Merge git://git.kernel.org/pub/scm/linux/kernel/git/mingo/linux-2.6-sched

* git://git.kernel.org/pub/scm/linux/kernel/git/mingo/linux-2.6-sched:
  sched: cleanup, sched_granularity -> sched_min_granularity
  sched: adaptive scheduler granularity
  sched: fix CONFIG_SCHED_DEBUG dependency of lockdep sysctls
This commit is contained in:
Linus Torvalds 2007-08-25 11:25:29 -07:00
commit a3ce8ea66a
4 changed files with 99 additions and 30 deletions

View File

@ -1399,7 +1399,8 @@ static inline void idle_task_exit(void) {}
extern void sched_idle_next(void);
extern unsigned int sysctl_sched_granularity;
extern unsigned int sysctl_sched_latency;
extern unsigned int sysctl_sched_min_granularity;
extern unsigned int sysctl_sched_wakeup_granularity;
extern unsigned int sysctl_sched_batch_wakeup_granularity;
extern unsigned int sysctl_sched_stat_granularity;

View File

@ -4911,14 +4911,18 @@ cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
static inline void sched_init_granularity(void)
{
unsigned int factor = 1 + ilog2(num_online_cpus());
const unsigned long gran_limit = 100000000;
const unsigned long limit = 100000000;
sysctl_sched_granularity *= factor;
if (sysctl_sched_granularity > gran_limit)
sysctl_sched_granularity = gran_limit;
sysctl_sched_min_granularity *= factor;
if (sysctl_sched_min_granularity > limit)
sysctl_sched_min_granularity = limit;
sysctl_sched_runtime_limit = sysctl_sched_granularity * 5;
sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
sysctl_sched_latency *= factor;
if (sysctl_sched_latency > limit)
sysctl_sched_latency = limit;
sysctl_sched_runtime_limit = sysctl_sched_latency * 5;
sysctl_sched_wakeup_granularity = sysctl_sched_latency / 2;
}
#ifdef CONFIG_SMP

View File

@ -15,23 +15,32 @@
*
* Scaled math optimizations by Thomas Gleixner
* Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
*
* Adaptive scheduling granularity, math enhancements by Peter Zijlstra
* Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
*/
/*
* Preemption granularity:
* (default: 10 msec, units: nanoseconds)
* Targeted preemption latency for CPU-bound tasks:
* (default: 20ms, units: nanoseconds)
*
* NOTE: this granularity value is not the same as the concept of
* 'timeslice length' - timeslices in CFS will typically be somewhat
* larger than this value. (to see the precise effective timeslice
* length of your workload, run vmstat and monitor the context-switches
* field)
* NOTE: this latency value is not the same as the concept of
* 'timeslice length' - timeslices in CFS are of variable length.
* (to see the precise effective timeslice length of your workload,
* run vmstat and monitor the context-switches field)
*
* On SMP systems the value of this is multiplied by the log2 of the
* number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
* systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
* Targeted preemption latency for CPU-bound tasks:
*/
unsigned int sysctl_sched_granularity __read_mostly = 10000000UL;
unsigned int sysctl_sched_latency __read_mostly = 20000000ULL;
/*
* Minimal preemption granularity for CPU-bound tasks:
* (default: 2 msec, units: nanoseconds)
*/
unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
/*
* SCHED_BATCH wake-up granularity.
@ -212,6 +221,49 @@ static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
* Scheduling class statistics methods:
*/
/*
* Calculate the preemption granularity needed to schedule every
* runnable task once per sysctl_sched_latency amount of time.
* (down to a sensible low limit on granularity)
*
* For example, if there are 2 tasks running and latency is 10 msecs,
* we switch tasks every 5 msecs. If we have 3 tasks running, we have
* to switch tasks every 3.33 msecs to get a 10 msecs observed latency
* for each task. We do finer and finer scheduling up to until we
* reach the minimum granularity value.
*
* To achieve this we use the following dynamic-granularity rule:
*
* gran = lat/nr - lat/nr/nr
*
* This comes out of the following equations:
*
* kA1 + gran = kB1
* kB2 + gran = kA2
* kA2 = kA1
* kB2 = kB1 - d + d/nr
* lat = d * nr
*
* Where 'k' is key, 'A' is task A (waiting), 'B' is task B (running),
* '1' is start of time, '2' is end of time, 'd' is delay between
* 1 and 2 (during which task B was running), 'nr' is number of tasks
* running, 'lat' is the the period of each task. ('lat' is the
* sched_latency that we aim for.)
*/
static long
sched_granularity(struct cfs_rq *cfs_rq)
{
unsigned int gran = sysctl_sched_latency;
unsigned int nr = cfs_rq->nr_running;
if (nr > 1) {
gran = gran/nr - gran/nr/nr;
gran = max(gran, sysctl_sched_min_granularity);
}
return gran;
}
/*
* We rescale the rescheduling granularity of tasks according to their
* nice level, but only linearly, not exponentially:
@ -302,7 +354,7 @@ __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr)
delta_fair = calc_delta_fair(delta_exec, lw);
delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);
if (cfs_rq->sleeper_bonus > sysctl_sched_granularity) {
if (cfs_rq->sleeper_bonus > sysctl_sched_latency) {
delta = min((u64)delta_mine, cfs_rq->sleeper_bonus);
delta = min(delta, (unsigned long)(
(long)sysctl_sched_runtime_limit - curr->wait_runtime));
@ -689,7 +741,8 @@ static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
if (next == curr)
return;
__check_preempt_curr_fair(cfs_rq, next, curr, sysctl_sched_granularity);
__check_preempt_curr_fair(cfs_rq, next, curr,
sched_granularity(cfs_rq));
}
/**************************************************
@ -1034,7 +1087,7 @@ static void task_new_fair(struct rq *rq, struct task_struct *p)
* it will preempt the parent:
*/
p->se.fair_key = current->se.fair_key -
niced_granularity(&rq->curr->se, sysctl_sched_granularity) - 1;
niced_granularity(&rq->curr->se, sched_granularity(cfs_rq)) - 1;
/*
* The first wait is dominated by the child-runs-first logic,
* so do not credit it with that waiting time yet:
@ -1047,7 +1100,7 @@ static void task_new_fair(struct rq *rq, struct task_struct *p)
* -granularity/2, so initialize the task with that:
*/
if (sysctl_sched_features & SCHED_FEAT_START_DEBIT)
p->se.wait_runtime = -((long)sysctl_sched_granularity / 2);
p->se.wait_runtime = -(sched_granularity(cfs_rq) / 2);
__enqueue_entity(cfs_rq, se);
}

View File

@ -222,8 +222,19 @@ static ctl_table kern_table[] = {
#ifdef CONFIG_SCHED_DEBUG
{
.ctl_name = CTL_UNNUMBERED,
.procname = "sched_granularity_ns",
.data = &sysctl_sched_granularity,
.procname = "sched_min_granularity_ns",
.data = &sysctl_sched_min_granularity,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = &proc_dointvec_minmax,
.strategy = &sysctl_intvec,
.extra1 = &min_sched_granularity_ns,
.extra2 = &max_sched_granularity_ns,
},
{
.ctl_name = CTL_UNNUMBERED,
.procname = "sched_latency_ns",
.data = &sysctl_sched_latency,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = &proc_dointvec_minmax,
@ -283,6 +294,15 @@ static ctl_table kern_table[] = {
.mode = 0644,
.proc_handler = &proc_dointvec,
},
{
.ctl_name = CTL_UNNUMBERED,
.procname = "sched_features",
.data = &sysctl_sched_features,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
#endif
#ifdef CONFIG_PROVE_LOCKING
{
.ctl_name = CTL_UNNUMBERED,
@ -302,15 +322,6 @@ static ctl_table kern_table[] = {
.mode = 0644,
.proc_handler = &proc_dointvec,
},
#endif
{
.ctl_name = CTL_UNNUMBERED,
.procname = "sched_features",
.data = &sysctl_sched_features,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
#endif
{
.ctl_name = KERN_PANIC,