hash_ctl_64k;
hashed_bit ^= FIELD_GET(BIT_ULL(22), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(31), ctx->ret_addr) & hash_ctl_1G;
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(12);
/* Calculation complete for 4 channels. Continue for 8 and 16 channels. */
if (ctx->map.total_intlv_chan <= 4)
return 0;
intlv_bit = FIELD_GET(BIT_ULL(13), ctx->ret_addr);
hashed_bit = intlv_bit;
hashed_bit ^= FIELD_GET(BIT_ULL(18), ctx->ret_addr) & hash_ctl_64k;
hashed_bit ^= FIELD_GET(BIT_ULL(23), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(32), ctx->ret_addr) & hash_ctl_1G;
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(13);
/* Calculation complete for 8 channels. Continue for 16 channels. */
if (ctx->map.total_intlv_chan <= 8)
return 0;
intlv_bit = FIELD_GET(BIT_ULL(14), ctx->ret_addr);
hashed_bit = intlv_bit;
hashed_bit ^= FIELD_GET(BIT_ULL(19), ctx->ret_addr) & hash_ctl_64k;
hashed_bit ^= FIELD_GET(BIT_ULL(24), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(33), ctx->ret_addr) & hash_ctl_1G;
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(14);
return 0;
}
static int df4p5_dehash_addr(struct addr_ctx *ctx)
{
bool hash_ctl_64k, hash_ctl_2M, hash_ctl_1G, hash_ctl_1T;
u8 hashed_bit, intlv_bit;
u64 rehash_vector;
if (!map_bits_valid(ctx, 8, 8, 1, 2))
return -EINVAL;
hash_ctl_64k = FIELD_GET(DF4_HASH_CTL_64K, ctx->map.ctl);
hash_ctl_2M = FIELD_GET(DF4_HASH_CTL_2M, ctx->map.ctl);
hash_ctl_1G = FIELD_GET(DF4_HASH_CTL_1G, ctx->map.ctl);
hash_ctl_1T = FIELD_GET(DF4p5_HASH_CTL_1T, ctx->map.ctl);
/*
* Generate a unique address to determine which bits
* need to be dehashed.
*
* Start with a contiguous bitmask for the total
* number of channels starting at bit 8.
*
* Then make a gap in the proper place based on
* interleave mode.
*/
rehash_vector = ctx->map.total_intlv_chan - 1;
rehash_vector <<= 8;
if (ctx->map.intlv_mode == DF4p5_NPS2_4CHAN_1K_HASH ||
ctx->map.intlv_mode == DF4p5_NPS1_8CHAN_1K_HASH ||
ctx->map.intlv_mode == DF4p5_NPS1_16CHAN_1K_HASH)
rehash_vector = expand_bits(10, 2, rehash_vector);
else
rehash_vector = expand_bits(9, 3, rehash_vector);
if (rehash_vector & BIT_ULL(8)) {
intlv_bit = FIELD_GET(BIT_ULL(8), ctx->ret_addr);
hashed_bit = intlv_bit;
hashed_bit ^= FIELD_GET(BIT_ULL(16), ctx->ret_addr) & hash_ctl_64k;
hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr) & hash_ctl_1G;
hashed_bit ^= FIELD_GET(BIT_ULL(40), ctx->ret_addr) & hash_ctl_1T;
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(8);
}
if (rehash_vector & BIT_ULL(9)) {
intlv_bit = FIELD_GET(BIT_ULL(9), ctx->ret_addr);
hashed_bit = intlv_bit;
hashed_bit ^= FIELD_GET(BIT_ULL(17), ctx->ret_addr) & hash_ctl_64k;
hashed_bit ^= FIELD_GET(BIT_ULL(22), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(31), ctx->ret_addr) & hash_ctl_1G;
hashed_bit ^= FIELD_GET(BIT_ULL(41), ctx->ret_addr) & hash_ctl_1T;
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(9);
}
if (rehash_vector & BIT_ULL(12)) {
intlv_bit = FIELD_GET(BIT_ULL(12), ctx->ret_addr);
hashed_bit = intlv_bit;
hashed_bit ^= FIELD_GET(BIT_ULL(18), ctx->ret_addr) & hash_ctl_64k;
hashed_bit ^= FIELD_GET(BIT_ULL(23), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(32), ctx->ret_addr) & hash_ctl_1G;
hashed_bit ^= FIELD_GET(BIT_ULL(42), ctx->ret_addr) & hash_ctl_1T;
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(12);
}
if (rehash_vector & BIT_ULL(13)) {
intlv_bit = FIELD_GET(BIT_ULL(13), ctx->ret_addr);
hashed_bit = intlv_bit;
hashed_bit ^= FIELD_GET(BIT_ULL(19), ctx->ret_addr) & hash_ctl_64k;
hashed_bit ^= FIELD_GET(BIT_ULL(24), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(33), ctx->ret_addr) & hash_ctl_1G;
hashed_bit ^= FIELD_GET(BIT_ULL(43), ctx->ret_addr) & hash_ctl_1T;
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(13);
}
if (rehash_vector & BIT_ULL(14)) {
intlv_bit = FIELD_GET(BIT_ULL(14), ctx->ret_addr);
hashed_bit = intlv_bit;
hashed_bit ^= FIELD_GET(BIT_ULL(20), ctx->ret_addr) & hash_ctl_64k;
hashed_bit ^= FIELD_GET(BIT_ULL(25), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(34), ctx->ret_addr) & hash_ctl_1G;
hashed_bit ^= FIELD_GET(BIT_ULL(44), ctx->ret_addr) & hash_ctl_1T;
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(14);
}
return 0;
}
/*
* MI300 hash bits
* 4K 64K 2M 1G 1T 1T
* COH_ST_Select[0] = XOR of addr{8, 12, 15, 22, 29, 36, 43}
* COH_ST_Select[1] = XOR of addr{9, 13, 16, 23, 30, 37, 44}
* COH_ST_Select[2] = XOR of addr{10, 14, 17, 24, 31, 38, 45}
* COH_ST_Select[3] = XOR of addr{11, 18, 25, 32, 39, 46}
* COH_ST_Select[4] = XOR of addr{14, 19, 26, 33, 40, 47} aka Stack
* DieID[0] = XOR of addr{12, 20, 27, 34, 41 }
* DieID[1] = XOR of addr{13, 21, 28, 35, 42 }
*/
static int mi300_dehash_addr(struct addr_ctx *ctx)
{
bool hash_ctl_4k, hash_ctl_64k, hash_ctl_2M, hash_ctl_1G, hash_ctl_1T;
bool hashed_bit, intlv_bit, test_bit;
u8 num_intlv_bits, base_bit, i;
if (!map_bits_valid(ctx, 8, 8, 4, 1))
return -EINVAL;
hash_ctl_4k = FIELD_GET(DF4p5_HASH_CTL_4K, ctx->map.ctl);
hash_ctl_64k = FIELD_GET(DF4_HASH_CTL_64K, ctx->map.ctl);
hash_ctl_2M = FIELD_GET(DF4_HASH_CTL_2M, ctx->map.ctl);
hash_ctl_1G = FIELD_GET(DF4_HASH_CTL_1G, ctx->map.ctl);
hash_ctl_1T = FIELD_GET(DF4p5_HASH_CTL_1T, ctx->map.ctl);
/* Channel bits */
num_intlv_bits = ilog2(ctx->map.num_intlv_chan);
for (i = 0; i < num_intlv_bits; i++) {
base_bit = 8 + i;
/* COH_ST_Select[4] jumps to a base bit of 14. */
if (i == 4)
base_bit = 14;
intlv_bit = BIT_ULL(base_bit) & ctx->ret_addr;
hashed_bit = intlv_bit;
/* 4k hash bit only applies to the first 3 bits. */
if (i <= 2) {
test_bit = BIT_ULL(12 + i) & ctx->ret_addr;
hashed_bit ^= test_bit & hash_ctl_4k;
}
/* Use temporary 'test_bit' value to avoid Sparse warnings. */
test_bit = BIT_ULL(15 + i) & ctx->ret_addr;
hashed_bit ^= test_bit & hash_ctl_64k;
test_bit = BIT_ULL(22 + i) & ctx->ret_addr;
hashed_bit ^= test_bit & hash_ctl_2M;
test_bit = BIT_ULL(29 + i) & ctx->ret_addr;
hashed_bit ^= test_bit & hash_ctl_1G;
test_bit = BIT_ULL(36 + i) & ctx->ret_addr;
hashed_bit ^= test_bit & hash_ctl_1T;
test_bit = BIT_ULL(43 + i) & ctx->ret_addr;
hashed_bit ^= test_bit & hash_ctl_1T;
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(base_bit);
}
/* Die bits */
num_intlv_bits = ilog2(ctx->map.num_intlv_dies);
for (i = 0; i < num_intlv_bits; i++) {
base_bit = 12 + i;
intlv_bit = BIT_ULL(base_bit) & ctx->ret_addr;
hashed_bit = intlv_bit;
test_bit = BIT_ULL(20 + i) & ctx->ret_addr;
hashed_bit ^= test_bit & hash_ctl_64k;
test_bit = BIT_ULL(27 + i) & ctx->ret_addr;
hashed_bit ^= test_bit & hash_ctl_2M;
test_bit = BIT_ULL(34 + i) & ctx->ret_addr;
hashed_bit ^= test_bit & hash_ctl_1G;
test_bit = BIT_ULL(41 + i) & ctx->ret_addr;
hashed_bit ^= test_bit & hash_ctl_1T;
if (hashed_bit != intlv_bit)
ctx->ret_addr ^= BIT_ULL(base_bit);
}
return 0;
}
int dehash_address(struct addr_ctx *ctx)
{
switch (ctx->map.intlv_mode) {
/* No hashing cases. */
case NONE:
case NOHASH_2CHAN:
case NOHASH_4CHAN:
case NOHASH_8CHAN:
case NOHASH_16CHAN:
case NOHASH_32CHAN:
/* Hashing bits handled earlier during CS ID calculation. */
case DF4_NPS4_3CHAN_HASH:
case DF4_NPS2_5CHAN_HASH:
case DF4_NPS2_6CHAN_HASH:
case DF4_NPS1_10CHAN_HASH:
case DF4_NPS1_12CHAN_HASH:
case DF4p5_NPS2_6CHAN_1K_HASH:
case DF4p5_NPS2_6CHAN_2K_HASH:
case DF4p5_NPS1_10CHAN_1K_HASH:
case DF4p5_NPS1_10CHAN_2K_HASH:
case DF4p5_NPS1_12CHAN_1K_HASH:
case DF4p5_NPS1_12CHAN_2K_HASH:
case DF4p5_NPS0_24CHAN_1K_HASH:
case DF4p5_NPS0_24CHAN_2K_HASH:
/* No hash physical address bits, so nothing to do. */
case DF4p5_NPS4_3CHAN_1K_HASH:
case DF4p5_NPS4_3CHAN_2K_HASH:
case DF4p5_NPS2_5CHAN_1K_HASH:
case DF4p5_NPS2_5CHAN_2K_HASH:
return 0;
case DF2_2CHAN_HASH:
return df2_dehash_addr(ctx);
case DF3_COD4_2CHAN_HASH:
case DF3_COD2_4CHAN_HASH:
case DF3_COD1_8CHAN_HASH:
return df3_dehash_addr(ctx);
case DF3_6CHAN:
return df3_6chan_dehash_addr(ctx);
case DF4_NPS4_2CHAN_HASH:
case DF4_NPS2_4CHAN_HASH:
case DF4_NPS1_8CHAN_HASH:
return df4_dehash_addr(ctx);
case DF4p5_NPS4_2CHAN_1K_HASH:
case DF4p5_NPS4_2CHAN_2K_HASH:
case DF4p5_NPS2_4CHAN_2K_HASH:
case DF4p5_NPS2_4CHAN_1K_HASH:
case DF4p5_NPS1_8CHAN_1K_HASH:
case DF4p5_NPS1_8CHAN_2K_HASH:
case DF4p5_NPS1_16CHAN_1K_HASH:
case DF4p5_NPS1_16CHAN_2K_HASH:
return df4p5_dehash_addr(ctx);
case MI3_HASH_8CHAN:
case MI3_HASH_16CHAN:
case MI3_HASH_32CHAN:
return mi300_dehash_addr(ctx);
default:
atl_debug_on_bad_intlv_mode(ctx);
return -EINVAL;
}
}

View File

@ -0,0 +1,718 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* AMD Address Translation Library
*
* denormalize.c : Functions to account for interleaving bits
*
* Copyright (c) 2023, Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Author: Yazen Ghannam <Yazen.Ghannam@amd.com>
*/
#include "internal.h"
/*
* Returns the Destination Fabric ID. This is the first (lowest)
* COH_ST Fabric ID used within a DRAM Address map.
*/
static u16 get_dst_fabric_id(struct addr_ctx *ctx)
{
switch (df_cfg.rev) {
case DF2: return FIELD_GET(DF2_DST_FABRIC_ID, ctx->map.limit);
case DF3: return FIELD_GET(DF3_DST_FABRIC_ID, ctx->map.limit);
case DF3p5: return FIELD_GET(DF3p5_DST_FABRIC_ID, ctx->map.limit);
case DF4: return FIELD_GET(DF4_DST_FABRIC_ID, ctx->map.ctl);
case DF4p5: return FIELD_GET(DF4p5_DST_FABRIC_ID, ctx->map.ctl);
default:
atl_debug_on_bad_df_rev();
return 0;
}
}
/*
* Make a contiguous gap in address for N bits starting at bit P.
*
* Example:
* address bits: [20:0]
* # of interleave bits (n): 3
* starting interleave bit (p): 8
*
* expanded address bits: [20+n : n+p][n+p-1 : p][p-1 : 0]
* [23 : 11][10 : 8][7 : 0]
*/
static u64 make_space_for_coh_st_id_at_intlv_bit(struct addr_ctx *ctx)
{
return expand_bits(ctx->map.intlv_bit_pos,
ctx->map.total_intlv_bits,
ctx->ret_addr);
}
/*
* Make two gaps in address for N bits.
* First gap is a single bit at bit P.
* Second gap is the remaining N-1 bits at bit 12.
*
* Example:
* address bits: [20:0]
* # of interleave bits (n): 3
* starting interleave bit (p): 8
*
* First gap
* expanded address bits: [20+1 : p+1][p][p-1 : 0]
* [21 : 9][8][7 : 0]
*
* Second gap uses result from first.
* r = n - 1; remaining interleave bits
* expanded address bits: [21+r : 12+r][12+r-1: 12][11 : 0]
* [23 : 14][13 : 12][11 : 0]
*/
static u64 make_space_for_coh_st_id_split_2_1(struct addr_ctx *ctx)
{
/* Make a single space at the interleave bit. */
u64 denorm_addr = expand_bits(ctx->map.intlv_bit_pos, 1, ctx->ret_addr);
/* Done if there's only a single interleave bit. */
if (ctx->map.total_intlv_bits <= 1)
return denorm_addr;
/* Make spaces for the remaining interleave bits starting at bit 12. */
return expand_bits(12, ctx->map.total_intlv_bits - 1, denorm_addr);
}
/*
* Make space for CS ID at bits [14:8] as follows:
*
* 8 channels -> bits [10:8]
* 16 channels -> bits [11:8]
* 32 channels -> bits [14,11:8]
*
* 1 die -> N/A
* 2 dies -> bit [12]
* 4 dies -> bits [13:12]
*/
static u64 make_space_for_coh_st_id_mi300(struct addr_ctx *ctx)
{
u8 num_intlv_bits = ilog2(ctx->map.num_intlv_chan);
u64 denorm_addr;
if (ctx->map.intlv_bit_pos != 8) {
pr_debug("Invalid interleave bit: %u", ctx->map.intlv_bit_pos);
return ~0ULL;
}
/* Channel bits. Covers up to 4 bits at [11:8]. */
denorm_addr = expand_bits(8, min(num_intlv_bits, 4), ctx->ret_addr);
/* Die bits. Always starts at [12]. */
denorm_addr = expand_bits(12, ilog2(ctx->map.num_intlv_dies), denorm_addr);
/* Additional channel bit at [14]. */
if (num_intlv_bits > 4)
denorm_addr = expand_bits(14, 1, denorm_addr);
return denorm_addr;
}
/*
* Take the current calculated address and shift enough bits in the middle
* to make a gap where the interleave bits will be inserted.
*/
static u64 make_space_for_coh_st_id(struct addr_ctx *ctx)
{
switch (ctx->map.intlv_mode) {
case NOHASH_2CHAN:
case NOHASH_4CHAN:
case NOHASH_8CHAN:
case NOHASH_16CHAN:
case NOHASH_32CHAN:
case DF2_2CHAN_HASH:
return make_space_for_coh_st_id_at_intlv_bit(ctx);
case DF3_COD4_2CHAN_HASH:
case DF3_COD2_4CHAN_HASH:
case DF3_COD1_8CHAN_HASH:
case DF4_NPS4_2CHAN_HASH:
case DF4_NPS2_4CHAN_HASH:
case DF4_NPS1_8CHAN_HASH:
case DF4p5_NPS4_2CHAN_1K_HASH:
case DF4p5_NPS4_2CHAN_2K_HASH:
case DF4p5_NPS2_4CHAN_2K_HASH:
case DF4p5_NPS1_8CHAN_2K_HASH:
case DF4p5_NPS1_16CHAN_2K_HASH:
return make_space_for_coh_st_id_split_2_1(ctx);
case MI3_HASH_8CHAN:
case MI3_HASH_16CHAN:
case MI3_HASH_32CHAN:
return make_space_for_coh_st_id_mi300(ctx);
default:
atl_debug_on_bad_intlv_mode(ctx);
return ~0ULL;
}
}
static u16 get_coh_st_id_df2(struct addr_ctx *ctx)
{
u8 num_socket_intlv_bits = ilog2(ctx->map.num_intlv_sockets);
u8 num_die_intlv_bits = ilog2(ctx->map.num_intlv_dies);
u8 num_intlv_bits;
u16 coh_st_id, mask;
coh_st_id = ctx->coh_st_fabric_id - get_dst_fabric_id(ctx);
/* Channel interleave bits */
num_intlv_bits = order_base_2(ctx->map.num_intlv_chan);
mask = GENMASK(num_intlv_bits - 1, 0);
coh_st_id &= mask;
/* Die interleave bits */
if (num_die_intlv_bits) {
u16 die_bits;
mask = GENMASK(num_die_intlv_bits - 1, 0);
die_bits = ctx->coh_st_fabric_id & df_cfg.die_id_mask;
die_bits >>= df_cfg.die_id_shift;
coh_st_id |= (die_bits & mask) << num_intlv_bits;
num_intlv_bits += num_die_intlv_bits;
}
/* Socket interleave bits */
if (num_socket_intlv_bits) {
u16 socket_bits;
mask = GENMASK(num_socket_intlv_bits - 1, 0);
socket_bits = ctx->coh_st_fabric_id & df_cfg.socket_id_mask;
socket_bits >>= df_cfg.socket_id_shift;
coh_st_id |= (socket_bits & mask) << num_intlv_bits;
}
return coh_st_id;
}
static u16 get_coh_st_id_df4(struct addr_ctx *ctx)
{
/*
* Start with the original component mask and the number of interleave
* bits for the channels in this map.
*/
u8 num_intlv_bits = ilog2(ctx->map.num_intlv_chan);
u16 mask = df_cfg.component_id_mask;
u16 socket_bits;
/* Set the derived Coherent Station ID to the input Coherent Station Fabric ID. */
u16 coh_st_id = ctx->coh_st_fabric_id & mask;
/*
* Subtract the "base" Destination Fabric ID.
* This accounts for systems with disabled Coherent Stations.
*/
coh_st_id -= get_dst_fabric_id(ctx) & mask;
/*
* Generate and use a new mask based on the number of bits
* needed for channel interleaving in this map.
*/
mask = GENMASK(num_intlv_bits - 1, 0);
coh_st_id &= mask;
/* Done if socket interleaving is not enabled. */
if (ctx->map.num_intlv_sockets <= 1)
return coh_st_id;
/*
* Figure out how many bits are needed for the number of
* interleaved sockets. And shift the derived Coherent Station ID to account
* for these.
*/
num_intlv_bits = ilog2(ctx->map.num_intlv_sockets);
coh_st_id <<= num_intlv_bits;
/* Generate a new mask for the socket interleaving bits. */
mask = GENMASK(num_intlv_bits - 1, 0);
/* Get the socket interleave bits from the original Coherent Station Fabric ID. */
socket_bits = (ctx->coh_st_fabric_id & df_cfg.socket_id_mask) >> df_cfg.socket_id_shift;
/* Apply the appropriate socket bits to the derived Coherent Station ID. */
coh_st_id |= socket_bits & mask;
return coh_st_id;
}
/*
* MI300 hash has:
* (C)hannel[3:0] = coh_st_id[3:0]
* (S)tack[0] = coh_st_id[4]
* (D)ie[1:0] = coh_st_id[6:5]
*
* Hashed coh_st_id is swizzled so that Stack bit is at the end.
* coh_st_id = SDDCCCC
*/
static u16 get_coh_st_id_mi300(struct addr_ctx *ctx)
{
u8 channel_bits, die_bits, stack_bit;
u16 die_id;
/* Subtract the "base" Destination Fabric ID. */
ctx->coh_st_fabric_id -= get_dst_fabric_id(ctx);
die_id = (ctx->coh_st_fabric_id & df_cfg.die_id_mask) >> df_cfg.die_id_shift;
channel_bits = FIELD_GET(GENMASK(3, 0), ctx->coh_st_fabric_id);
stack_bit = FIELD_GET(BIT(4), ctx->coh_st_fabric_id) << 6;
die_bits = die_id << 4;
return stack_bit | die_bits | channel_bits;
}
/*
* Derive the correct Coherent Station ID that represents the interleave bits
* used within the system physical address. This accounts for the
* interleave mode, number of interleaved channels/dies/sockets, and
* other system/mode-specific bit swizzling.
*
* Returns: Coherent Station ID on success.
* All bits set on error.
*/
static u16 calculate_coh_st_id(struct addr_ctx *ctx)
{
switch (ctx->map.intlv_mode) {
case NOHASH_2CHAN:
case NOHASH_4CHAN:
case NOHASH_8CHAN:
case NOHASH_16CHAN:
case NOHASH_32CHAN:
case DF3_COD4_2CHAN_HASH:
case DF3_COD2_4CHAN_HASH:
case DF3_COD1_8CHAN_HASH:
case DF2_2CHAN_HASH:
return get_coh_st_id_df2(ctx);
case DF4_NPS4_2CHAN_HASH:
case DF4_NPS2_4CHAN_HASH:
case DF4_NPS1_8CHAN_HASH:
case DF4p5_NPS4_2CHAN_1K_HASH:
case DF4p5_NPS4_2CHAN_2K_HASH:
case DF4p5_NPS2_4CHAN_2K_HASH:
case DF4p5_NPS1_8CHAN_2K_HASH:
case DF4p5_NPS1_16CHAN_2K_HASH:
return get_coh_st_id_df4(ctx);
case MI3_HASH_8CHAN:
case MI3_HASH_16CHAN:
case MI3_HASH_32CHAN:
return get_coh_st_id_mi300(ctx);
/* COH_ST ID is simply the COH_ST Fabric ID adjusted by the Destination Fabric ID. */
case DF4p5_NPS2_4CHAN_1K_HASH:
case DF4p5_NPS1_8CHAN_1K_HASH:
case DF4p5_NPS1_16CHAN_1K_HASH:
return ctx->coh_st_fabric_id - get_dst_fabric_id(ctx);
default:
atl_debug_on_bad_intlv_mode(ctx);
return ~0;
}
}
static u64 insert_coh_st_id_at_intlv_bit(struct addr_ctx *ctx, u64 denorm_addr, u16 coh_st_id)
{
return denorm_addr | (coh_st_id << ctx->map.intlv_bit_pos);
}
static u64 insert_coh_st_id_split_2_1(struct addr_ctx *ctx, u64 denorm_addr, u16 coh_st_id)
{
/* Insert coh_st_id[0] at the interleave bit. */
denorm_addr |= (coh_st_id & BIT(0)) << ctx->map.intlv_bit_pos;
/* Insert coh_st_id[2:1] at bit 12. */
denorm_addr |= (coh_st_id & GENMASK(2, 1)) << 11;
return denorm_addr;
}
static u64 insert_coh_st_id_split_2_2(struct addr_ctx *ctx, u64 denorm_addr, u16 coh_st_id)
{
/* Insert coh_st_id[1:0] at bit 8. */
denorm_addr |= (coh_st_id & GENMASK(1, 0)) << 8;
/*
* Insert coh_st_id[n:2] at bit 12. 'n' could be 2 or 3.
* Grab both because bit 3 will be clear if unused.
*/
denorm_addr |= (coh_st_id & GENMASK(3, 2)) << 10;
return denorm_addr;
}
static u64 insert_coh_st_id(struct addr_ctx *ctx, u64 denorm_addr, u16 coh_st_id)
{
switch (ctx->map.intlv_mode) {
case NOHASH_2CHAN:
case NOHASH_4CHAN:
case NOHASH_8CHAN:
case NOHASH_16CHAN:
case NOHASH_32CHAN:
case MI3_HASH_8CHAN:
case MI3_HASH_16CHAN:
case MI3_HASH_32CHAN:
case DF2_2CHAN_HASH:
return insert_coh_st_id_at_intlv_bit(ctx, denorm_addr, coh_st_id);
case DF3_COD4_2CHAN_HASH:
case DF3_COD2_4CHAN_HASH:
case DF3_COD1_8CHAN_HASH:
case DF4_NPS4_2CHAN_HASH:
case DF4_NPS2_4CHAN_HASH:
case DF4_NPS1_8CHAN_HASH:
case DF4p5_NPS4_2CHAN_1K_HASH:
case DF4p5_NPS4_2CHAN_2K_HASH:
case DF4p5_NPS2_4CHAN_2K_HASH:
case DF4p5_NPS1_8CHAN_2K_HASH:
case DF4p5_NPS1_16CHAN_2K_HASH:
return insert_coh_st_id_split_2_1(ctx, denorm_addr, coh_st_id);
case DF4p5_NPS2_4CHAN_1K_HASH:
case DF4p5_NPS1_8CHAN_1K_HASH:
case DF4p5_NPS1_16CHAN_1K_HASH:
return insert_coh_st_id_split_2_2(ctx, denorm_addr, coh_st_id);
default:
atl_debug_on_bad_intlv_mode(ctx);
return ~0ULL;
}
}
/*
* MI300 systems have a fixed, hardware-defined physical-to-logical
* Coherent Station mapping. The Remap registers are not used.
*/
static const u16 phy_to_log_coh_st_map_mi300[] = {
12, 13, 14, 15,
8, 9, 10, 11,
4, 5, 6, 7,
0, 1, 2, 3,
28, 29, 30, 31,
24, 25, 26, 27,
20, 21, 22, 23,
16, 17, 18, 19,
};
static u16 get_logical_coh_st_fabric_id_mi300(struct addr_ctx *ctx)
{
if (ctx->inst_id >= ARRAY_SIZE(phy_to_log_coh_st_map_mi300)) {
atl_debug(ctx, "Instance ID out of range");
return ~0;
}
return phy_to_log_coh_st_map_mi300[ctx->inst_id] | (ctx->node_id << df_cfg.node_id_shift);
}
static u16 get_logical_coh_st_fabric_id(struct addr_ctx *ctx)
{
u16 component_id, log_fabric_id;
/* Start with the physical COH_ST Fabric ID. */
u16 phys_fabric_id = ctx->coh_st_fabric_id;
if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous)
return get_logical_coh_st_fabric_id_mi300(ctx);
/* Skip logical ID lookup if remapping is disabled. */
if (!FIELD_GET(DF4_REMAP_EN, ctx->map.ctl) &&
ctx->map.intlv_mode != DF3_6CHAN)
return phys_fabric_id;
/* Mask off the Node ID bits to get the "local" Component ID. */
component_id = phys_fabric_id & df_cfg.component_id_mask;
/*
* Search the list of logical Component IDs for the one that
* matches this physical Component ID.
*/
for (log_fabric_id = 0; log_fabric_id < MAX_COH_ST_CHANNELS; log_fabric_id++) {
if (ctx->map.remap_array[log_fabric_id] == component_id)
break;
}
if (log_fabric_id == MAX_COH_ST_CHANNELS)
atl_debug(ctx, "COH_ST remap entry not found for 0x%x",
log_fabric_id);
/* Get the Node ID bits from the physical and apply to the logical. */
return (phys_fabric_id & df_cfg.node_id_mask) | log_fabric_id;
}
static int denorm_addr_common(struct addr_ctx *ctx)
{
u64 denorm_addr;
u16 coh_st_id;
/*
* Convert the original physical COH_ST Fabric ID to a logical value.
* This is required for non-power-of-two and other interleaving modes.
*/
ctx->coh_st_fabric_id = get_logical_coh_st_fabric_id(ctx);
denorm_addr = make_space_for_coh_st_id(ctx);
coh_st_id = calculate_coh_st_id(ctx);
ctx->ret_addr = insert_coh_st_id(ctx, denorm_addr, coh_st_id);
return 0;
}
static int denorm_addr_df3_6chan(struct addr_ctx *ctx)
{
u16 coh_st_id = ctx->coh_st_fabric_id & df_cfg.component_id_mask;
u8 total_intlv_bits = ctx->map.total_intlv_bits;
u8 low_bit, intlv_bit = ctx->map.intlv_bit_pos;
u64 msb_intlv_bits, temp_addr_a, temp_addr_b;
u8 np2_bits = ctx->map.np2_bits;
if (ctx->map.intlv_mode != DF3_6CHAN)
return -EINVAL;
/*
* 'np2_bits' holds the number of bits needed to cover the
* amount of memory (rounded up) in this map using 64K chunks.
*
* Example:
* Total memory in map: 6GB
* Rounded up to next power-of-2: 8GB
* Number of 64K chunks: 0x20000
* np2_bits = log2(# of chunks): 17
*
* Get the two most-significant interleave bits from the
* input address based on the following:
*
* [15 + np2_bits - total_intlv_bits : 14 + np2_bits - total_intlv_bits]
*/
low_bit = 14 + np2_bits - total_intlv_bits;
msb_intlv_bits = ctx->ret_addr >> low_bit;
msb_intlv_bits &= 0x3;
/*
* If MSB are 11b, then logical COH_ST ID is 6 or 7.
* Need to adjust based on the mod3 result.
*/
if (msb_intlv_bits == 3) {
u8 addr_mod, phys_addr_msb, msb_coh_st_id;
/* Get the remaining interleave bits from the input address. */
temp_addr_b = GENMASK_ULL(low_bit - 1, intlv_bit) & ctx->ret_addr;
temp_addr_b >>= intlv_bit;
/* Calculate the logical COH_ST offset based on mod3. */
addr_mod = temp_addr_b % 3;
/* Get COH_ST ID bits [2:1]. */
msb_coh_st_id = (coh_st_id >> 1) & 0x3;
/* Get the bit that starts the physical address bits. */
phys_addr_msb = (intlv_bit + np2_bits + 1);
phys_addr_msb &= BIT(0);
phys_addr_msb++;
phys_addr_msb *= 3 - addr_mod + msb_coh_st_id;
phys_addr_msb %= 3;
/* Move the physical address MSB to the correct place. */
temp_addr_b |= phys_addr_msb << (low_bit - total_intlv_bits - intlv_bit);
/* Generate a new COH_ST ID as follows: coh_st_id = [1, 1, coh_st_id[0]] */
coh_st_id &= BIT(0);
coh_st_id |= GENMASK(2, 1);
} else {
temp_addr_b = GENMASK_ULL(63, intlv_bit) & ctx->ret_addr;
temp_addr_b >>= intlv_bit;
}
temp_addr_a = GENMASK_ULL(intlv_bit - 1, 0) & ctx->ret_addr;
temp_addr_b <<= intlv_bit + total_intlv_bits;
ctx->ret_addr = temp_addr_a | temp_addr_b;
ctx->ret_addr |= coh_st_id << intlv_bit;
return 0;
}
static int denorm_addr_df4_np2(struct addr_ctx *ctx)
{
bool hash_ctl_64k, hash_ctl_2M, hash_ctl_1G;
u16 group, group_offset, log_coh_st_offset;
unsigned int mod_value, shift_value;
u16 mask = df_cfg.component_id_mask;
u64 temp_addr_a, temp_addr_b;
bool hash_pa8, hashed_bit;
switch (ctx->map.intlv_mode) {
case DF4_NPS4_3CHAN_HASH:
mod_value = 3;
shift_value = 13;
break;
case DF4_NPS2_6CHAN_HASH:
mod_value = 3;
shift_value = 12;
break;
case DF4_NPS1_12CHAN_HASH:
mod_value = 3;
shift_value = 11;
break;
case DF4_NPS2_5CHAN_HASH:
mod_value = 5;
shift_value = 13;
break;
case DF4_NPS1_10CHAN_HASH:
mod_value = 5;
shift_value = 12;
break;
default:
atl_debug_on_bad_intlv_mode(ctx);
return -EINVAL;
};
if (ctx->map.num_intlv_sockets == 1) {
hash_pa8 = BIT_ULL(shift_value) & ctx->ret_addr;
temp_addr_a = remove_bits(shift_value, shift_value, ctx->ret_addr);
} else {
hash_pa8 = ctx->coh_st_fabric_id & df_cfg.socket_id_mask;
temp_addr_a = ctx->ret_addr;
}
/* Make a gap for the real bit [8]. */
temp_addr_a = expand_bits(8, 1, temp_addr_a);
/* Make an additional gap for bits [13:12], as appropriate.*/
if (ctx->map.intlv_mode == DF4_NPS2_6CHAN_HASH ||
ctx->map.intlv_mode == DF4_NPS1_10CHAN_HASH) {
temp_addr_a = expand_bits(13, 1, temp_addr_a);
} else if (ctx->map.intlv_mode == DF4_NPS1_12CHAN_HASH) {
temp_addr_a = expand_bits(12, 2, temp_addr_a);
}
/* Keep bits [13:0]. */
temp_addr_a &= GENMASK_ULL(13, 0);
/* Get the appropriate high bits. */
shift_value += 1 - ilog2(ctx->map.num_intlv_sockets);
temp_addr_b = GENMASK_ULL(63, shift_value) & ctx->ret_addr;
temp_addr_b >>= shift_value;
temp_addr_b *= mod_value;
/*
* Coherent Stations are divided into groups.
*
* Multiples of 3 (mod3) are divided into quadrants.
* e.g. NP4_3CHAN -> [0, 1, 2] [6, 7, 8]
* [3, 4, 5] [9, 10, 11]
*
* Multiples of 5 (mod5) are divided into sides.
* e.g. NP2_5CHAN -> [0, 1, 2, 3, 4] [5, 6, 7, 8, 9]
*/
/*
* Calculate the logical offset for the COH_ST within its DRAM Address map.
* e.g. if map includes [5, 6, 7, 8, 9] and target instance is '8', then
* log_coh_st_offset = 8 - 5 = 3
*/
log_coh_st_offset = (ctx->coh_st_fabric_id & mask) - (get_dst_fabric_id(ctx) & mask);
/*
* Figure out the group number.
*
* Following above example,
* log_coh_st_offset = 3
* mod_value = 5
* group = 3 / 5 = 0
*/
group = log_coh_st_offset / mod_value;
/*
* Figure out the offset within the group.
*
* Following above example,
* log_coh_st_offset = 3
* mod_value = 5
* group_offset = 3 % 5 = 3
*/
group_offset = log_coh_st_offset % mod_value;
/* Adjust group_offset if the hashed bit [8] is set. */
if (hash_pa8) {
if (!group_offset)
group_offset = mod_value - 1;
else
group_offset--;
}
/* Add in the group offset to the high bits. */
temp_addr_b += group_offset;
/* Shift the high bits to the proper starting position. */
temp_addr_b <<= 14;
/* Combine the high and low bits together. */
ctx->ret_addr = temp_addr_a | temp_addr_b;
/* Account for hashing here instead of in dehash_address(). */
hash_ctl_64k = FIELD_GET(DF4_HASH_CTL_64K, ctx->map.ctl);
hash_ctl_2M = FIELD_GET(DF4_HASH_CTL_2M, ctx->map.ctl);
hash_ctl_1G = FIELD_GET(DF4_HASH_CTL_1G, ctx->map.ctl);
hashed_bit = !!hash_pa8;
hashed_bit ^= FIELD_GET(BIT_ULL(14), ctx->ret_addr);
hashed_bit ^= FIELD_GET(BIT_ULL(16), ctx->ret_addr) & hash_ctl_64k;
hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr) & hash_ctl_1G;
ctx->ret_addr |= hashed_bit << 8;
/* Done for 3 and 5 channel. */
if (ctx->map.intlv_mode == DF4_NPS4_3CHAN_HASH ||
ctx->map.intlv_mode == DF4_NPS2_5CHAN_HASH)
return 0;
/* Select the proper 'group' bit to use for Bit 13. */
if (ctx->map.intlv_mode == DF4_NPS1_12CHAN_HASH)
hashed_bit = !!(group & BIT(1));
else
hashed_bit = group & BIT(0);
hashed_bit ^= FIELD_GET(BIT_ULL(18), ctx->ret_addr) & hash_ctl_64k;
hashed_bit ^= FIELD_GET(BIT_ULL(23), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(32), ctx->ret_addr) & hash_ctl_1G;
ctx->ret_addr |= hashed_bit << 13;
/* Done for 6 and 10 channel. */
if (ctx->map.intlv_mode != DF4_NPS1_12CHAN_HASH)
return 0;
hashed_bit = group & BIT(0);
hashed_bit ^= FIELD_GET(BIT_ULL(17), ctx->ret_addr) & hash_ctl_64k;
hashed_bit ^= FIELD_GET(BIT_ULL(22), ctx->ret_addr) & hash_ctl_2M;
hashed_bit ^= FIELD_GET(BIT_ULL(31), ctx->ret_addr) & hash_ctl_1G;
ctx->ret_addr |= hashed_bit << 12;
return 0;
}
int denormalize_address(struct addr_ctx *ctx)
{
switch (ctx->map.intlv_mode) {
case NONE:
return 0;
case DF4_NPS4_3CHAN_HASH:
case DF4_NPS2_6CHAN_HASH:
case DF4_NPS1_12CHAN_HASH:
case DF4_NPS2_5CHAN_HASH:
case DF4_NPS1_10CHAN_HASH:
return denorm_addr_df4_np2(ctx);
case DF3_6CHAN:
return denorm_addr_df3_6chan(ctx);
default:
return denorm_addr_common(ctx);
}
}

View File

@ -0,0 +1,306 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* AMD Address Translation Library
*
* internal.h : Helper functions and common defines
*
* Copyright (c) 2023, Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Author: Yazen Ghannam <Yazen.Ghannam@amd.com>
*/
#ifndef __AMD_ATL_INTERNAL_H__
#define __AMD_ATL_INTERNAL_H__
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/ras.h>
#include <asm/amd_nb.h>
#include "reg_fields.h"
/* Maximum possible number of Coherent Stations within a single Data Fabric. */
#define MAX_COH_ST_CHANNELS 32
/* PCI ID for Zen4 Server DF Function 0. */
#define DF_FUNC0_ID_ZEN4_SERVER 0x14AD1022
/* PCI IDs for MI300 DF Function 0. */
#define DF_FUNC0_ID_MI300 0x15281022
/* Shift needed for adjusting register values to true values. */
#define DF_DRAM_BASE_LIMIT_LSB 28
#define MI300_DRAM_LIMIT_LSB 20
enum df_revisions {
UNKNOWN,
DF2,
DF3,
DF3p5,
DF4,
DF4p5,
};
/* These are mapped 1:1 to the hardware values. Special cases are set at > 0x20. */
enum intlv_modes {
NONE = 0x00,
NOHASH_2CHAN = 0x01,
NOHASH_4CHAN = 0x03,
NOHASH_8CHAN = 0x05,
DF3_6CHAN = 0x06,
NOHASH_16CHAN = 0x07,
NOHASH_32CHAN = 0x08,
DF3_COD4_2CHAN_HASH = 0x0C,
DF3_COD2_4CHAN_HASH = 0x0D,
DF3_COD1_8CHAN_HASH = 0x0E,
DF4_NPS4_2CHAN_HASH = 0x10,
DF4_NPS2_4CHAN_HASH = 0x11,
DF4_NPS1_8CHAN_HASH = 0x12,
DF4_NPS4_3CHAN_HASH = 0x13,
DF4_NPS2_6CHAN_HASH = 0x14,
DF4_NPS1_12CHAN_HASH = 0x15,
DF4_NPS2_5CHAN_HASH = 0x16,
DF4_NPS1_10CHAN_HASH = 0x17,
MI3_HASH_8CHAN = 0x18,
MI3_HASH_16CHAN = 0x19,
MI3_HASH_32CHAN = 0x1A,
DF2_2CHAN_HASH = 0x21,
/* DF4.5 modes are all IntLvNumChan + 0x20 */
DF4p5_NPS1_16CHAN_1K_HASH = 0x2C,
DF4p5_NPS0_24CHAN_1K_HASH = 0x2E,
DF4p5_NPS4_2CHAN_1K_HASH = 0x30,
DF4p5_NPS2_4CHAN_1K_HASH = 0x31,
DF4p5_NPS1_8CHAN_1K_HASH = 0x32,
DF4p5_NPS4_3CHAN_1K_HASH = 0x33,
DF4p5_NPS2_6CHAN_1K_HASH = 0x34,
DF4p5_NPS1_12CHAN_1K_HASH = 0x35,
DF4p5_NPS2_5CHAN_1K_HASH = 0x36,
DF4p5_NPS1_10CHAN_1K_HASH = 0x37,
DF4p5_NPS4_2CHAN_2K_HASH = 0x40,
DF4p5_NPS2_4CHAN_2K_HASH = 0x41,
DF4p5_NPS1_8CHAN_2K_HASH = 0x42,
DF4p5_NPS1_16CHAN_2K_HASH = 0x43,
DF4p5_NPS4_3CHAN_2K_HASH = 0x44,
DF4p5_NPS2_6CHAN_2K_HASH = 0x45,
DF4p5_NPS1_12CHAN_2K_HASH = 0x46,
DF4p5_NPS0_24CHAN_2K_HASH = 0x47,
DF4p5_NPS2_5CHAN_2K_HASH = 0x48,
DF4p5_NPS1_10CHAN_2K_HASH = 0x49,
};
struct df_flags {
__u8 legacy_ficaa : 1,
socket_id_shift_quirk : 1,
heterogeneous : 1,
__reserved_0 : 5;
};
struct df_config {
enum df_revisions rev;
/*
* These masks operate on the 16-bit Coherent Station IDs,
* e.g. Instance, Fabric, Destination, etc.
*/
u16 component_id_mask;
u16 die_id_mask;
u16 node_id_mask;
u16 socket_id_mask;
/*
* Least-significant bit of Node ID portion of the
* system-wide Coherent Station Fabric ID.
*/
u8 node_id_shift;
/*
* Least-significant bit of Die portion of the Node ID.
* Adjusted to include the Node ID shift in order to apply
* to the Coherent Station Fabric ID.
*/
u8 die_id_shift;
/*
* Least-significant bit of Socket portion of the Node ID.
* Adjusted to include the Node ID shift in order to apply
* to the Coherent Station Fabric ID.
*/
u8 socket_id_shift;
/* Number of DRAM Address maps visible in a Coherent Station. */
u8 num_coh_st_maps;
/* Global flags to handle special cases. */
struct df_flags flags;
};
extern struct df_config df_cfg;
struct dram_addr_map {
/*
* Each DRAM Address Map can operate independently
* in different interleaving modes.
*/
enum intlv_modes intlv_mode;
/* System-wide number for this address map. */
u8 num;
/* Raw register values */
u32 base;
u32 limit;
u32 ctl;
u32 intlv;
/*
* Logical to Physical Coherent Station Remapping array
*
* Index: Logical Coherent Station Instance ID
* Value: Physical Coherent Station Instance ID
*
* phys_coh_st_inst_id = remap_array[log_coh_st_inst_id]
*/
u8 remap_array[MAX_COH_ST_CHANNELS];
/*
* Number of bits covering DRAM Address map 0
* when interleaving is non-power-of-2.
*
* Used only for DF3_6CHAN.
*/
u8 np2_bits;
/* Position of the 'interleave bit'. */
u8 intlv_bit_pos;
/* Number of channels interleaved in this map. */
u8 num_intlv_chan;
/* Number of dies interleaved in this map. */
u8 num_intlv_dies;
/* Number of sockets interleaved in this map. */
u8 num_intlv_sockets;
/*
* Total number of channels interleaved accounting
* for die and socket interleaving.
*/
u8 total_intlv_chan;
/* Total bits needed to cover 'total_intlv_chan'. */
u8 total_intlv_bits;
};
/* Original input values cached for debug printing. */
struct addr_ctx_inputs {
u64 norm_addr;
u8 socket_id;
u8 die_id;
u8 coh_st_inst_id;
};
struct addr_ctx {
u64 ret_addr;
struct addr_ctx_inputs inputs;
struct dram_addr_map map;
/* AMD Node ID calculated from Socket and Die IDs. */
u8 node_id;
/*
* Coherent Station Instance ID
* Local ID used within a 'node'.
*/
u16 inst_id;
/*
* Coherent Station Fabric ID
* System-wide ID that includes 'node' bits.
*/
u16 coh_st_fabric_id;
};
int df_indirect_read_instance(u16 node, u8 func, u16 reg, u8 instance_id, u32 *lo);
int df_indirect_read_broadcast(u16 node, u8 func, u16 reg, u32 *lo);
int get_df_system_info(void);
int determine_node_id(struct addr_ctx *ctx, u8 socket_num, u8 die_num);
int get_addr_hash_mi300(void);
int get_address_map(struct addr_ctx *ctx);
int denormalize_address(struct addr_ctx *ctx);
int dehash_address(struct addr_ctx *ctx);
unsigned long norm_to_sys_addr(u8 socket_id, u8 die_id, u8 coh_st_inst_id, unsigned long addr);
unsigned long convert_umc_mca_addr_to_sys_addr(struct atl_err *err);
/*
* Make a gap in @data that is @num_bits long starting at @bit_num.
* e.g. data = 11111111'b
* bit_num = 3
* num_bits = 2
* result = 1111100111'b
*/
static inline u64 expand_bits(u8 bit_num, u8 num_bits, u64 data)
{
u64 temp1, temp2;
if (!num_bits)
return data;
if (!bit_num) {
WARN_ON_ONCE(num_bits >= BITS_PER_LONG);
return data << num_bits;
}
WARN_ON_ONCE(bit_num >= BITS_PER_LONG);
temp1 = data & GENMASK_ULL(bit_num - 1, 0);
temp2 = data & GENMASK_ULL(63, bit_num);
temp2 <<= num_bits;
return temp1 | temp2;
}
/*
* Remove bits in @data between @low_bit and @high_bit inclusive.
* e.g. data = XXXYYZZZ'b
* low_bit = 3
* high_bit = 4
* result = XXXZZZ'b
*/
static inline u64 remove_bits(u8 low_bit, u8 high_bit, u64 data)
{
u64 temp1, temp2;
WARN_ON_ONCE(high_bit >= BITS_PER_LONG);
WARN_ON_ONCE(low_bit >= BITS_PER_LONG);
WARN_ON_ONCE(low_bit > high_bit);
if (!low_bit)
return data >> (high_bit++);
temp1 = GENMASK_ULL(low_bit - 1, 0) & data;
temp2 = GENMASK_ULL(63, high_bit + 1) & data;
temp2 >>= high_bit - low_bit + 1;
return temp1 | temp2;
}
#define atl_debug(ctx, fmt, arg...) \
pr_debug("socket_id=%u die_id=%u coh_st_inst_id=%u norm_addr=0x%016llx: " fmt,\
(ctx)->inputs.socket_id, (ctx)->inputs.die_id,\
(ctx)->inputs.coh_st_inst_id, (ctx)->inputs.norm_addr, ##arg)
static inline void atl_debug_on_bad_df_rev(void)
{
pr_debug("Unrecognized DF rev: %u", df_cfg.rev);
}
static inline void atl_debug_on_bad_intlv_mode(struct addr_ctx *ctx)
{
atl_debug(ctx, "Unrecognized interleave mode: %u", ctx->map.intlv_mode);
}
#endif /* __AMD_ATL_INTERNAL_H__ */

682
drivers/ras/amd/atl/map.c Normal file
View File

@ -0,0 +1,682 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* AMD Address Translation Library
*
* map.c : Functions to read and decode DRAM address maps
*
* Copyright (c) 2023, Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Author: Yazen Ghannam <Yazen.Ghannam@amd.com>
*/
#include "internal.h"
static int df2_get_intlv_mode(struct addr_ctx *ctx)
{
ctx->map.intlv_mode = FIELD_GET(DF2_INTLV_NUM_CHAN, ctx->map.base);
if (ctx->map.intlv_mode == 8)
ctx->map.intlv_mode = DF2_2CHAN_HASH;
if (ctx->map.intlv_mode != NONE &&
ctx->map.intlv_mode != NOHASH_2CHAN &&
ctx->map.intlv_mode != DF2_2CHAN_HASH)
return -EINVAL;
return 0;
}
static int df3_get_intlv_mode(struct addr_ctx *ctx)
{
ctx->map.intlv_mode = FIELD_GET(DF3_INTLV_NUM_CHAN, ctx->map.base);
return 0;
}
static int df3p5_get_intlv_mode(struct addr_ctx *ctx)
{
ctx->map.intlv_mode = FIELD_GET(DF3p5_INTLV_NUM_CHAN, ctx->map.base);
if (ctx->map.intlv_mode == DF3_6CHAN)
return -EINVAL;
return 0;
}
static int df4_get_intlv_mode(struct addr_ctx *ctx)
{
ctx->map.intlv_mode = FIELD_GET(DF4_INTLV_NUM_CHAN, ctx->map.intlv);
if (ctx->map.intlv_mode == DF3_COD4_2CHAN_HASH ||
ctx->map.intlv_mode == DF3_COD2_4CHAN_HASH ||
ctx->map.intlv_mode == DF3_COD1_8CHAN_HASH ||
ctx->map.intlv_mode == DF3_6CHAN)
return -EINVAL;
return 0;
}
static int df4p5_get_intlv_mode(struct addr_ctx *ctx)
{
ctx->map.intlv_mode = FIELD_GET(DF4p5_INTLV_NUM_CHAN, ctx->map.intlv);
if (ctx->map.intlv_mode <= NOHASH_32CHAN)
return 0;
if (ctx->map.intlv_mode >= MI3_HASH_8CHAN &&
ctx->map.intlv_mode <= MI3_HASH_32CHAN)
return 0;
/*
* Modes matching the ranges above are returned as-is.
*
* All other modes are "fixed up" by adding 20h to make a unique value.
*/
ctx->map.intlv_mode += 0x20;
return 0;
}
static int get_intlv_mode(struct addr_ctx *ctx)
{
int ret;
switch (df_cfg.rev) {
case DF2:
ret = df2_get_intlv_mode(ctx);
break;
case DF3:
ret = df3_get_intlv_mode(ctx);
break;
case DF3p5:
ret = df3p5_get_intlv_mode(ctx);
break;
case DF4:
ret = df4_get_intlv_mode(ctx);
break;
case DF4p5:
ret = df4p5_get_intlv_mode(ctx);
break;
default:
ret = -EINVAL;
}
if (ret)
atl_debug_on_bad_df_rev();
return ret;
}
static u64 get_hi_addr_offset(u32 reg_dram_offset)
{
u8 shift = DF_DRAM_BASE_LIMIT_LSB;
u64 hi_addr_offset;
switch (df_cfg.rev) {
case DF2:
hi_addr_offset = FIELD_GET(DF2_HI_ADDR_OFFSET, reg_dram_offset);
break;
case DF3:
case DF3p5:
hi_addr_offset = FIELD_GET(DF3_HI_ADDR_OFFSET, reg_dram_offset);
break;
case DF4:
case DF4p5:
hi_addr_offset = FIELD_GET(DF4_HI_ADDR_OFFSET, reg_dram_offset);
break;
default:
hi_addr_offset = 0;
atl_debug_on_bad_df_rev();
}
if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous)
shift = MI300_DRAM_LIMIT_LSB;
return hi_addr_offset << shift;
}
/*
* Returns: 0 if offset is disabled.
* 1 if offset is enabled.
* -EINVAL on error.
*/
static int get_dram_offset(struct addr_ctx *ctx, u64 *norm_offset)
{
u32 reg_dram_offset;
u8 map_num;
/* Should not be called for map 0. */
if (!ctx->map.num) {
atl_debug(ctx, "Trying to find DRAM offset for map 0");
return -EINVAL;
}
/*
* DramOffset registers don't exist for map 0, so the base register
* actually refers to map 1.
* Adjust the map_num for the register offsets.
*/
map_num = ctx->map.num - 1;
if (df_cfg.rev >= DF4) {
/* Read D18F7x140 (DramOffset) */
if (df_indirect_read_instance(ctx->node_id, 7, 0x140 + (4 * map_num),
ctx->inst_id, &reg_dram_offset))
return -EINVAL;
} else {
/* Read D18F0x1B4 (DramOffset) */
if (df_indirect_read_instance(ctx->node_id, 0, 0x1B4 + (4 * map_num),
ctx->inst_id, &reg_dram_offset))
return -EINVAL;
}
if (!FIELD_GET(DF_HI_ADDR_OFFSET_EN, reg_dram_offset))
return 0;
*norm_offset = get_hi_addr_offset(reg_dram_offset);
return 1;
}
static int df3_6ch_get_dram_addr_map(struct addr_ctx *ctx)
{
u16 dst_fabric_id = FIELD_GET(DF3_DST_FABRIC_ID, ctx->map.limit);
u8 i, j, shift = 4, mask = 0xF;
u32 reg, offset = 0x60;
u16 dst_node_id;
/* Get Socket 1 register. */
if (dst_fabric_id & df_cfg.socket_id_mask)
offset = 0x68;
/* Read D18F0x06{0,8} (DF::Skt0CsTargetRemap0)/(DF::Skt0CsTargetRemap1) */
if (df_indirect_read_broadcast(ctx->node_id, 0, offset, &reg))
return -EINVAL;
/* Save 8 remap entries. */
for (i = 0, j = 0; i < 8; i++, j++)
ctx->map.remap_array[i] = (reg >> (j * shift)) & mask;
dst_node_id = dst_fabric_id & df_cfg.node_id_mask;
dst_node_id >>= df_cfg.node_id_shift;
/* Read D18F2x090 (DF::Np2ChannelConfig) */
if (df_indirect_read_broadcast(dst_node_id, 2, 0x90, &reg))
return -EINVAL;
ctx->map.np2_bits = FIELD_GET(DF_LOG2_ADDR_64K_SPACE0, reg);
return 0;
}
static int df2_get_dram_addr_map(struct addr_ctx *ctx)
{
/* Read D18F0x110 (DramBaseAddress). */
if (df_indirect_read_instance(ctx->node_id, 0, 0x110 + (8 * ctx->map.num),
ctx->inst_id, &ctx->map.base))
return -EINVAL;
/* Read D18F0x114 (DramLimitAddress). */
if (df_indirect_read_instance(ctx->node_id, 0, 0x114 + (8 * ctx->map.num),
ctx->inst_id, &ctx->map.limit))
return -EINVAL;
return 0;
}
static int df3_get_dram_addr_map(struct addr_ctx *ctx)
{
if (df2_get_dram_addr_map(ctx))
return -EINVAL;
/* Read D18F0x3F8 (DfGlobalCtl). */
if (df_indirect_read_instance(ctx->node_id, 0, 0x3F8,
ctx->inst_id, &ctx->map.ctl))
return -EINVAL;
return 0;
}
static int df4_get_dram_addr_map(struct addr_ctx *ctx)
{
u8 remap_sel, i, j, shift = 4, mask = 0xF;
u32 remap_reg;
/* Read D18F7xE00 (DramBaseAddress). */
if (df_indirect_read_instance(ctx->node_id, 7, 0xE00 + (16 * ctx->map.num),
ctx->inst_id, &ctx->map.base))
return -EINVAL;
/* Read D18F7xE04 (DramLimitAddress). */
if (df_indirect_read_instance(ctx->node_id, 7, 0xE04 + (16 * ctx->map.num),
ctx->inst_id, &ctx->map.limit))
return -EINVAL;
/* Read D18F7xE08 (DramAddressCtl). */
if (df_indirect_read_instance(ctx->node_id, 7, 0xE08 + (16 * ctx->map.num),
ctx->inst_id, &ctx->map.ctl))
return -EINVAL;
/* Read D18F7xE0C (DramAddressIntlv). */
if (df_indirect_read_instance(ctx->node_id, 7, 0xE0C + (16 * ctx->map.num),
ctx->inst_id, &ctx->map.intlv))
return -EINVAL;
/* Check if Remap Enable bit is valid. */
if (!FIELD_GET(DF4_REMAP_EN, ctx->map.ctl))
return 0;
/* Fill with bogus values, because '0' is a valid value. */
memset(&ctx->map.remap_array, 0xFF, sizeof(ctx->map.remap_array));
/* Get Remap registers. */
remap_sel = FIELD_GET(DF4_REMAP_SEL, ctx->map.ctl);
/* Read D18F7x180 (CsTargetRemap0A). */
if (df_indirect_read_instance(ctx->node_id, 7, 0x180 + (8 * remap_sel),
ctx->inst_id, &remap_reg))
return -EINVAL;
/* Save first 8 remap entries. */
for (i = 0, j = 0; i < 8; i++, j++)
ctx->map.remap_array[i] = (remap_reg >> (j * shift)) & mask;
/* Read D18F7x184 (CsTargetRemap0B). */
if (df_indirect_read_instance(ctx->node_id, 7, 0x184 + (8 * remap_sel),
ctx->inst_id, &remap_reg))
return -EINVAL;
/* Save next 8 remap entries. */
for (i = 8, j = 0; i < 16; i++, j++)
ctx->map.remap_array[i] = (remap_reg >> (j * shift)) & mask;
return 0;
}
static int df4p5_get_dram_addr_map(struct addr_ctx *ctx)
{
u8 remap_sel, i, j, shift = 5, mask = 0x1F;
u32 remap_reg;
/* Read D18F7x200 (DramBaseAddress). */
if (df_indirect_read_instance(ctx->node_id, 7, 0x200 + (16 * ctx->map.num),
ctx->inst_id, &ctx->map.base))
return -EINVAL;
/* Read D18F7x204 (DramLimitAddress). */
if (df_indirect_read_instance(ctx->node_id, 7, 0x204 + (16 * ctx->map.num),
ctx->inst_id, &ctx->map.limit))
return -EINVAL;
/* Read D18F7x208 (DramAddressCtl). */
if (df_indirect_read_instance(ctx->node_id, 7, 0x208 + (16 * ctx->map.num),
ctx->inst_id, &ctx->map.ctl))
return -EINVAL;
/* Read D18F7x20C (DramAddressIntlv). */
if (df_indirect_read_instance(ctx->node_id, 7, 0x20C + (16 * ctx->map.num),
ctx->inst_id, &ctx->map.intlv))
return -EINVAL;
/* Check if Remap Enable bit is valid. */
if (!FIELD_GET(DF4_REMAP_EN, ctx->map.ctl))
return 0;
/* Fill with bogus values, because '0' is a valid value. */
memset(&ctx->map.remap_array, 0xFF, sizeof(ctx->map.remap_array));
/* Get Remap registers. */
remap_sel = FIELD_GET(DF4p5_REMAP_SEL, ctx->map.ctl);
/* Read D18F7x180 (CsTargetRemap0A). */
if (df_indirect_read_instance(ctx->node_id, 7, 0x180 + (24 * remap_sel),
ctx->inst_id, &remap_reg))
return -EINVAL;
/* Save first 6 remap entries. */
for (i = 0, j = 0; i < 6; i++, j++)
ctx->map.remap_array[i] = (remap_reg >> (j * shift)) & mask;
/* Read D18F7x184 (CsTargetRemap0B). */
if (df_indirect_read_instance(ctx->node_id, 7, 0x184 + (24 * remap_sel),
ctx->inst_id, &remap_reg))
return -EINVAL;
/* Save next 6 remap entries. */
for (i = 6, j = 0; i < 12; i++, j++)
ctx->map.remap_array[i] = (remap_reg >> (j * shift)) & mask;
/* Read D18F7x188 (CsTargetRemap0C). */
if (df_indirect_read_instance(ctx->node_id, 7, 0x188 + (24 * remap_sel),
ctx->inst_id, &remap_reg))
return -EINVAL;
/* Save next 6 remap entries. */
for (i = 12, j = 0; i < 18; i++, j++)
ctx->map.remap_array[i] = (remap_reg >> (j * shift)) & mask;
return 0;
}
static int get_dram_addr_map(struct addr_ctx *ctx)
{
switch (df_cfg.rev) {
case DF2: return df2_get_dram_addr_map(ctx);
case DF3:
case DF3p5: return df3_get_dram_addr_map(ctx);
case DF4: return df4_get_dram_addr_map(ctx);
case DF4p5: return df4p5_get_dram_addr_map(ctx);
default:
atl_debug_on_bad_df_rev();
return -EINVAL;
}
}
static int get_coh_st_fabric_id(struct addr_ctx *ctx)
{
u32 reg;
/*
* On MI300 systems, the Coherent Station Fabric ID is derived
* later. And it does not depend on the register value.
*/
if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous)
return 0;
/* Read D18F0x50 (FabricBlockInstanceInformation3). */
if (df_indirect_read_instance(ctx->node_id, 0, 0x50, ctx->inst_id, &reg))
return -EINVAL;
if (df_cfg.rev < DF4p5)
ctx->coh_st_fabric_id = FIELD_GET(DF2_COH_ST_FABRIC_ID, reg);
else
ctx->coh_st_fabric_id = FIELD_GET(DF4p5_COH_ST_FABRIC_ID, reg);
return 0;
}
static int find_normalized_offset(struct addr_ctx *ctx, u64 *norm_offset)
{
u64 last_offset = 0;
int ret;
for (ctx->map.num = 1; ctx->map.num < df_cfg.num_coh_st_maps; ctx->map.num++) {
ret = get_dram_offset(ctx, norm_offset);
if (ret < 0)
return ret;
/* Continue search if this map's offset is not enabled. */
if (!ret)
continue;
/* Enabled offsets should never be 0. */
if (*norm_offset == 0) {
atl_debug(ctx, "Enabled map %u offset is 0", ctx->map.num);
return -EINVAL;
}
/* Offsets should always increase from one map to the next. */
if (*norm_offset <= last_offset) {
atl_debug(ctx, "Map %u offset (0x%016llx) <= previous (0x%016llx)",
ctx->map.num, *norm_offset, last_offset);
return -EINVAL;
}
/* Match if this map's offset is less than the current calculated address. */
if (ctx->ret_addr >= *norm_offset)
break;
last_offset = *norm_offset;
}
/*
* Finished search without finding a match.
* Reset to map 0 and no offset.
*/
if (ctx->map.num >= df_cfg.num_coh_st_maps) {
ctx->map.num = 0;
*norm_offset = 0;
}
return 0;
}
static bool valid_map(struct addr_ctx *ctx)
{
if (df_cfg.rev >= DF4)
return FIELD_GET(DF_ADDR_RANGE_VAL, ctx->map.ctl);
else
return FIELD_GET(DF_ADDR_RANGE_VAL, ctx->map.base);
}
static int get_address_map_common(struct addr_ctx *ctx)
{
u64 norm_offset = 0;
if (get_coh_st_fabric_id(ctx))
return -EINVAL;
if (find_normalized_offset(ctx, &norm_offset))
return -EINVAL;
if (get_dram_addr_map(ctx))
return -EINVAL;
if (!valid_map(ctx))
return -EINVAL;
ctx->ret_addr -= norm_offset;
return 0;
}
static u8 get_num_intlv_chan(struct addr_ctx *ctx)
{
switch (ctx->map.intlv_mode) {
case NONE:
return 1;
case NOHASH_2CHAN:
case DF2_2CHAN_HASH:
case DF3_COD4_2CHAN_HASH:
case DF4_NPS4_2CHAN_HASH:
case DF4p5_NPS4_2CHAN_1K_HASH:
case DF4p5_NPS4_2CHAN_2K_HASH:
return 2;
case DF4_NPS4_3CHAN_HASH:
case DF4p5_NPS4_3CHAN_1K_HASH:
case DF4p5_NPS4_3CHAN_2K_HASH:
return 3;
case NOHASH_4CHAN:
case DF3_COD2_4CHAN_HASH:
case DF4_NPS2_4CHAN_HASH:
case DF4p5_NPS2_4CHAN_1K_HASH:
case DF4p5_NPS2_4CHAN_2K_HASH:
return 4;
case DF4_NPS2_5CHAN_HASH:
case DF4p5_NPS2_5CHAN_1K_HASH:
case DF4p5_NPS2_5CHAN_2K_HASH:
return 5;
case DF3_6CHAN:
case DF4_NPS2_6CHAN_HASH:
case DF4p5_NPS2_6CHAN_1K_HASH:
case DF4p5_NPS2_6CHAN_2K_HASH:
return 6;
case NOHASH_8CHAN:
case DF3_COD1_8CHAN_HASH:
case DF4_NPS1_8CHAN_HASH:
case MI3_HASH_8CHAN:
case DF4p5_NPS1_8CHAN_1K_HASH:
case DF4p5_NPS1_8CHAN_2K_HASH:
return 8;
case DF4_NPS1_10CHAN_HASH:
case DF4p5_NPS1_10CHAN_1K_HASH:
case DF4p5_NPS1_10CHAN_2K_HASH:
return 10;
case DF4_NPS1_12CHAN_HASH:
case DF4p5_NPS1_12CHAN_1K_HASH:
case DF4p5_NPS1_12CHAN_2K_HASH:
return 12;
case NOHASH_16CHAN:
case MI3_HASH_16CHAN:
case DF4p5_NPS1_16CHAN_1K_HASH:
case DF4p5_NPS1_16CHAN_2K_HASH:
return 16;
case DF4p5_NPS0_24CHAN_1K_HASH:
case DF4p5_NPS0_24CHAN_2K_HASH:
return 24;
case NOHASH_32CHAN:
case MI3_HASH_32CHAN:
return 32;
default:
atl_debug_on_bad_intlv_mode(ctx);
return 0;
}
}
static void calculate_intlv_bits(struct addr_ctx *ctx)
{
ctx->map.num_intlv_chan = get_num_intlv_chan(ctx);
ctx->map.total_intlv_chan = ctx->map.num_intlv_chan;
ctx->map.total_intlv_chan *= ctx->map.num_intlv_dies;
ctx->map.total_intlv_chan *= ctx->map.num_intlv_sockets;
/*
* Get the number of bits needed to cover this many channels.
* order_base_2() rounds up automatically.
*/
ctx->map.total_intlv_bits = order_base_2(ctx->map.total_intlv_chan);
}
static u8 get_intlv_bit_pos(struct addr_ctx *ctx)
{
u8 addr_sel = 0;
switch (df_cfg.rev) {
case DF2:
addr_sel = FIELD_GET(DF2_INTLV_ADDR_SEL, ctx->map.base);
break;
case DF3:
case DF3p5:
addr_sel = FIELD_GET(DF3_INTLV_ADDR_SEL, ctx->map.base);
break;
case DF4:
case DF4p5:
addr_sel = FIELD_GET(DF4_INTLV_ADDR_SEL, ctx->map.intlv);
break;
default:
atl_debug_on_bad_df_rev();
break;
}
/* Add '8' to get the 'interleave bit position'. */
return addr_sel + 8;
}
static u8 get_num_intlv_dies(struct addr_ctx *ctx)
{
u8 dies = 0;
switch (df_cfg.rev) {
case DF2:
dies = FIELD_GET(DF2_INTLV_NUM_DIES, ctx->map.limit);
break;
case DF3:
dies = FIELD_GET(DF3_INTLV_NUM_DIES, ctx->map.base);
break;
case DF3p5:
dies = FIELD_GET(DF3p5_INTLV_NUM_DIES, ctx->map.base);
break;
case DF4:
case DF4p5:
dies = FIELD_GET(DF4_INTLV_NUM_DIES, ctx->map.intlv);
break;
default:
atl_debug_on_bad_df_rev();
break;
}
/* Register value is log2, e.g. 0 -> 1 die, 1 -> 2 dies, etc. */
return 1 << dies;
}
static u8 get_num_intlv_sockets(struct addr_ctx *ctx)
{
u8 sockets = 0;
switch (df_cfg.rev) {
case DF2:
sockets = FIELD_GET(DF2_INTLV_NUM_SOCKETS, ctx->map.limit);
break;
case DF3:
case DF3p5:
sockets = FIELD_GET(DF2_INTLV_NUM_SOCKETS, ctx->map.base);
break;
case DF4:
case DF4p5:
sockets = FIELD_GET(DF4_INTLV_NUM_SOCKETS, ctx->map.intlv);
break;
default:
atl_debug_on_bad_df_rev();
break;
}
/* Register value is log2, e.g. 0 -> 1 sockets, 1 -> 2 sockets, etc. */
return 1 << sockets;
}
static int get_global_map_data(struct addr_ctx *ctx)
{
if (get_intlv_mode(ctx))
return -EINVAL;
if (ctx->map.intlv_mode == DF3_6CHAN &&
df3_6ch_get_dram_addr_map(ctx))
return -EINVAL;
ctx->map.intlv_bit_pos = get_intlv_bit_pos(ctx);
ctx->map.num_intlv_dies = get_num_intlv_dies(ctx);
ctx->map.num_intlv_sockets = get_num_intlv_sockets(ctx);
calculate_intlv_bits(ctx);
return 0;
}
static void dump_address_map(struct dram_addr_map *map)
{
u8 i;
pr_debug("intlv_mode=0x%x", map->intlv_mode);
pr_debug("num=0x%x", map->num);
pr_debug("base=0x%x", map->base);
pr_debug("limit=0x%x", map->limit);
pr_debug("ctl=0x%x", map->ctl);
pr_debug("intlv=0x%x", map->intlv);
for (i = 0; i < MAX_COH_ST_CHANNELS; i++)
pr_debug("remap_array[%u]=0x%x", i, map->remap_array[i]);
pr_debug("intlv_bit_pos=%u", map->intlv_bit_pos);
pr_debug("num_intlv_chan=%u", map->num_intlv_chan);
pr_debug("num_intlv_dies=%u", map->num_intlv_dies);
pr_debug("num_intlv_sockets=%u", map->num_intlv_sockets);
pr_debug("total_intlv_chan=%u", map->total_intlv_chan);
pr_debug("total_intlv_bits=%u", map->total_intlv_bits);
}
int get_address_map(struct addr_ctx *ctx)
{
int ret;
ret = get_address_map_common(ctx);
if (ret)
return ret;
ret = get_global_map_data(ctx);
if (ret)
return ret;
dump_address_map(&ctx->map);
return ret;
}

View File

@ -0,0 +1,606 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* AMD Address Translation Library
*
* reg_fields.h : Register field definitions
*
* Copyright (c) 2023, Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Author: Yazen Ghannam <Yazen.Ghannam@amd.com>
*/
/*
* Notes on naming:
* 1) Use "DF_" prefix for fields that are the same for all revisions.
* 2) Use "DFx_" prefix for fields that differ between revisions.
* a) "x" is the first major revision where the new field appears.
* b) E.g., if DF2 and DF3 have the same field, then call it DF2.
* c) E.g., if DF3p5 and DF4 have the same field, then call it DF4.
*/
/*
* Coherent Station Fabric ID
*
* Access type: Instance
*
* Register
* Rev Fieldname Bits
*
* D18F0x50 [Fabric Block Instance Information 3]
* DF2 BlockFabricId [19:8]
* DF3 BlockFabricId [19:8]
* DF3p5 BlockFabricId [19:8]
* DF4 BlockFabricId [19:8]
* DF4p5 BlockFabricId [15:8]
*/
#define DF2_COH_ST_FABRIC_ID GENMASK(19, 8)
#define DF4p5_COH_ST_FABRIC_ID GENMASK(15, 8)
/*
* Component ID Mask
*
* Access type: Broadcast
*
* Register
* Rev Fieldname Bits
*
* DF2 N/A
*
* D18F1x208 [System Fabric ID Mask 0]
* DF3 ComponentIdMask [9:0]
*
* D18F1x150 [System Fabric ID Mask 0]
* DF3p5 ComponentIdMask [15:0]
*
* D18F4x1B0 [System Fabric ID Mask 0]
* DF4 ComponentIdMask [15:0]
* DF4p5 ComponentIdMask [15:0]
*/
#define DF3_COMPONENT_ID_MASK GENMASK(9, 0)
#define DF4_COMPONENT_ID_MASK GENMASK(15, 0)
/*
* Destination Fabric ID
*
* Access type: Instance
*
* Register
* Rev Fieldname Bits
*
* D18F0x114 [DRAM Limit Address]
* DF2 DstFabricID [7:0]
* DF3 DstFabricID [9:0]
* DF3 DstFabricID [11:0]
*
* D18F7xE08 [DRAM Address Control]
* DF4 DstFabricID [27:16]
*
* D18F7x208 [DRAM Address Control]
* DF4p5 DstFabricID [23:16]
*/
#define DF2_DST_FABRIC_ID GENMASK(7, 0)
#define DF3_DST_FABRIC_ID GENMASK(9, 0)
#define DF3p5_DST_FABRIC_ID GENMASK(11, 0)
#define DF4_DST_FABRIC_ID GENMASK(27, 16)
#define DF4p5_DST_FABRIC_ID GENMASK(23, 16)
/*
* Die ID Mask
*
* Access type: Broadcast
*
* Register
* Rev Fieldname Bits
*
* D18F1x208 [System Fabric ID Mask]
* DF2 DieIdMask [15:8]
*
* D18F1x20C [System Fabric ID Mask 1]
* DF3 DieIdMask [18:16]
*
* D18F1x158 [System Fabric ID Mask 2]
* DF3p5 DieIdMask [15:0]
*
* D18F4x1B8 [System Fabric ID Mask 2]
* DF4 DieIdMask [15:0]
* DF4p5 DieIdMask [15:0]
*/
#define DF2_DIE_ID_MASK GENMASK(15, 8)
#define DF3_DIE_ID_MASK GENMASK(18, 16)
#define DF4_DIE_ID_MASK GENMASK(15, 0)
/*
* Die ID Shift
*
* Access type: Broadcast
*
* Register
* Rev Fieldname Bits
*
* D18F1x208 [System Fabric ID Mask]
* DF2 DieIdShift [27:24]
*
* DF3 N/A
* DF3p5 N/A
* DF4 N/A
* DF4p5 N/A
*/
#define DF2_DIE_ID_SHIFT GENMASK(27, 24)
/*
* DRAM Address Range Valid
*
* Access type: Instance
*
* Register
* Rev Fieldname Bits
*
* D18F0x110 [DRAM Base Address]
* DF2 AddrRngVal [0]
* DF3 AddrRngVal [0]
* DF3p5 AddrRngVal [0]
*
* D18F7xE08 [DRAM Address Control]
* DF4 AddrRngVal [0]
*
* D18F7x208 [DRAM Address Control]
* DF4p5 AddrRngVal [0]
*/
#define DF_ADDR_RANGE_VAL BIT(0)
/*
* DRAM Base Address
*
* Access type: Instance
*
* Register
* Rev Fieldname Bits
*
* D18F0x110 [DRAM Base Address]
* DF2 DramBaseAddr [31:12]
* DF3 DramBaseAddr [31:12]
* DF3p5 DramBaseAddr [31:12]
*
* D18F7xE00 [DRAM Base Address]
* DF4 DramBaseAddr [27:0]
*
* D18F7x200 [DRAM Base Address]
* DF4p5 DramBaseAddr [27:0]
*/
#define DF2_BASE_ADDR GENMASK(31, 12)
#define DF4_BASE_ADDR GENMASK(27, 0)
/*
* DRAM Hole Base
*
* Access type: Broadcast
*
* Register
* Rev Fieldname Bits
*
* D18F0x104 [DRAM Hole Control]
* DF2 DramHoleBase [31:24]
* DF3 DramHoleBase [31:24]
* DF3p5 DramHoleBase [31:24]
*
* D18F7x104 [DRAM Hole Control]
* DF4 DramHoleBase [31:24]
* DF4p5 DramHoleBase [31:24]
*/
#define DF_DRAM_HOLE_BASE_MASK GENMASK(31, 24)
/*
* DRAM Limit Address
*
* Access type: Instance
*
* Register
* Rev Fieldname Bits
*
* D18F0x114 [DRAM Limit Address]
* DF2 DramLimitAddr [31:12]
* DF3 DramLimitAddr [31:12]
* DF3p5 DramLimitAddr [31:12]
*
* D18F7xE04 [DRAM Limit Address]
* DF4 DramLimitAddr [27:0]
*
* D18F7x204 [DRAM Limit Address]
* DF4p5 DramLimitAddr [27:0]
*/
#define DF2_DRAM_LIMIT_ADDR GENMASK(31, 12)
#define DF4_DRAM_LIMIT_ADDR GENMASK(27, 0)
/*
* Hash Interleave Controls
*
* Access type: Instance
*
* Register
* Rev Fieldname Bits
*
* DF2 N/A
*
* D18F0x3F8 [DF Global Control]
* DF3 GlbHashIntlvCtl64K [20]
* GlbHashIntlvCtl2M [21]
* GlbHashIntlvCtl1G [22]
*
* DF3p5 GlbHashIntlvCtl64K [20]
* GlbHashIntlvCtl2M [21]
* GlbHashIntlvCtl1G [22]
*
* D18F7xE08 [DRAM Address Control]
* DF4 HashIntlvCtl64K [8]
* HashIntlvCtl2M [9]
* HashIntlvCtl1G [10]
*
* D18F7x208 [DRAM Address Control]
* DF4p5 HashIntlvCtl4K [7]
* HashIntlvCtl64K [8]
* HashIntlvCtl2M [9]
* HashIntlvCtl1G [10]
* HashIntlvCtl1T [15]
*/
#define DF3_HASH_CTL_64K BIT(20)
#define DF3_HASH_CTL_2M BIT(21)
#define DF3_HASH_CTL_1G BIT(22)
#define DF4_HASH_CTL_64K BIT(8)
#define DF4_HASH_CTL_2M BIT(9)
#define DF4_HASH_CTL_1G BIT(10)
#define DF4p5_HASH_CTL_4K BIT(7)
#define DF4p5_HASH_CTL_1T BIT(15)
/*
* High Address Offset
*
* Access type: Instance
*
* Register
* Rev Fieldname Bits
*
* D18F0x1B4 [DRAM Offset]
* DF2 HiAddrOffset [31:20]
* DF3 HiAddrOffset [31:12]
* DF3p5 HiAddrOffset [31:12]
*
* D18F7x140 [DRAM Offset]
* DF4 HiAddrOffset [24:1]
* DF4p5 HiAddrOffset [24:1]
* MI300 HiAddrOffset [31:1]
*/
#define DF2_HI_ADDR_OFFSET GENMASK(31, 20)
#define DF3_HI_ADDR_OFFSET GENMASK(31, 12)
/* Follow reference code by including reserved bits for simplicity. */
#define DF4_HI_ADDR_OFFSET GENMASK(31, 1)
/*
* High Address Offset Enable
*
* Access type: Instance
*
* Register
* Rev Fieldname Bits
*
* D18F0x1B4 [DRAM Offset]
* DF2 HiAddrOffsetEn [0]
* DF3 HiAddrOffsetEn [0]
* DF3p5 HiAddrOffsetEn [0]
*
* D18F7x140 [DRAM Offset]
* DF4 HiAddrOffsetEn [0]
* DF4p5 HiAddrOffsetEn [0]
*/
#define DF_HI_ADDR_OFFSET_EN BIT(0)
/*
* Interleave Address Select
*
* Access type: Instance
*
* Register
* Rev Fieldname Bits
*
* D18F0x110 [DRAM Base Address]
* DF2 IntLvAddrSel [10:8]
* DF3 IntLvAddrSel [11:9]
* DF3p5 IntLvAddrSel [11:9]
*
* D18F7xE0C [DRAM Address Interleave]
* DF4 IntLvAddrSel [2:0]
*
* D18F7x20C [DRAM Address Interleave]
* DF4p5 IntLvAddrSel [2:0]
*/
#define DF2_INTLV_ADDR_SEL GENMASK(10, 8)
#define DF3_INTLV_ADDR_SEL GENMASK(11, 9)
#define DF4_INTLV_ADDR_SEL GENMASK(2, 0)
/*
* Interleave Number of Channels
*
* Access type: Instance
*
* Register
* Rev Fieldname Bits
*
* D18F0x110 [DRAM Base Address]
* DF2 IntLvNumChan [7:4]
* DF3 IntLvNumChan [5:2]
* DF3p5 IntLvNumChan [6:2]
*
* D18F7xE0C [DRAM Address Interleave]
* DF4 IntLvNumChan [8:4]
*
* D18F7x20C [DRAM Address Interleave]
* DF4p5 IntLvNumChan [9:4]
*/
#define DF2_INTLV_NUM_CHAN GENMASK(7, 4)
#define DF3_INTLV_NUM_CHAN GENMASK(5, 2)
#define DF3p5_INTLV_NUM_CHAN GENMASK(6, 2)
#define DF4_INTLV_NUM_CHAN GENMASK(8, 4)
#define DF4p5_INTLV_NUM_CHAN GENMASK(9, 4)
/*
* Interleave Number of Dies
*
* Access type: Instance
*
* Register
* Rev Fieldname Bits
*
* D18F0x114 [DRAM Limit Address]
* DF2 IntLvNumDies [11:10]
*
* D18F0x110 [DRAM Base Address]
* DF3 IntLvNumDies [7:6]
* DF3p5 IntLvNumDies [7]
*
* D18F7xE0C [DRAM Address Interleave]
* DF4 IntLvNumDies [13:12]
*
* D18F7x20C [DRAM Address Interleave]
* DF4p5 IntLvNumDies [13:12]
*/
#define DF2_INTLV_NUM_DIES GENMASK(11, 10)
#define DF3_INTLV_NUM_DIES GENMASK(7, 6)
#define DF3p5_INTLV_NUM_DIES BIT(7)
#define DF4_INTLV_NUM_DIES GENMASK(13, 12)
/*
* Interleave Number of Sockets
*
* Access type: Instance
*
* Register
* Rev Fieldname Bits
*
* D18F0x114 [DRAM Limit Address]
* DF2 IntLvNumSockets [8]
*
* D18F0x110 [DRAM Base Address]
* DF3 IntLvNumSockets [8]
* DF3p5 IntLvNumSockets [8]
*
* D18F7xE0C [DRAM Address Interleave]
* DF4 IntLvNumSockets [18]
*
* D18F7x20C [DRAM Address Interleave]
* DF4p5 IntLvNumSockets [18]
*/
#define DF2_INTLV_NUM_SOCKETS BIT(8)
#define DF4_INTLV_NUM_SOCKETS BIT(18)
/*
* Legacy MMIO Hole Enable
*
* Access type: Instance
*
* Register
* Rev Fieldname Bits
*
* D18F0x110 [DRAM Base Address]
* DF2 LgcyMmioHoleEn [1]
* DF3 LgcyMmioHoleEn [1]
* DF3p5 LgcyMmioHoleEn [1]
*
* D18F7xE08 [DRAM Address Control]
* DF4 LgcyMmioHoleEn [1]
*
* D18F7x208 [DRAM Address Control]
* DF4p5 LgcyMmioHoleEn [1]
*/
#define DF_LEGACY_MMIO_HOLE_EN BIT(1)
/*
* Log2 Address 64K Space 0
*
* Access type: Instance
*
* Register
* Rev Fieldname Bits
*
* DF2 N/A
*
* D18F2x90 [Non-power-of-2 channel Configuration Register for COH_ST DRAM Address Maps]
* DF3 Log2Addr64KSpace0 [5:0]
*
* DF3p5 N/A
* DF4 N/A
* DF4p5 N/A
*/
#define DF_LOG2_ADDR_64K_SPACE0 GENMASK(5, 0)
/*
* Major Revision
*
* Access type: Broadcast
*
* Register
* Rev Fieldname Bits
*
* DF2 N/A
* DF3 N/A
* DF3p5 N/A
*
* D18F0x040 [Fabric Block Instance Count]
* DF4 MajorRevision [27:24]
* DF4p5 MajorRevision [27:24]
*/
#define DF_MAJOR_REVISION GENMASK(27, 24)
/*
* Minor Revision
*
* Access type: Broadcast
*
* Register
* Rev Fieldname Bits
*
* DF2 N/A
* DF3 N/A
* DF3p5 N/A
*
* D18F0x040 [Fabric Block Instance Count]
* DF4 MinorRevision [23:16]
* DF4p5 MinorRevision [23:16]
*/
#define DF_MINOR_REVISION GENMASK(23, 16)
/*
* Node ID Mask
*
* Access type: Broadcast
*
* Register
* Rev Fieldname Bits
*
* DF2 N/A
*
* D18F1x208 [System Fabric ID Mask 0]
* DF3 NodeIdMask [25:16]
*
* D18F1x150 [System Fabric ID Mask 0]
* DF3p5 NodeIdMask [31:16]
*
* D18F4x1B0 [System Fabric ID Mask 0]
* DF4 NodeIdMask [31:16]
* DF4p5 NodeIdMask [31:16]
*/
#define DF3_NODE_ID_MASK GENMASK(25, 16)
#define DF4_NODE_ID_MASK GENMASK(31, 16)
/*
* Node ID Shift
*
* Access type: Broadcast
*
* Register
* Rev Fieldname Bits
*
* DF2 N/A
*
* D18F1x20C [System Fabric ID Mask 1]
* DF3 NodeIdShift [3:0]
*
* D18F1x154 [System Fabric ID Mask 1]
* DF3p5 NodeIdShift [3:0]
*
* D18F4x1B4 [System Fabric ID Mask 1]
* DF4 NodeIdShift [3:0]
* DF4p5 NodeIdShift [3:0]
*/
#define DF3_NODE_ID_SHIFT GENMASK(3, 0)
/*
* Remap Enable
*
* Access type: Instance
*
* Register
* Rev Fieldname Bits
*
* DF2 N/A
* DF3 N/A
* DF3p5 N/A
*
* D18F7xE08 [DRAM Address Control]
* DF4 RemapEn [4]
*
* D18F7x208 [DRAM Address Control]
* DF4p5 RemapEn [4]
*/
#define DF4_REMAP_EN BIT(4)
/*
* Remap Select
*
* Access type: Instance
*
* Register
* Rev Fieldname Bits
*
* DF2 N/A
* DF3 N/A
* DF3p5 N/A
*
* D18F7xE08 [DRAM Address Control]
* DF4 RemapSel [7:5]
*
* D18F7x208 [DRAM Address Control]
* DF4p5 RemapSel [6:5]
*/
#define DF4_REMAP_SEL GENMASK(7, 5)
#define DF4p5_REMAP_SEL GENMASK(6, 5)
/*
* Socket ID Mask
*
* Access type: Broadcast
*
* Register
* Rev Fieldname Bits
*
* D18F1x208 [System Fabric ID Mask]
* DF2 SocketIdMask [23:16]
*
* D18F1x20C [System Fabric ID Mask 1]
* DF3 SocketIdMask [26:24]
*
* D18F1x158 [System Fabric ID Mask 2]
* DF3p5 SocketIdMask [31:16]
*
* D18F4x1B8 [System Fabric ID Mask 2]
* DF4 SocketIdMask [31:16]
* DF4p5 SocketIdMask [31:16]
*/
#define DF2_SOCKET_ID_MASK GENMASK(23, 16)
#define DF3_SOCKET_ID_MASK GENMASK(26, 24)
#define DF4_SOCKET_ID_MASK GENMASK(31, 16)
/*
* Socket ID Shift
*
* Access type: Broadcast
*
* Register
* Rev Fieldname Bits
*
* D18F1x208 [System Fabric ID Mask]
* DF2 SocketIdShift [31:28]
*
* D18F1x20C [System Fabric ID Mask 1]
* DF3 SocketIdShift [9:8]
*
* D18F1x158 [System Fabric ID Mask 2]
* DF3p5 SocketIdShift [11:8]
*
* D18F4x1B4 [System Fabric ID Mask 1]
* DF4 SocketIdShift [11:8]
* DF4p5 SocketIdShift [11:8]
*/
#define DF2_SOCKET_ID_SHIFT GENMASK(31, 28)
#define DF3_SOCKET_ID_SHIFT GENMASK(9, 8)
#define DF4_SOCKET_ID_SHIFT GENMASK(11, 8)

View File

@ -0,0 +1,288 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* AMD Address Translation Library
*
* system.c : Functions to read and save system-wide data
*
* Copyright (c) 2023, Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Author: Yazen Ghannam <Yazen.Ghannam@amd.com>
*/
#include "internal.h"
int determine_node_id(struct addr_ctx *ctx, u8 socket_id, u8 die_id)
{
u16 socket_id_bits, die_id_bits;
if (socket_id > 0 && df_cfg.socket_id_mask == 0) {
atl_debug(ctx, "Invalid socket inputs: socket_id=%u socket_id_mask=0x%x",
socket_id, df_cfg.socket_id_mask);
return -EINVAL;
}
/* Do each step independently to avoid shift out-of-bounds issues. */
socket_id_bits = socket_id;
socket_id_bits <<= df_cfg.socket_id_shift;
socket_id_bits &= df_cfg.socket_id_mask;
if (die_id > 0 && df_cfg.die_id_mask == 0) {
atl_debug(ctx, "Invalid die inputs: die_id=%u die_id_mask=0x%x",
die_id, df_cfg.die_id_mask);
return -EINVAL;
}
/* Do each step independently to avoid shift out-of-bounds issues. */
die_id_bits = die_id;
die_id_bits <<= df_cfg.die_id_shift;
die_id_bits &= df_cfg.die_id_mask;
ctx->node_id = (socket_id_bits | die_id_bits) >> df_cfg.node_id_shift;
return 0;
}
static void df2_get_masks_shifts(u32 mask0)
{
df_cfg.socket_id_shift = FIELD_GET(DF2_SOCKET_ID_SHIFT, mask0);
df_cfg.socket_id_mask = FIELD_GET(DF2_SOCKET_ID_MASK, mask0);
df_cfg.die_id_shift = FIELD_GET(DF2_DIE_ID_SHIFT, mask0);
df_cfg.die_id_mask = FIELD_GET(DF2_DIE_ID_MASK, mask0);
df_cfg.node_id_shift = df_cfg.die_id_shift;
df_cfg.node_id_mask = df_cfg.socket_id_mask | df_cfg.die_id_mask;
df_cfg.component_id_mask = ~df_cfg.node_id_mask;
}
static void df3_get_masks_shifts(u32 mask0, u32 mask1)
{
df_cfg.component_id_mask = FIELD_GET(DF3_COMPONENT_ID_MASK, mask0);
df_cfg.node_id_mask = FIELD_GET(DF3_NODE_ID_MASK, mask0);
df_cfg.node_id_shift = FIELD_GET(DF3_NODE_ID_SHIFT, mask1);
df_cfg.socket_id_shift = FIELD_GET(DF3_SOCKET_ID_SHIFT, mask1);
df_cfg.socket_id_mask = FIELD_GET(DF3_SOCKET_ID_MASK, mask1);
df_cfg.die_id_mask = FIELD_GET(DF3_DIE_ID_MASK, mask1);
}
static void df3p5_get_masks_shifts(u32 mask0, u32 mask1, u32 mask2)
{
df_cfg.component_id_mask = FIELD_GET(DF4_COMPONENT_ID_MASK, mask0);
df_cfg.node_id_mask = FIELD_GET(DF4_NODE_ID_MASK, mask0);
df_cfg.node_id_shift = FIELD_GET(DF3_NODE_ID_SHIFT, mask1);
df_cfg.socket_id_shift = FIELD_GET(DF4_SOCKET_ID_SHIFT, mask1);
df_cfg.socket_id_mask = FIELD_GET(DF4_SOCKET_ID_MASK, mask2);
df_cfg.die_id_mask = FIELD_GET(DF4_DIE_ID_MASK, mask2);
}
static void df4_get_masks_shifts(u32 mask0, u32 mask1, u32 mask2)
{
df3p5_get_masks_shifts(mask0, mask1, mask2);
if (!(df_cfg.flags.socket_id_shift_quirk && df_cfg.socket_id_shift == 1))
return;
df_cfg.socket_id_shift = 0;
df_cfg.socket_id_mask = 1;
df_cfg.die_id_shift = 0;
df_cfg.die_id_mask = 0;
df_cfg.node_id_shift = 8;
df_cfg.node_id_mask = 0x100;
}
static int df4_get_fabric_id_mask_registers(void)
{
u32 mask0, mask1, mask2;
/* Read D18F4x1B0 (SystemFabricIdMask0) */
if (df_indirect_read_broadcast(0, 4, 0x1B0, &mask0))
return -EINVAL;
/* Read D18F4x1B4 (SystemFabricIdMask1) */
if (df_indirect_read_broadcast(0, 4, 0x1B4, &mask1))
return -EINVAL;
/* Read D18F4x1B8 (SystemFabricIdMask2) */
if (df_indirect_read_broadcast(0, 4, 0x1B8, &mask2))
return -EINVAL;
df4_get_masks_shifts(mask0, mask1, mask2);
return 0;
}
static int df4_determine_df_rev(u32 reg)
{
df_cfg.rev = FIELD_GET(DF_MINOR_REVISION, reg) < 5 ? DF4 : DF4p5;
/* Check for special cases or quirks based on Device/Vendor IDs.*/
/* Read D18F0x000 (DeviceVendorId0) */
if (df_indirect_read_broadcast(0, 0, 0, &reg))
return -EINVAL;
if (reg == DF_FUNC0_ID_ZEN4_SERVER)
df_cfg.flags.socket_id_shift_quirk = 1;
if (reg == DF_FUNC0_ID_MI300) {
df_cfg.flags.heterogeneous = 1;
if (get_addr_hash_mi300())
return -EINVAL;
}
return df4_get_fabric_id_mask_registers();
}
static int determine_df_rev_legacy(void)
{
u32 fabric_id_mask0, fabric_id_mask1, fabric_id_mask2;
/*
* Check for DF3.5.
*
* Component ID Mask must be non-zero. Register D18F1x150 is
* reserved pre-DF3.5, so value will be Read-as-Zero.
*/
/* Read D18F1x150 (SystemFabricIdMask0). */
if (df_indirect_read_broadcast(0, 1, 0x150, &fabric_id_mask0))
return -EINVAL;
if (FIELD_GET(DF4_COMPONENT_ID_MASK, fabric_id_mask0)) {
df_cfg.rev = DF3p5;
/* Read D18F1x154 (SystemFabricIdMask1) */
if (df_indirect_read_broadcast(0, 1, 0x154, &fabric_id_mask1))
return -EINVAL;
/* Read D18F1x158 (SystemFabricIdMask2) */
if (df_indirect_read_broadcast(0, 1, 0x158, &fabric_id_mask2))
return -EINVAL;
df3p5_get_masks_shifts(fabric_id_mask0, fabric_id_mask1, fabric_id_mask2);
return 0;
}
/*
* Check for DF3.
*
* Component ID Mask must be non-zero. Field is Read-as-Zero on DF2.
*/
/* Read D18F1x208 (SystemFabricIdMask). */
if (df_indirect_read_broadcast(0, 1, 0x208, &fabric_id_mask0))
return -EINVAL;
if (FIELD_GET(DF3_COMPONENT_ID_MASK, fabric_id_mask0)) {
df_cfg.rev = DF3;
/* Read D18F1x20C (SystemFabricIdMask1) */
if (df_indirect_read_broadcast(0, 1, 0x20C, &fabric_id_mask1))
return -EINVAL;
df3_get_masks_shifts(fabric_id_mask0, fabric_id_mask1);
return 0;
}
/* Default to DF2. */
df_cfg.rev = DF2;
df2_get_masks_shifts(fabric_id_mask0);
return 0;
}
static int determine_df_rev(void)
{
u32 reg;
u8 rev;
if (df_cfg.rev != UNKNOWN)
return 0;
/* Read D18F0x40 (FabricBlockInstanceCount). */
if (df_indirect_read_broadcast(0, 0, 0x40, &reg))
return -EINVAL;
/*
* Revision fields added for DF4 and later.
*
* Major revision of '0' is found pre-DF4. Field is Read-as-Zero.
*/
rev = FIELD_GET(DF_MAJOR_REVISION, reg);
if (!rev)
return determine_df_rev_legacy();
/*
* Fail out for major revisions other than '4'.
*
* Explicit support should be added for newer systems to avoid issues.
*/
if (rev == 4)
return df4_determine_df_rev(reg);
return -EINVAL;
}
static void get_num_maps(void)
{
switch (df_cfg.rev) {
case DF2:
case DF3:
case DF3p5:
df_cfg.num_coh_st_maps = 2;
break;
case DF4:
case DF4p5:
df_cfg.num_coh_st_maps = 4;
break;
default:
atl_debug_on_bad_df_rev();
}
}
static void apply_node_id_shift(void)
{
if (df_cfg.rev == DF2)
return;
df_cfg.die_id_shift = df_cfg.node_id_shift;
df_cfg.die_id_mask <<= df_cfg.node_id_shift;
df_cfg.socket_id_mask <<= df_cfg.node_id_shift;
df_cfg.socket_id_shift += df_cfg.node_id_shift;
}
static void dump_df_cfg(void)
{
pr_debug("rev=0x%x", df_cfg.rev);
pr_debug("component_id_mask=0x%x", df_cfg.component_id_mask);
pr_debug("die_id_mask=0x%x", df_cfg.die_id_mask);
pr_debug("node_id_mask=0x%x", df_cfg.node_id_mask);
pr_debug("socket_id_mask=0x%x", df_cfg.socket_id_mask);
pr_debug("die_id_shift=0x%x", df_cfg.die_id_shift);
pr_debug("node_id_shift=0x%x", df_cfg.node_id_shift);
pr_debug("socket_id_shift=0x%x", df_cfg.socket_id_shift);
pr_debug("num_coh_st_maps=%u", df_cfg.num_coh_st_maps);
pr_debug("flags.legacy_ficaa=%u", df_cfg.flags.legacy_ficaa);
pr_debug("flags.socket_id_shift_quirk=%u", df_cfg.flags.socket_id_shift_quirk);
}
int get_df_system_info(void)
{
if (determine_df_rev()) {
pr_warn("amd_atl: Failed to determine DF Revision");
df_cfg.rev = UNKNOWN;
return -EINVAL;
}
apply_node_id_shift();
get_num_maps();
dump_df_cfg();
return 0;
}

341
drivers/ras/amd/atl/umc.c Normal file
View File

@ -0,0 +1,341 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* AMD Address Translation Library
*
* umc.c : Unified Memory Controller (UMC) topology helpers
*
* Copyright (c) 2023, Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Author: Yazen Ghannam <Yazen.Ghannam@amd.com>
*/
#include "internal.h"
/*
* MI300 has a fixed, model-specific mapping between a UMC instance and
* its related Data Fabric Coherent Station instance.
*
* The MCA_IPID_UMC[InstanceId] field holds a unique identifier for the
* UMC instance within a Node. Use this to find the appropriate Coherent
* Station ID.
*
* Redundant bits were removed from the map below.
*/
static const u16 umc_coh_st_map[32] = {
0x393, 0x293, 0x193, 0x093,
0x392, 0x292, 0x192, 0x092,
0x391, 0x291, 0x191, 0x091,
0x390, 0x290, 0x190, 0x090,
0x793, 0x693, 0x593, 0x493,
0x792, 0x692, 0x592, 0x492,
0x791, 0x691, 0x591, 0x491,
0x790, 0x690, 0x590, 0x490,
};
#define UMC_ID_MI300 GENMASK(23, 12)
static u8 get_coh_st_inst_id_mi300(struct atl_err *err)
{
u16 umc_id = FIELD_GET(UMC_ID_MI300, err->ipid);
u8 i;
for (i = 0; i < ARRAY_SIZE(umc_coh_st_map); i++) {
if (umc_id == umc_coh_st_map[i])
break;
}
WARN_ON_ONCE(i >= ARRAY_SIZE(umc_coh_st_map));
return i;
}
/* XOR the bits in @val. */
static u16 bitwise_xor_bits(u16 val)
{
u16 tmp = 0;
u8 i;
for (i = 0; i < 16; i++)
tmp ^= (val >> i) & 0x1;
return tmp;
}
struct xor_bits {
bool xor_enable;
u16 col_xor;
u32 row_xor;
};
#define NUM_BANK_BITS 4
static struct {
/* UMC::CH::AddrHashBank */
struct xor_bits bank[NUM_BANK_BITS];
/* UMC::CH::AddrHashPC */
struct xor_bits pc;
/* UMC::CH::AddrHashPC2 */
u8 bank_xor;
} addr_hash;
#define MI300_UMC_CH_BASE 0x90000
#define MI300_ADDR_HASH_BANK0 (MI300_UMC_CH_BASE + 0xC8)
#define MI300_ADDR_HASH_PC (MI300_UMC_CH_BASE + 0xE0)
#define MI300_ADDR_HASH_PC2 (MI300_UMC_CH_BASE + 0xE4)
#define ADDR_HASH_XOR_EN BIT(0)
#define ADDR_HASH_COL_XOR GENMASK(13, 1)
#define ADDR_HASH_ROW_XOR GENMASK(31, 14)
#define ADDR_HASH_BANK_XOR GENMASK(5, 0)
/*
* Read UMC::CH::AddrHash{Bank,PC,PC2} registers to get XOR bits used
* for hashing. Do this during module init, since the values will not
* change during run time.
*
* These registers are instantiated for each UMC across each AMD Node.
* However, they should be identically programmed due to the fixed hardware
* design of MI300 systems. So read the values from Node 0 UMC 0 and keep a
* single global structure for simplicity.
*/
int get_addr_hash_mi300(void)
{
u32 temp;
int ret;
u8 i;
for (i = 0; i < NUM_BANK_BITS; i++) {
ret = amd_smn_read(0, MI300_ADDR_HASH_BANK0 + (i * 4), &temp);
if (ret)
return ret;
addr_hash.bank[i].xor_enable = FIELD_GET(ADDR_HASH_XOR_EN, temp);
addr_hash.bank[i].col_xor = FIELD_GET(ADDR_HASH_COL_XOR, temp);
addr_hash.bank[i].row_xor = FIELD_GET(ADDR_HASH_ROW_XOR, temp);
}
ret = amd_smn_read(0, MI300_ADDR_HASH_PC, &temp);
if (ret)
return ret;
addr_hash.pc.xor_enable = FIELD_GET(ADDR_HASH_XOR_EN, temp);
addr_hash.pc.col_xor = FIELD_GET(ADDR_HASH_COL_XOR, temp);
addr_hash.pc.row_xor = FIELD_GET(ADDR_HASH_ROW_XOR, temp);
ret = amd_smn_read(0, MI300_ADDR_HASH_PC2, &temp);
if (ret)
return ret;
addr_hash.bank_xor = FIELD_GET(ADDR_HASH_BANK_XOR, temp);
return 0;
}
/*
* MI300 systems report a DRAM address in MCA_ADDR for DRAM ECC errors. This must
* be converted to the intermediate normalized address (NA) before translating to a
* system physical address.
*
* The DRAM address includes bank, row, and column. Also included are bits for
* pseudochannel (PC) and stack ID (SID).
*
* Abbreviations: (S)tack ID, (P)seudochannel, (R)ow, (B)ank, (C)olumn, (Z)ero
*
* The MCA address format is as follows:
* MCA_ADDR[27:0] = {S[1:0], P[0], R[14:0], B[3:0], C[4:0], Z[0]}
*
* The normalized address format is fixed in hardware and is as follows:
* NA[30:0] = {S[1:0], R[13:0], C4, B[1:0], B[3:2], C[3:2], P, C[1:0], Z[4:0]}
*
* Additionally, the PC and Bank bits may be hashed. This must be accounted for before
* reconstructing the normalized address.
*/
#define MI300_UMC_MCA_COL GENMASK(5, 1)
#define MI300_UMC_MCA_BANK GENMASK(9, 6)
#define MI300_UMC_MCA_ROW GENMASK(24, 10)
#define MI300_UMC_MCA_PC BIT(25)
#define MI300_UMC_MCA_SID GENMASK(27, 26)
#define MI300_NA_COL_1_0 GENMASK(6, 5)
#define MI300_NA_PC BIT(7)
#define MI300_NA_COL_3_2 GENMASK(9, 8)
#define MI300_NA_BANK_3_2 GENMASK(11, 10)
#define MI300_NA_BANK_1_0 GENMASK(13, 12)
#define MI300_NA_COL_4 BIT(14)
#define MI300_NA_ROW GENMASK(28, 15)
#define MI300_NA_SID GENMASK(30, 29)
static unsigned long convert_dram_to_norm_addr_mi300(unsigned long addr)
{
u16 i, col, row, bank, pc, sid, temp;
col = FIELD_GET(MI300_UMC_MCA_COL, addr);
bank = FIELD_GET(MI300_UMC_MCA_BANK, addr);
row = FIELD_GET(MI300_UMC_MCA_ROW, addr);
pc = FIELD_GET(MI300_UMC_MCA_PC, addr);
sid = FIELD_GET(MI300_UMC_MCA_SID, addr);
/* Calculate hash for each Bank bit. */
for (i = 0; i < NUM_BANK_BITS; i++) {
if (!addr_hash.bank[i].xor_enable)
continue;
temp = bitwise_xor_bits(col & addr_hash.bank[i].col_xor);
temp ^= bitwise_xor_bits(row & addr_hash.bank[i].row_xor);
bank ^= temp << i;
}
/* Calculate hash for PC bit. */
if (addr_hash.pc.xor_enable) {
/* Bits SID[1:0] act as Bank[6:5] for PC hash, so apply them here. */
bank |= sid << 5;
temp = bitwise_xor_bits(col & addr_hash.pc.col_xor);
temp ^= bitwise_xor_bits(row & addr_hash.pc.row_xor);
temp ^= bitwise_xor_bits(bank & addr_hash.bank_xor);
pc ^= temp;
/* Drop SID bits for the sake of debug printing later. */
bank &= 0x1F;
}
/* Reconstruct the normalized address starting with NA[4:0] = 0 */
addr = 0;
/* NA[6:5] = Column[1:0] */
temp = col & 0x3;
addr |= FIELD_PREP(MI300_NA_COL_1_0, temp);
/* NA[7] = PC */
addr |= FIELD_PREP(MI300_NA_PC, pc);
/* NA[9:8] = Column[3:2] */
temp = (col >> 2) & 0x3;
addr |= FIELD_PREP(MI300_NA_COL_3_2, temp);
/* NA[11:10] = Bank[3:2] */
temp = (bank >> 2) & 0x3;
addr |= FIELD_PREP(MI300_NA_BANK_3_2, temp);
/* NA[13:12] = Bank[1:0] */
temp = bank & 0x3;
addr |= FIELD_PREP(MI300_NA_BANK_1_0, temp);
/* NA[14] = Column[4] */
temp = (col >> 4) & 0x1;
addr |= FIELD_PREP(MI300_NA_COL_4, temp);
/* NA[28:15] = Row[13:0] */
addr |= FIELD_PREP(MI300_NA_ROW, row);
/* NA[30:29] = SID[1:0] */
addr |= FIELD_PREP(MI300_NA_SID, sid);
pr_debug("Addr=0x%016lx", addr);
pr_debug("Bank=%u Row=%u Column=%u PC=%u SID=%u", bank, row, col, pc, sid);
return addr;
}
/*
* When a DRAM ECC error occurs on MI300 systems, it is recommended to retire
* all memory within that DRAM row. This applies to the memory with a DRAM
* bank.
*
* To find the memory addresses, loop through permutations of the DRAM column
* bits and find the System Physical address of each. The column bits are used
* to calculate the intermediate Normalized address, so all permutations should
* be checked.
*
* See amd_atl::convert_dram_to_norm_addr_mi300() for MI300 address formats.
*/
#define MI300_NUM_COL BIT(HWEIGHT(MI300_UMC_MCA_COL))
static void retire_row_mi300(struct atl_err *a_err)
{
unsigned long addr;
struct page *p;
u8 col;
for (col = 0; col < MI300_NUM_COL; col++) {
a_err->addr &= ~MI300_UMC_MCA_COL;
a_err->addr |= FIELD_PREP(MI300_UMC_MCA_COL, col);
addr = amd_convert_umc_mca_addr_to_sys_addr(a_err);
if (IS_ERR_VALUE(addr))
continue;
addr = PHYS_PFN(addr);
/*
* Skip invalid or already poisoned pages to avoid unnecessary
* error messages from memory_failure().
*/
p = pfn_to_online_page(addr);
if (!p)
continue;
if (PageHWPoison(p))
continue;
memory_failure(addr, 0);
}
}
void amd_retire_dram_row(struct atl_err *a_err)
{
if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous)
return retire_row_mi300(a_err);
}
EXPORT_SYMBOL_GPL(amd_retire_dram_row);
static unsigned long get_addr(unsigned long addr)
{
if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous)
return convert_dram_to_norm_addr_mi300(addr);
return addr;
}
#define MCA_IPID_INST_ID_HI GENMASK_ULL(47, 44)
static u8 get_die_id(struct atl_err *err)
{
/*
* AMD Node ID is provided in MCA_IPID[InstanceIdHi], and this
* needs to be divided by 4 to get the internal Die ID.
*/
if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous) {
u8 node_id = FIELD_GET(MCA_IPID_INST_ID_HI, err->ipid);
return node_id >> 2;
}
/*
* For CPUs, this is the AMD Node ID modulo the number
* of AMD Nodes per socket.
*/
return topology_die_id(err->cpu) % amd_get_nodes_per_socket();
}
#define UMC_CHANNEL_NUM GENMASK(31, 20)
static u8 get_coh_st_inst_id(struct atl_err *err)
{
if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous)
return get_coh_st_inst_id_mi300(err);
return FIELD_GET(UMC_CHANNEL_NUM, err->ipid);
}
unsigned long convert_umc_mca_addr_to_sys_addr(struct atl_err *err)
{
u8 socket_id = topology_physical_package_id(err->cpu);
u8 coh_st_inst_id = get_coh_st_inst_id(err);
unsigned long addr = get_addr(err->addr);
u8 die_id = get_die_id(err);
pr_debug("socket_id=0x%x die_id=0x%x coh_st_inst_id=0x%x addr=0x%016lx",
socket_id, die_id, coh_st_inst_id, addr);
return norm_to_sys_addr(socket_id, die_id, coh_st_inst_id, addr);
}

1013
drivers/ras/amd/fmpm.c Normal file

File diff suppressed because it is too large Load Diff

View File

@ -480,9 +480,15 @@ DEFINE_SHOW_ATTRIBUTE(array);
static int __init create_debugfs_nodes(void)
{
struct dentry *d, *pfn, *decay, *count, *array;
struct dentry *d, *pfn, *decay, *count, *array, *dfs;
d = debugfs_create_dir("cec", ras_debugfs_dir);
dfs = ras_get_debugfs_root();
if (!dfs) {
pr_warn("Error getting RAS debugfs root!\n");
return -1;
}
d = debugfs_create_dir("cec", dfs);
if (!d) {
pr_warn("Error creating cec debugfs node!\n");
return -1;

View File

@ -3,10 +3,16 @@
#include <linux/ras.h>
#include "debugfs.h"
struct dentry *ras_debugfs_dir;
static struct dentry *ras_debugfs_dir;
static atomic_t trace_count = ATOMIC_INIT(0);
struct dentry *ras_get_debugfs_root(void)
{
return ras_debugfs_dir;
}
EXPORT_SYMBOL_GPL(ras_get_debugfs_root);
int ras_userspace_consumers(void)
{
return atomic_read(&trace_count);

View File

@ -4,6 +4,6 @@
#include <linux/debugfs.h>
extern struct dentry *ras_debugfs_dir;
struct dentry *ras_get_debugfs_root(void);
#endif /* __RAS_DEBUGFS_H__ */

View File

@ -10,6 +10,37 @@
#include <linux/ras.h>
#include <linux/uuid.h>
#if IS_ENABLED(CONFIG_AMD_ATL)
/*
* Once set, this function pointer should never be unset.
*
* The library module will set this pointer if it successfully loads. The module
* should not be unloaded except for testing and debug purposes.
*/
static unsigned long (*amd_atl_umc_na_to_spa)(struct atl_err *err);
void amd_atl_register_decoder(unsigned long (*f)(struct atl_err *))
{
amd_atl_umc_na_to_spa = f;
}
EXPORT_SYMBOL_GPL(amd_atl_register_decoder);
void amd_atl_unregister_decoder(void)
{
amd_atl_umc_na_to_spa = NULL;
}
EXPORT_SYMBOL_GPL(amd_atl_unregister_decoder);
unsigned long amd_convert_umc_mca_addr_to_sys_addr(struct atl_err *err)
{
if (!amd_atl_umc_na_to_spa)
return -EINVAL;
return amd_atl_umc_na_to_spa(err);
}
EXPORT_SYMBOL_GPL(amd_convert_umc_mca_addr_to_sys_addr);
#endif /* CONFIG_AMD_ATL */
#define CREATE_TRACE_POINTS
#define TRACE_INCLUDE_PATH ../../include/ras
#include <ras/ras_event.h>

View File

@ -25,6 +25,7 @@ void log_non_standard_event(const guid_t *sec_type,
const guid_t *fru_id, const char *fru_text,
const u8 sev, const u8 *err, const u32 len);
void log_arm_hw_error(struct cper_sec_proc_arm *err);
#else
static inline void
log_non_standard_event(const guid_t *sec_type,
@ -35,4 +36,21 @@ static inline void
log_arm_hw_error(struct cper_sec_proc_arm *err) { return; }
#endif
struct atl_err {
u64 addr;
u64 ipid;
u32 cpu;
};
#if IS_ENABLED(CONFIG_AMD_ATL)
void amd_atl_register_decoder(unsigned long (*f)(struct atl_err *));
void amd_atl_unregister_decoder(void);
void amd_retire_dram_row(struct atl_err *err);
unsigned long amd_convert_umc_mca_addr_to_sys_addr(struct atl_err *err);
#else
static inline void amd_retire_dram_row(struct atl_err *err) { }
static inline unsigned long
amd_convert_umc_mca_addr_to_sys_addr(struct atl_err *err) { return -EINVAL; }
#endif /* CONFIG_AMD_ATL */
#endif /* __RAS_H__ */