mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-11 04:18:39 +08:00
Updates for the interrupt subsystem:
Core: - Move the interrupt affinity spreading mechanism into lib/group_cpus so it can be used for similar spreading requirements, e.g. in the block multi-queue code. This also contains a first usecase in the block multi-queue code which Jens asked to take along with the librarization. - Improve irqdomain locking to close a number race conditions which can be observed with massive parallel device driver probing. - Enforce and document the semantics of disable_irq() which cannot be invoked safely from non-sleepable context. - Move the IPI multiplexing code from the Apple AIC driver into the core. so it can be reused by RISCV. Drivers: - Plug OF node refcounting leaks in various drivers. - Correctly mark level triggered interrupts in the Broadcom L2 drivers. - The usual small fixes and improvements. - No new drivers for the record! -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmPzUSkTHHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYoY3DEAC9E4yLO7VxxTrs/KrAVCgL3SnHVXQU nE42uFbQwpCILuNmnqP3uvTHLCsXZkbuBaZEbxLBxC2iyU6+31N1Is+e6cClGMjK kX6U9g9EqiRCdX3fgJiEU16fCgE8D1AEg+7XKLjeasQhCfKQGGtCtE9/Gmg/Ji92 gcEY/bjvm1hcoNo9dh/vR4k0k63fb13716RLScozUkS/XYVlu+LrrG349gD2WEA9 lh1twDkXvZTWkiYKWAkLorxcNyKhcnJxJw8zEIGVF5b6pCCudK8gXjBbMD5abC7W xano6B8F455eSKNsi2TWyW47ZHUkC60sqCNDgI2MBTsI7D72UpAJoDfe0VjbMoaH RQJnrGsUQbviBUen+LEet7nWZBQJRKZHOVtYEjA8ndB3PJUXKKcLeODdw11odyjR bgZk+0wnowMArIaoLfeItF2oSpfSzLVxh2i8Aeus5tBesvhVCOi4LABRBKGCWvMj cpSlMhZ4znMnr5j5lOGpcAjKFlWVh1HmF70Y2deGZi5xC8EXFL/VsB7rH5LEEEuF 7I8CO8M1mXeOTJoCchCbuAYgZyuk1DIhKUyOiYQZblaPNGcVGvCIN31SFBRT9h/8 e0VwSvVL756GhotUp/LjgTdG7MoKspWqRG00+q84SsDalsKGXMW7zmHc+1NgGN/C Yxio1Jlly9Rwyw== =+pu3 -----END PGP SIGNATURE----- Merge tag 'irq-core-2023-02-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull irq updates from Thomas Gleixner: "Updates for the interrupt subsystem: Core: - Move the interrupt affinity spreading mechanism into lib/group_cpus so it can be used for similar spreading requirements, e.g. in the block multi-queue code This also contains a first usecase in the block multi-queue code which Jens asked to take along with the librarization - Improve irqdomain locking to close a number race conditions which can be observed with massive parallel device driver probing - Enforce and document the semantics of disable_irq() which cannot be invoked safely from non-sleepable context - Move the IPI multiplexing code from the Apple AIC driver into the core, so it can be reused by RISCV Drivers: - Plug OF node refcounting leaks in various drivers - Correctly mark level triggered interrupts in the Broadcom L2 drivers - The usual small fixes and improvements - No new drivers for the record!" * tag 'irq-core-2023-02-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (42 commits) irqchip/irq-bcm7120-l2: Set IRQ_LEVEL for level triggered interrupts irqchip/irq-brcmstb-l2: Set IRQ_LEVEL for level triggered interrupts irqdomain: Switch to per-domain locking irqchip/mvebu-odmi: Use irq_domain_create_hierarchy() irqchip/loongson-pch-msi: Use irq_domain_create_hierarchy() irqchip/gic-v3-mbi: Use irq_domain_create_hierarchy() irqchip/gic-v3-its: Use irq_domain_create_hierarchy() irqchip/gic-v2m: Use irq_domain_create_hierarchy() irqchip/alpine-msi: Use irq_domain_add_hierarchy() x86/uv: Use irq_domain_create_hierarchy() x86/ioapic: Use irq_domain_create_hierarchy() irqdomain: Clean up irq_domain_push/pop_irq() irqdomain: Drop leftover brackets irqdomain: Drop dead domain-name assignment irqdomain: Drop revmap mutex irqdomain: Fix domain registration race irqdomain: Fix mapping-creation race irqdomain: Refactor __irq_domain_alloc_irqs() irqdomain: Look for existing mapping only once irqdomain: Drop bogus fwspec-mapping error handling ...
This commit is contained in:
commit
9e58df973d
@ -1277,11 +1277,11 @@ Manfred Spraul points out that you can still do this, even if the data
|
||||
is very occasionally accessed in user context or softirqs/tasklets. The
|
||||
irq handler doesn't use a lock, and all other accesses are done as so::
|
||||
|
||||
spin_lock(&lock);
|
||||
mutex_lock(&lock);
|
||||
disable_irq(irq);
|
||||
...
|
||||
enable_irq(irq);
|
||||
spin_unlock(&lock);
|
||||
mutex_unlock(&lock);
|
||||
|
||||
The disable_irq() prevents the irq handler from running
|
||||
(and waits for it to finish if it's currently running on other CPUs).
|
||||
|
@ -1307,11 +1307,11 @@ se i dati vengono occasionalmente utilizzati da un contesto utente o
|
||||
da un'interruzione software. Il gestore d'interruzione non utilizza alcun
|
||||
*lock*, e tutti gli altri accessi verranno fatti così::
|
||||
|
||||
spin_lock(&lock);
|
||||
mutex_lock(&lock);
|
||||
disable_irq(irq);
|
||||
...
|
||||
enable_irq(irq);
|
||||
spin_unlock(&lock);
|
||||
mutex_unlock(&lock);
|
||||
|
||||
La funzione disable_irq() impedisce al gestore d'interruzioni
|
||||
d'essere eseguito (e aspetta che finisca nel caso fosse in esecuzione su
|
||||
|
@ -10777,6 +10777,8 @@ L: linux-kernel@vger.kernel.org
|
||||
S: Maintained
|
||||
T: git git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git irq/core
|
||||
F: kernel/irq/
|
||||
F: include/linux/group_cpus.h
|
||||
F: lib/group_cpus.c
|
||||
|
||||
IRQCHIP DRIVERS
|
||||
M: Thomas Gleixner <tglx@linutronix.de>
|
||||
|
@ -2364,9 +2364,8 @@ static int mp_irqdomain_create(int ioapic)
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
ip->irqdomain = irq_domain_create_linear(fn, hwirqs, cfg->ops,
|
||||
(void *)(long)ioapic);
|
||||
|
||||
ip->irqdomain = irq_domain_create_hierarchy(parent, 0, hwirqs, fn, cfg->ops,
|
||||
(void *)(long)ioapic);
|
||||
if (!ip->irqdomain) {
|
||||
/* Release fw handle if it was allocated above */
|
||||
if (!cfg->dev)
|
||||
@ -2374,8 +2373,6 @@ static int mp_irqdomain_create(int ioapic)
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
ip->irqdomain->parent = parent;
|
||||
|
||||
if (cfg->type == IOAPIC_DOMAIN_LEGACY ||
|
||||
cfg->type == IOAPIC_DOMAIN_STRICT)
|
||||
ioapic_dynirq_base = max(ioapic_dynirq_base,
|
||||
|
@ -166,10 +166,9 @@ static struct irq_domain *uv_get_irq_domain(void)
|
||||
if (!fn)
|
||||
goto out;
|
||||
|
||||
uv_domain = irq_domain_create_tree(fn, &uv_domain_ops, NULL);
|
||||
if (uv_domain)
|
||||
uv_domain->parent = x86_vector_domain;
|
||||
else
|
||||
uv_domain = irq_domain_create_hierarchy(x86_vector_domain, 0, 0, fn,
|
||||
&uv_domain_ops, NULL);
|
||||
if (!uv_domain)
|
||||
irq_domain_free_fwnode(fn);
|
||||
out:
|
||||
mutex_unlock(&uv_lock);
|
||||
|
@ -10,66 +10,29 @@
|
||||
#include <linux/mm.h>
|
||||
#include <linux/smp.h>
|
||||
#include <linux/cpu.h>
|
||||
#include <linux/group_cpus.h>
|
||||
|
||||
#include <linux/blk-mq.h>
|
||||
#include "blk.h"
|
||||
#include "blk-mq.h"
|
||||
|
||||
static int queue_index(struct blk_mq_queue_map *qmap,
|
||||
unsigned int nr_queues, const int q)
|
||||
{
|
||||
return qmap->queue_offset + (q % nr_queues);
|
||||
}
|
||||
|
||||
static int get_first_sibling(unsigned int cpu)
|
||||
{
|
||||
unsigned int ret;
|
||||
|
||||
ret = cpumask_first(topology_sibling_cpumask(cpu));
|
||||
if (ret < nr_cpu_ids)
|
||||
return ret;
|
||||
|
||||
return cpu;
|
||||
}
|
||||
|
||||
void blk_mq_map_queues(struct blk_mq_queue_map *qmap)
|
||||
{
|
||||
unsigned int *map = qmap->mq_map;
|
||||
unsigned int nr_queues = qmap->nr_queues;
|
||||
unsigned int cpu, first_sibling, q = 0;
|
||||
const struct cpumask *masks;
|
||||
unsigned int queue, cpu;
|
||||
|
||||
for_each_possible_cpu(cpu)
|
||||
map[cpu] = -1;
|
||||
|
||||
/*
|
||||
* Spread queues among present CPUs first for minimizing
|
||||
* count of dead queues which are mapped by all un-present CPUs
|
||||
*/
|
||||
for_each_present_cpu(cpu) {
|
||||
if (q >= nr_queues)
|
||||
break;
|
||||
map[cpu] = queue_index(qmap, nr_queues, q++);
|
||||
masks = group_cpus_evenly(qmap->nr_queues);
|
||||
if (!masks) {
|
||||
for_each_possible_cpu(cpu)
|
||||
qmap->mq_map[cpu] = qmap->queue_offset;
|
||||
return;
|
||||
}
|
||||
|
||||
for_each_possible_cpu(cpu) {
|
||||
if (map[cpu] != -1)
|
||||
continue;
|
||||
/*
|
||||
* First do sequential mapping between CPUs and queues.
|
||||
* In case we still have CPUs to map, and we have some number of
|
||||
* threads per cores then map sibling threads to the same queue
|
||||
* for performance optimizations.
|
||||
*/
|
||||
if (q < nr_queues) {
|
||||
map[cpu] = queue_index(qmap, nr_queues, q++);
|
||||
} else {
|
||||
first_sibling = get_first_sibling(cpu);
|
||||
if (first_sibling == cpu)
|
||||
map[cpu] = queue_index(qmap, nr_queues, q++);
|
||||
else
|
||||
map[cpu] = map[first_sibling];
|
||||
}
|
||||
for (queue = 0; queue < qmap->nr_queues; queue++) {
|
||||
for_each_cpu(cpu, &masks[queue])
|
||||
qmap->mq_map[cpu] = qmap->queue_offset + queue;
|
||||
}
|
||||
kfree(masks);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(blk_mq_map_queues);
|
||||
|
||||
|
@ -384,7 +384,7 @@ config LS_EXTIRQ
|
||||
|
||||
config LS_SCFG_MSI
|
||||
def_bool y if SOC_LS1021A || ARCH_LAYERSCAPE
|
||||
depends on PCI && PCI_MSI
|
||||
depends on PCI_MSI
|
||||
|
||||
config PARTITION_PERCPU
|
||||
bool
|
||||
@ -653,6 +653,7 @@ config APPLE_AIC
|
||||
bool "Apple Interrupt Controller (AIC)"
|
||||
depends on ARM64
|
||||
depends on ARCH_APPLE || COMPILE_TEST
|
||||
select GENERIC_IRQ_IPI_MUX
|
||||
help
|
||||
Support for the Apple Interrupt Controller found on Apple Silicon SoCs,
|
||||
such as the M1.
|
||||
|
@ -199,21 +199,20 @@ static int alpine_msix_init_domains(struct alpine_msix_data *priv,
|
||||
}
|
||||
|
||||
gic_domain = irq_find_host(gic_node);
|
||||
of_node_put(gic_node);
|
||||
if (!gic_domain) {
|
||||
pr_err("Failed to find the GIC domain\n");
|
||||
return -ENXIO;
|
||||
}
|
||||
|
||||
middle_domain = irq_domain_add_tree(NULL,
|
||||
&alpine_msix_middle_domain_ops,
|
||||
priv);
|
||||
middle_domain = irq_domain_add_hierarchy(gic_domain, 0, 0, NULL,
|
||||
&alpine_msix_middle_domain_ops,
|
||||
priv);
|
||||
if (!middle_domain) {
|
||||
pr_err("Failed to create the MSIX middle domain\n");
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
middle_domain->parent = gic_domain;
|
||||
|
||||
msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(node),
|
||||
&alpine_msix_domain_info,
|
||||
middle_domain);
|
||||
|
@ -292,7 +292,6 @@ struct aic_irq_chip {
|
||||
void __iomem *base;
|
||||
void __iomem *event;
|
||||
struct irq_domain *hw_domain;
|
||||
struct irq_domain *ipi_domain;
|
||||
struct {
|
||||
cpumask_t aff;
|
||||
} *fiq_aff[AIC_NR_FIQ];
|
||||
@ -307,9 +306,6 @@ struct aic_irq_chip {
|
||||
|
||||
static DEFINE_PER_CPU(uint32_t, aic_fiq_unmasked);
|
||||
|
||||
static DEFINE_PER_CPU(atomic_t, aic_vipi_flag);
|
||||
static DEFINE_PER_CPU(atomic_t, aic_vipi_enable);
|
||||
|
||||
static struct aic_irq_chip *aic_irqc;
|
||||
|
||||
static void aic_handle_ipi(struct pt_regs *regs);
|
||||
@ -751,98 +747,8 @@ static void aic_ipi_send_fast(int cpu)
|
||||
isb();
|
||||
}
|
||||
|
||||
static void aic_ipi_mask(struct irq_data *d)
|
||||
{
|
||||
u32 irq_bit = BIT(irqd_to_hwirq(d));
|
||||
|
||||
/* No specific ordering requirements needed here. */
|
||||
atomic_andnot(irq_bit, this_cpu_ptr(&aic_vipi_enable));
|
||||
}
|
||||
|
||||
static void aic_ipi_unmask(struct irq_data *d)
|
||||
{
|
||||
struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
|
||||
u32 irq_bit = BIT(irqd_to_hwirq(d));
|
||||
|
||||
atomic_or(irq_bit, this_cpu_ptr(&aic_vipi_enable));
|
||||
|
||||
/*
|
||||
* The atomic_or() above must complete before the atomic_read()
|
||||
* below to avoid racing aic_ipi_send_mask().
|
||||
*/
|
||||
smp_mb__after_atomic();
|
||||
|
||||
/*
|
||||
* If a pending vIPI was unmasked, raise a HW IPI to ourselves.
|
||||
* No barriers needed here since this is a self-IPI.
|
||||
*/
|
||||
if (atomic_read(this_cpu_ptr(&aic_vipi_flag)) & irq_bit) {
|
||||
if (static_branch_likely(&use_fast_ipi))
|
||||
aic_ipi_send_fast(smp_processor_id());
|
||||
else
|
||||
aic_ic_write(ic, AIC_IPI_SEND, AIC_IPI_SEND_CPU(smp_processor_id()));
|
||||
}
|
||||
}
|
||||
|
||||
static void aic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
|
||||
{
|
||||
struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
|
||||
u32 irq_bit = BIT(irqd_to_hwirq(d));
|
||||
u32 send = 0;
|
||||
int cpu;
|
||||
unsigned long pending;
|
||||
|
||||
for_each_cpu(cpu, mask) {
|
||||
/*
|
||||
* This sequence is the mirror of the one in aic_ipi_unmask();
|
||||
* see the comment there. Additionally, release semantics
|
||||
* ensure that the vIPI flag set is ordered after any shared
|
||||
* memory accesses that precede it. This therefore also pairs
|
||||
* with the atomic_fetch_andnot in aic_handle_ipi().
|
||||
*/
|
||||
pending = atomic_fetch_or_release(irq_bit, per_cpu_ptr(&aic_vipi_flag, cpu));
|
||||
|
||||
/*
|
||||
* The atomic_fetch_or_release() above must complete before the
|
||||
* atomic_read() below to avoid racing aic_ipi_unmask().
|
||||
*/
|
||||
smp_mb__after_atomic();
|
||||
|
||||
if (!(pending & irq_bit) &&
|
||||
(atomic_read(per_cpu_ptr(&aic_vipi_enable, cpu)) & irq_bit)) {
|
||||
if (static_branch_likely(&use_fast_ipi))
|
||||
aic_ipi_send_fast(cpu);
|
||||
else
|
||||
send |= AIC_IPI_SEND_CPU(cpu);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* The flag writes must complete before the physical IPI is issued
|
||||
* to another CPU. This is implied by the control dependency on
|
||||
* the result of atomic_read_acquire() above, which is itself
|
||||
* already ordered after the vIPI flag write.
|
||||
*/
|
||||
if (send)
|
||||
aic_ic_write(ic, AIC_IPI_SEND, send);
|
||||
}
|
||||
|
||||
static struct irq_chip ipi_chip = {
|
||||
.name = "AIC-IPI",
|
||||
.irq_mask = aic_ipi_mask,
|
||||
.irq_unmask = aic_ipi_unmask,
|
||||
.ipi_send_mask = aic_ipi_send_mask,
|
||||
};
|
||||
|
||||
/*
|
||||
* IPI IRQ domain
|
||||
*/
|
||||
|
||||
static void aic_handle_ipi(struct pt_regs *regs)
|
||||
{
|
||||
int i;
|
||||
unsigned long enabled, firing;
|
||||
|
||||
/*
|
||||
* Ack the IPI. We need to order this after the AIC event read, but
|
||||
* that is enforced by normal MMIO ordering guarantees.
|
||||
@ -857,27 +763,7 @@ static void aic_handle_ipi(struct pt_regs *regs)
|
||||
aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_OTHER);
|
||||
}
|
||||
|
||||
/*
|
||||
* The mask read does not need to be ordered. Only we can change
|
||||
* our own mask anyway, so no races are possible here, as long as
|
||||
* we are properly in the interrupt handler (which is covered by
|
||||
* the barrier that is part of the top-level AIC handler's readl()).
|
||||
*/
|
||||
enabled = atomic_read(this_cpu_ptr(&aic_vipi_enable));
|
||||
|
||||
/*
|
||||
* Clear the IPIs we are about to handle. This pairs with the
|
||||
* atomic_fetch_or_release() in aic_ipi_send_mask(), and needs to be
|
||||
* ordered after the aic_ic_write() above (to avoid dropping vIPIs) and
|
||||
* before IPI handling code (to avoid races handling vIPIs before they
|
||||
* are signaled). The former is taken care of by the release semantics
|
||||
* of the write portion, while the latter is taken care of by the
|
||||
* acquire semantics of the read portion.
|
||||
*/
|
||||
firing = atomic_fetch_andnot(enabled, this_cpu_ptr(&aic_vipi_flag)) & enabled;
|
||||
|
||||
for_each_set_bit(i, &firing, AIC_NR_SWIPI)
|
||||
generic_handle_domain_irq(aic_irqc->ipi_domain, i);
|
||||
ipi_mux_process();
|
||||
|
||||
/*
|
||||
* No ordering needed here; at worst this just changes the timing of
|
||||
@ -887,55 +773,24 @@ static void aic_handle_ipi(struct pt_regs *regs)
|
||||
aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER);
|
||||
}
|
||||
|
||||
static int aic_ipi_alloc(struct irq_domain *d, unsigned int virq,
|
||||
unsigned int nr_irqs, void *args)
|
||||
static void aic_ipi_send_single(unsigned int cpu)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < nr_irqs; i++) {
|
||||
irq_set_percpu_devid(virq + i);
|
||||
irq_domain_set_info(d, virq + i, i, &ipi_chip, d->host_data,
|
||||
handle_percpu_devid_irq, NULL, NULL);
|
||||
}
|
||||
|
||||
return 0;
|
||||
if (static_branch_likely(&use_fast_ipi))
|
||||
aic_ipi_send_fast(cpu);
|
||||
else
|
||||
aic_ic_write(aic_irqc, AIC_IPI_SEND, AIC_IPI_SEND_CPU(cpu));
|
||||
}
|
||||
|
||||
static void aic_ipi_free(struct irq_domain *d, unsigned int virq, unsigned int nr_irqs)
|
||||
{
|
||||
/* Not freeing IPIs */
|
||||
}
|
||||
|
||||
static const struct irq_domain_ops aic_ipi_domain_ops = {
|
||||
.alloc = aic_ipi_alloc,
|
||||
.free = aic_ipi_free,
|
||||
};
|
||||
|
||||
static int __init aic_init_smp(struct aic_irq_chip *irqc, struct device_node *node)
|
||||
{
|
||||
struct irq_domain *ipi_domain;
|
||||
int base_ipi;
|
||||
|
||||
ipi_domain = irq_domain_create_linear(irqc->hw_domain->fwnode, AIC_NR_SWIPI,
|
||||
&aic_ipi_domain_ops, irqc);
|
||||
if (WARN_ON(!ipi_domain))
|
||||
base_ipi = ipi_mux_create(AIC_NR_SWIPI, aic_ipi_send_single);
|
||||
if (WARN_ON(base_ipi <= 0))
|
||||
return -ENODEV;
|
||||
|
||||
ipi_domain->flags |= IRQ_DOMAIN_FLAG_IPI_SINGLE;
|
||||
irq_domain_update_bus_token(ipi_domain, DOMAIN_BUS_IPI);
|
||||
|
||||
base_ipi = __irq_domain_alloc_irqs(ipi_domain, -1, AIC_NR_SWIPI,
|
||||
NUMA_NO_NODE, NULL, false, NULL);
|
||||
|
||||
if (WARN_ON(!base_ipi)) {
|
||||
irq_domain_remove(ipi_domain);
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
set_smp_ipi_range(base_ipi, AIC_NR_SWIPI);
|
||||
|
||||
irqc->ipi_domain = ipi_domain;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -454,8 +454,7 @@ static __init void armada_xp_ipi_init(struct device_node *node)
|
||||
return;
|
||||
|
||||
irq_domain_update_bus_token(ipi_domain, DOMAIN_BUS_IPI);
|
||||
base_ipi = __irq_domain_alloc_irqs(ipi_domain, -1, IPI_DOORBELL_END,
|
||||
NUMA_NO_NODE, NULL, false, NULL);
|
||||
base_ipi = irq_domain_alloc_irqs(ipi_domain, IPI_DOORBELL_END, NUMA_NO_NODE, NULL);
|
||||
if (WARN_ON(!base_ipi))
|
||||
return;
|
||||
|
||||
|
@ -17,8 +17,9 @@
|
||||
|
||||
#define ASPEED_SCU_IC_REG 0x018
|
||||
#define ASPEED_SCU_IC_SHIFT 0
|
||||
#define ASPEED_SCU_IC_ENABLE GENMASK(6, ASPEED_SCU_IC_SHIFT)
|
||||
#define ASPEED_SCU_IC_ENABLE GENMASK(15, ASPEED_SCU_IC_SHIFT)
|
||||
#define ASPEED_SCU_IC_NUM_IRQS 7
|
||||
#define ASPEED_SCU_IC_STATUS GENMASK(28, 16)
|
||||
#define ASPEED_SCU_IC_STATUS_SHIFT 16
|
||||
|
||||
#define ASPEED_AST2600_SCU_IC0_REG 0x560
|
||||
@ -155,6 +156,8 @@ static int aspeed_scu_ic_of_init_common(struct aspeed_scu_ic *scu_ic,
|
||||
rc = PTR_ERR(scu_ic->scu);
|
||||
goto err;
|
||||
}
|
||||
regmap_write_bits(scu_ic->scu, scu_ic->reg, ASPEED_SCU_IC_STATUS, ASPEED_SCU_IC_STATUS);
|
||||
regmap_write_bits(scu_ic->scu, scu_ic->reg, ASPEED_SCU_IC_ENABLE, 0);
|
||||
|
||||
irq = irq_of_parse_and_map(node, 0);
|
||||
if (!irq) {
|
||||
|
@ -268,10 +268,7 @@ static void __init bcm2836_arm_irqchip_smp_init(void)
|
||||
ipi_domain->flags |= IRQ_DOMAIN_FLAG_IPI_SINGLE;
|
||||
irq_domain_update_bus_token(ipi_domain, DOMAIN_BUS_IPI);
|
||||
|
||||
base_ipi = __irq_domain_alloc_irqs(ipi_domain, -1, BITS_PER_MBOX,
|
||||
NUMA_NO_NODE, NULL,
|
||||
false, NULL);
|
||||
|
||||
base_ipi = irq_domain_alloc_irqs(ipi_domain, BITS_PER_MBOX, NUMA_NO_NODE, NULL);
|
||||
if (WARN_ON(!base_ipi))
|
||||
return;
|
||||
|
||||
|
@ -279,7 +279,8 @@ static int __init bcm7120_l2_intc_probe(struct device_node *dn,
|
||||
flags |= IRQ_GC_BE_IO;
|
||||
|
||||
ret = irq_alloc_domain_generic_chips(data->domain, IRQS_PER_WORD, 1,
|
||||
dn->full_name, handle_level_irq, clr, 0, flags);
|
||||
dn->full_name, handle_level_irq, clr,
|
||||
IRQ_LEVEL, flags);
|
||||
if (ret) {
|
||||
pr_err("failed to allocate generic irq chip\n");
|
||||
goto out_free_domain;
|
||||
|
@ -161,6 +161,7 @@ static int __init brcmstb_l2_intc_of_init(struct device_node *np,
|
||||
*init_params)
|
||||
{
|
||||
unsigned int clr = IRQ_NOREQUEST | IRQ_NOPROBE | IRQ_NOAUTOEN;
|
||||
unsigned int set = 0;
|
||||
struct brcmstb_l2_intc_data *data;
|
||||
struct irq_chip_type *ct;
|
||||
int ret;
|
||||
@ -208,9 +209,12 @@ static int __init brcmstb_l2_intc_of_init(struct device_node *np,
|
||||
if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
|
||||
flags |= IRQ_GC_BE_IO;
|
||||
|
||||
if (init_params->handler == handle_level_irq)
|
||||
set |= IRQ_LEVEL;
|
||||
|
||||
/* Allocate a single Generic IRQ chip for this node */
|
||||
ret = irq_alloc_domain_generic_chips(data->domain, 32, 1,
|
||||
np->full_name, init_params->handler, clr, 0, flags);
|
||||
np->full_name, init_params->handler, clr, set, flags);
|
||||
if (ret) {
|
||||
pr_err("failed to allocate generic irq chip\n");
|
||||
goto out_free_domain;
|
||||
|
@ -287,15 +287,14 @@ static __init int gicv2m_allocate_domains(struct irq_domain *parent)
|
||||
if (!v2m)
|
||||
return 0;
|
||||
|
||||
inner_domain = irq_domain_create_tree(v2m->fwnode,
|
||||
&gicv2m_domain_ops, v2m);
|
||||
inner_domain = irq_domain_create_hierarchy(parent, 0, 0, v2m->fwnode,
|
||||
&gicv2m_domain_ops, v2m);
|
||||
if (!inner_domain) {
|
||||
pr_err("Failed to create GICv2m domain\n");
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
|
||||
inner_domain->parent = parent;
|
||||
pci_domain = pci_msi_create_irq_domain(v2m->fwnode,
|
||||
&gicv2m_msi_domain_info,
|
||||
inner_domain);
|
||||
|
@ -4909,18 +4909,19 @@ static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
|
||||
if (!info)
|
||||
return -ENOMEM;
|
||||
|
||||
inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
|
||||
info->ops = &its_msi_domain_ops;
|
||||
info->data = its;
|
||||
|
||||
inner_domain = irq_domain_create_hierarchy(its_parent,
|
||||
its->msi_domain_flags, 0,
|
||||
handle, &its_domain_ops,
|
||||
info);
|
||||
if (!inner_domain) {
|
||||
kfree(info);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
inner_domain->parent = its_parent;
|
||||
irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
|
||||
inner_domain->flags |= its->msi_domain_flags;
|
||||
info->ops = &its_msi_domain_ops;
|
||||
info->data = its;
|
||||
inner_domain->host_data = info;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -233,13 +233,12 @@ static int mbi_allocate_domains(struct irq_domain *parent)
|
||||
struct irq_domain *nexus_domain, *pci_domain, *plat_domain;
|
||||
int err;
|
||||
|
||||
nexus_domain = irq_domain_create_tree(parent->fwnode,
|
||||
&mbi_domain_ops, NULL);
|
||||
nexus_domain = irq_domain_create_hierarchy(parent, 0, 0, parent->fwnode,
|
||||
&mbi_domain_ops, NULL);
|
||||
if (!nexus_domain)
|
||||
return -ENOMEM;
|
||||
|
||||
irq_domain_update_bus_token(nexus_domain, DOMAIN_BUS_NEXUS);
|
||||
nexus_domain->parent = parent;
|
||||
|
||||
err = mbi_allocate_pci_domain(nexus_domain, &pci_domain);
|
||||
|
||||
|
@ -1310,9 +1310,7 @@ static void __init gic_smp_init(void)
|
||||
gic_starting_cpu, NULL);
|
||||
|
||||
/* Register all 8 non-secure SGIs */
|
||||
base_sgi = __irq_domain_alloc_irqs(gic_data.domain, -1, 8,
|
||||
NUMA_NO_NODE, &sgi_fwspec,
|
||||
false, NULL);
|
||||
base_sgi = irq_domain_alloc_irqs(gic_data.domain, 8, NUMA_NO_NODE, &sgi_fwspec);
|
||||
if (WARN_ON(base_sgi <= 0))
|
||||
return;
|
||||
|
||||
|
@ -139,9 +139,7 @@ static int its_alloc_vcpu_sgis(struct its_vpe *vpe, int idx)
|
||||
if (!vpe->sgi_domain)
|
||||
goto err;
|
||||
|
||||
sgi_base = __irq_domain_alloc_irqs(vpe->sgi_domain, -1, 16,
|
||||
NUMA_NO_NODE, vpe,
|
||||
false, NULL);
|
||||
sgi_base = irq_domain_alloc_irqs(vpe->sgi_domain, 16, NUMA_NO_NODE, vpe);
|
||||
if (sgi_base <= 0)
|
||||
goto err;
|
||||
|
||||
@ -176,9 +174,8 @@ int its_alloc_vcpu_irqs(struct its_vm *vm)
|
||||
vm->vpes[i]->idai = true;
|
||||
}
|
||||
|
||||
vpe_base_irq = __irq_domain_alloc_irqs(vm->domain, -1, vm->nr_vpes,
|
||||
NUMA_NO_NODE, vm,
|
||||
false, NULL);
|
||||
vpe_base_irq = irq_domain_alloc_irqs(vm->domain, vm->nr_vpes,
|
||||
NUMA_NO_NODE, vm);
|
||||
if (vpe_base_irq <= 0)
|
||||
goto err;
|
||||
|
||||
|
@ -868,9 +868,7 @@ static __init void gic_smp_init(void)
|
||||
"irqchip/arm/gic:starting",
|
||||
gic_starting_cpu, NULL);
|
||||
|
||||
base_sgi = __irq_domain_alloc_irqs(gic_data[0].domain, -1, 8,
|
||||
NUMA_NO_NODE, &sgi_fwspec,
|
||||
false, NULL);
|
||||
base_sgi = irq_domain_alloc_irqs(gic_data[0].domain, 8, NUMA_NO_NODE, &sgi_fwspec);
|
||||
if (WARN_ON(base_sgi <= 0))
|
||||
return;
|
||||
|
||||
|
@ -55,6 +55,8 @@ struct liointc_priv {
|
||||
struct liointc_handler_data handler[LIOINTC_NUM_PARENT];
|
||||
void __iomem *core_isr[LIOINTC_NUM_CORES];
|
||||
u8 map_cache[LIOINTC_CHIP_IRQ];
|
||||
u32 int_pol;
|
||||
u32 int_edge;
|
||||
bool has_lpc_irq_errata;
|
||||
};
|
||||
|
||||
@ -138,6 +140,14 @@ static int liointc_set_type(struct irq_data *data, unsigned int type)
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void liointc_suspend(struct irq_chip_generic *gc)
|
||||
{
|
||||
struct liointc_priv *priv = gc->private;
|
||||
|
||||
priv->int_pol = readl(gc->reg_base + LIOINTC_REG_INTC_POL);
|
||||
priv->int_edge = readl(gc->reg_base + LIOINTC_REG_INTC_EDGE);
|
||||
}
|
||||
|
||||
static void liointc_resume(struct irq_chip_generic *gc)
|
||||
{
|
||||
struct liointc_priv *priv = gc->private;
|
||||
@ -150,6 +160,8 @@ static void liointc_resume(struct irq_chip_generic *gc)
|
||||
/* Restore map cache */
|
||||
for (i = 0; i < LIOINTC_CHIP_IRQ; i++)
|
||||
writeb(priv->map_cache[i], gc->reg_base + i);
|
||||
writel(priv->int_pol, gc->reg_base + LIOINTC_REG_INTC_POL);
|
||||
writel(priv->int_edge, gc->reg_base + LIOINTC_REG_INTC_EDGE);
|
||||
/* Restore mask cache */
|
||||
writel(gc->mask_cache, gc->reg_base + LIOINTC_REG_INTC_ENABLE);
|
||||
irq_gc_unlock_irqrestore(gc, flags);
|
||||
@ -269,6 +281,7 @@ static int liointc_init(phys_addr_t addr, unsigned long size, int revision,
|
||||
gc->private = priv;
|
||||
gc->reg_base = base;
|
||||
gc->domain = domain;
|
||||
gc->suspend = liointc_suspend;
|
||||
gc->resume = liointc_resume;
|
||||
|
||||
ct = gc->chip_types;
|
||||
|
@ -163,16 +163,15 @@ static int pch_msi_init_domains(struct pch_msi_data *priv,
|
||||
{
|
||||
struct irq_domain *middle_domain, *msi_domain;
|
||||
|
||||
middle_domain = irq_domain_create_linear(domain_handle,
|
||||
priv->num_irqs,
|
||||
&pch_msi_middle_domain_ops,
|
||||
priv);
|
||||
middle_domain = irq_domain_create_hierarchy(parent, 0, priv->num_irqs,
|
||||
domain_handle,
|
||||
&pch_msi_middle_domain_ops,
|
||||
priv);
|
||||
if (!middle_domain) {
|
||||
pr_err("Failed to create the MSI middle domain\n");
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
middle_domain->parent = parent;
|
||||
irq_domain_update_bus_token(middle_domain, DOMAIN_BUS_NEXUS);
|
||||
|
||||
msi_domain = pci_msi_create_irq_domain(domain_handle,
|
||||
|
@ -221,6 +221,7 @@ static int mvebu_gicp_probe(struct platform_device *pdev)
|
||||
}
|
||||
|
||||
parent_domain = irq_find_host(irq_parent_dn);
|
||||
of_node_put(irq_parent_dn);
|
||||
if (!parent_domain) {
|
||||
dev_err(&pdev->dev, "failed to find parent IRQ domain\n");
|
||||
return -ENODEV;
|
||||
|
@ -161,7 +161,7 @@ static struct msi_domain_info odmi_msi_domain_info = {
|
||||
static int __init mvebu_odmi_init(struct device_node *node,
|
||||
struct device_node *parent)
|
||||
{
|
||||
struct irq_domain *inner_domain, *plat_domain;
|
||||
struct irq_domain *parent_domain, *inner_domain, *plat_domain;
|
||||
int ret, i;
|
||||
|
||||
if (of_property_read_u32(node, "marvell,odmi-frames", &odmis_count))
|
||||
@ -197,16 +197,17 @@ static int __init mvebu_odmi_init(struct device_node *node,
|
||||
}
|
||||
}
|
||||
|
||||
inner_domain = irq_domain_create_linear(of_node_to_fwnode(node),
|
||||
odmis_count * NODMIS_PER_FRAME,
|
||||
&odmi_domain_ops, NULL);
|
||||
parent_domain = irq_find_host(parent);
|
||||
|
||||
inner_domain = irq_domain_create_hierarchy(parent_domain, 0,
|
||||
odmis_count * NODMIS_PER_FRAME,
|
||||
of_node_to_fwnode(node),
|
||||
&odmi_domain_ops, NULL);
|
||||
if (!inner_domain) {
|
||||
ret = -ENOMEM;
|
||||
goto err_unmap;
|
||||
}
|
||||
|
||||
inner_domain->parent = irq_find_host(parent);
|
||||
|
||||
plat_domain = platform_msi_create_irq_domain(of_node_to_fwnode(node),
|
||||
&odmi_msi_domain_info,
|
||||
inner_domain);
|
||||
|
@ -236,6 +236,7 @@ static int ti_sci_intr_irq_domain_probe(struct platform_device *pdev)
|
||||
}
|
||||
|
||||
parent_domain = irq_find_host(parent_node);
|
||||
of_node_put(parent_node);
|
||||
if (!parent_domain) {
|
||||
dev_err(dev, "Failed to find IRQ parent domain\n");
|
||||
return -ENODEV;
|
||||
|
@ -38,8 +38,10 @@ int platform_irqchip_probe(struct platform_device *pdev)
|
||||
struct device_node *par_np = of_irq_find_parent(np);
|
||||
of_irq_init_cb_t irq_init_cb = of_device_get_match_data(&pdev->dev);
|
||||
|
||||
if (!irq_init_cb)
|
||||
if (!irq_init_cb) {
|
||||
of_node_put(par_np);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
if (par_np == np)
|
||||
par_np = NULL;
|
||||
@ -52,8 +54,10 @@ int platform_irqchip_probe(struct platform_device *pdev)
|
||||
* interrupt controller. The actual initialization callback of this
|
||||
* interrupt controller can check for specific domains as necessary.
|
||||
*/
|
||||
if (par_np && !irq_find_matching_host(par_np, DOMAIN_BUS_ANY))
|
||||
if (par_np && !irq_find_matching_host(par_np, DOMAIN_BUS_ANY)) {
|
||||
of_node_put(par_np);
|
||||
return -EPROBE_DEFER;
|
||||
}
|
||||
|
||||
return irq_init_cb(np, par_np);
|
||||
}
|
||||
|
14
include/linux/group_cpus.h
Normal file
14
include/linux/group_cpus.h
Normal file
@ -0,0 +1,14 @@
|
||||
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||
/*
|
||||
* Copyright (C) 2016 Thomas Gleixner.
|
||||
* Copyright (C) 2016-2017 Christoph Hellwig.
|
||||
*/
|
||||
|
||||
#ifndef __LINUX_GROUP_CPUS_H
|
||||
#define __LINUX_GROUP_CPUS_H
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/cpu.h>
|
||||
|
||||
struct cpumask *group_cpus_evenly(unsigned int numgrps);
|
||||
|
||||
#endif
|
@ -1266,6 +1266,9 @@ int __ipi_send_mask(struct irq_desc *desc, const struct cpumask *dest);
|
||||
int ipi_send_single(unsigned int virq, unsigned int cpu);
|
||||
int ipi_send_mask(unsigned int virq, const struct cpumask *dest);
|
||||
|
||||
void ipi_mux_process(void);
|
||||
int ipi_mux_create(unsigned int nr_ipi, void (*mux_send)(unsigned int cpu));
|
||||
|
||||
#ifdef CONFIG_GENERIC_IRQ_MULTI_HANDLER
|
||||
/*
|
||||
* Registers a generic IRQ handling function as the top-level IRQ handler in
|
||||
|
@ -125,6 +125,8 @@ struct irq_domain_chip_generic;
|
||||
* core code.
|
||||
* @flags: Per irq_domain flags
|
||||
* @mapcount: The number of mapped interrupts
|
||||
* @mutex: Domain lock, hierarchical domains use root domain's lock
|
||||
* @root: Pointer to root domain, or containing structure if non-hierarchical
|
||||
*
|
||||
* Optional elements:
|
||||
* @fwnode: Pointer to firmware node associated with the irq_domain. Pretty easy
|
||||
@ -143,7 +145,6 @@ struct irq_domain_chip_generic;
|
||||
* Revmap data, used internally by the irq domain code:
|
||||
* @revmap_size: Size of the linear map table @revmap[]
|
||||
* @revmap_tree: Radix map tree for hwirqs that don't fit in the linear map
|
||||
* @revmap_mutex: Lock for the revmap
|
||||
* @revmap: Linear table of irq_data pointers
|
||||
*/
|
||||
struct irq_domain {
|
||||
@ -153,6 +154,8 @@ struct irq_domain {
|
||||
void *host_data;
|
||||
unsigned int flags;
|
||||
unsigned int mapcount;
|
||||
struct mutex mutex;
|
||||
struct irq_domain *root;
|
||||
|
||||
/* Optional data */
|
||||
struct fwnode_handle *fwnode;
|
||||
@ -171,7 +174,6 @@ struct irq_domain {
|
||||
irq_hw_number_t hwirq_max;
|
||||
unsigned int revmap_size;
|
||||
struct radix_tree_root revmap_tree;
|
||||
struct mutex revmap_mutex;
|
||||
struct irq_data __rcu *revmap[];
|
||||
};
|
||||
|
||||
|
@ -86,6 +86,11 @@ config GENERIC_IRQ_IPI
|
||||
depends on SMP
|
||||
select IRQ_DOMAIN_HIERARCHY
|
||||
|
||||
# Generic IRQ IPI Mux support
|
||||
config GENERIC_IRQ_IPI_MUX
|
||||
bool
|
||||
depends on SMP
|
||||
|
||||
# Generic MSI hierarchical interrupt domain support
|
||||
config GENERIC_MSI_IRQ
|
||||
bool
|
||||
|
@ -15,6 +15,7 @@ obj-$(CONFIG_GENERIC_IRQ_MIGRATION) += cpuhotplug.o
|
||||
obj-$(CONFIG_PM_SLEEP) += pm.o
|
||||
obj-$(CONFIG_GENERIC_MSI_IRQ) += msi.o
|
||||
obj-$(CONFIG_GENERIC_IRQ_IPI) += ipi.o
|
||||
obj-$(CONFIG_GENERIC_IRQ_IPI_MUX) += ipi-mux.o
|
||||
obj-$(CONFIG_SMP) += affinity.o
|
||||
obj-$(CONFIG_GENERIC_IRQ_DEBUGFS) += debugfs.o
|
||||
obj-$(CONFIG_GENERIC_IRQ_MATRIX_ALLOCATOR) += matrix.o
|
||||
|
@ -7,398 +7,7 @@
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/cpu.h>
|
||||
#include <linux/sort.h>
|
||||
|
||||
static void irq_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk,
|
||||
unsigned int cpus_per_vec)
|
||||
{
|
||||
const struct cpumask *siblmsk;
|
||||
int cpu, sibl;
|
||||
|
||||
for ( ; cpus_per_vec > 0; ) {
|
||||
cpu = cpumask_first(nmsk);
|
||||
|
||||
/* Should not happen, but I'm too lazy to think about it */
|
||||
if (cpu >= nr_cpu_ids)
|
||||
return;
|
||||
|
||||
cpumask_clear_cpu(cpu, nmsk);
|
||||
cpumask_set_cpu(cpu, irqmsk);
|
||||
cpus_per_vec--;
|
||||
|
||||
/* If the cpu has siblings, use them first */
|
||||
siblmsk = topology_sibling_cpumask(cpu);
|
||||
for (sibl = -1; cpus_per_vec > 0; ) {
|
||||
sibl = cpumask_next(sibl, siblmsk);
|
||||
if (sibl >= nr_cpu_ids)
|
||||
break;
|
||||
if (!cpumask_test_and_clear_cpu(sibl, nmsk))
|
||||
continue;
|
||||
cpumask_set_cpu(sibl, irqmsk);
|
||||
cpus_per_vec--;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static cpumask_var_t *alloc_node_to_cpumask(void)
|
||||
{
|
||||
cpumask_var_t *masks;
|
||||
int node;
|
||||
|
||||
masks = kcalloc(nr_node_ids, sizeof(cpumask_var_t), GFP_KERNEL);
|
||||
if (!masks)
|
||||
return NULL;
|
||||
|
||||
for (node = 0; node < nr_node_ids; node++) {
|
||||
if (!zalloc_cpumask_var(&masks[node], GFP_KERNEL))
|
||||
goto out_unwind;
|
||||
}
|
||||
|
||||
return masks;
|
||||
|
||||
out_unwind:
|
||||
while (--node >= 0)
|
||||
free_cpumask_var(masks[node]);
|
||||
kfree(masks);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static void free_node_to_cpumask(cpumask_var_t *masks)
|
||||
{
|
||||
int node;
|
||||
|
||||
for (node = 0; node < nr_node_ids; node++)
|
||||
free_cpumask_var(masks[node]);
|
||||
kfree(masks);
|
||||
}
|
||||
|
||||
static void build_node_to_cpumask(cpumask_var_t *masks)
|
||||
{
|
||||
int cpu;
|
||||
|
||||
for_each_possible_cpu(cpu)
|
||||
cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]);
|
||||
}
|
||||
|
||||
static int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask,
|
||||
const struct cpumask *mask, nodemask_t *nodemsk)
|
||||
{
|
||||
int n, nodes = 0;
|
||||
|
||||
/* Calculate the number of nodes in the supplied affinity mask */
|
||||
for_each_node(n) {
|
||||
if (cpumask_intersects(mask, node_to_cpumask[n])) {
|
||||
node_set(n, *nodemsk);
|
||||
nodes++;
|
||||
}
|
||||
}
|
||||
return nodes;
|
||||
}
|
||||
|
||||
struct node_vectors {
|
||||
unsigned id;
|
||||
|
||||
union {
|
||||
unsigned nvectors;
|
||||
unsigned ncpus;
|
||||
};
|
||||
};
|
||||
|
||||
static int ncpus_cmp_func(const void *l, const void *r)
|
||||
{
|
||||
const struct node_vectors *ln = l;
|
||||
const struct node_vectors *rn = r;
|
||||
|
||||
return ln->ncpus - rn->ncpus;
|
||||
}
|
||||
|
||||
/*
|
||||
* Allocate vector number for each node, so that for each node:
|
||||
*
|
||||
* 1) the allocated number is >= 1
|
||||
*
|
||||
* 2) the allocated numbver is <= active CPU number of this node
|
||||
*
|
||||
* The actual allocated total vectors may be less than @numvecs when
|
||||
* active total CPU number is less than @numvecs.
|
||||
*
|
||||
* Active CPUs means the CPUs in '@cpu_mask AND @node_to_cpumask[]'
|
||||
* for each node.
|
||||
*/
|
||||
static void alloc_nodes_vectors(unsigned int numvecs,
|
||||
cpumask_var_t *node_to_cpumask,
|
||||
const struct cpumask *cpu_mask,
|
||||
const nodemask_t nodemsk,
|
||||
struct cpumask *nmsk,
|
||||
struct node_vectors *node_vectors)
|
||||
{
|
||||
unsigned n, remaining_ncpus = 0;
|
||||
|
||||
for (n = 0; n < nr_node_ids; n++) {
|
||||
node_vectors[n].id = n;
|
||||
node_vectors[n].ncpus = UINT_MAX;
|
||||
}
|
||||
|
||||
for_each_node_mask(n, nodemsk) {
|
||||
unsigned ncpus;
|
||||
|
||||
cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
|
||||
ncpus = cpumask_weight(nmsk);
|
||||
|
||||
if (!ncpus)
|
||||
continue;
|
||||
remaining_ncpus += ncpus;
|
||||
node_vectors[n].ncpus = ncpus;
|
||||
}
|
||||
|
||||
numvecs = min_t(unsigned, remaining_ncpus, numvecs);
|
||||
|
||||
sort(node_vectors, nr_node_ids, sizeof(node_vectors[0]),
|
||||
ncpus_cmp_func, NULL);
|
||||
|
||||
/*
|
||||
* Allocate vectors for each node according to the ratio of this
|
||||
* node's nr_cpus to remaining un-assigned ncpus. 'numvecs' is
|
||||
* bigger than number of active numa nodes. Always start the
|
||||
* allocation from the node with minimized nr_cpus.
|
||||
*
|
||||
* This way guarantees that each active node gets allocated at
|
||||
* least one vector, and the theory is simple: over-allocation
|
||||
* is only done when this node is assigned by one vector, so
|
||||
* other nodes will be allocated >= 1 vector, since 'numvecs' is
|
||||
* bigger than number of numa nodes.
|
||||
*
|
||||
* One perfect invariant is that number of allocated vectors for
|
||||
* each node is <= CPU count of this node:
|
||||
*
|
||||
* 1) suppose there are two nodes: A and B
|
||||
* ncpu(X) is CPU count of node X
|
||||
* vecs(X) is the vector count allocated to node X via this
|
||||
* algorithm
|
||||
*
|
||||
* ncpu(A) <= ncpu(B)
|
||||
* ncpu(A) + ncpu(B) = N
|
||||
* vecs(A) + vecs(B) = V
|
||||
*
|
||||
* vecs(A) = max(1, round_down(V * ncpu(A) / N))
|
||||
* vecs(B) = V - vecs(A)
|
||||
*
|
||||
* both N and V are integer, and 2 <= V <= N, suppose
|
||||
* V = N - delta, and 0 <= delta <= N - 2
|
||||
*
|
||||
* 2) obviously vecs(A) <= ncpu(A) because:
|
||||
*
|
||||
* if vecs(A) is 1, then vecs(A) <= ncpu(A) given
|
||||
* ncpu(A) >= 1
|
||||
*
|
||||
* otherwise,
|
||||
* vecs(A) <= V * ncpu(A) / N <= ncpu(A), given V <= N
|
||||
*
|
||||
* 3) prove how vecs(B) <= ncpu(B):
|
||||
*
|
||||
* if round_down(V * ncpu(A) / N) == 0, vecs(B) won't be
|
||||
* over-allocated, so vecs(B) <= ncpu(B),
|
||||
*
|
||||
* otherwise:
|
||||
*
|
||||
* vecs(A) =
|
||||
* round_down(V * ncpu(A) / N) =
|
||||
* round_down((N - delta) * ncpu(A) / N) =
|
||||
* round_down((N * ncpu(A) - delta * ncpu(A)) / N) >=
|
||||
* round_down((N * ncpu(A) - delta * N) / N) =
|
||||
* cpu(A) - delta
|
||||
*
|
||||
* then:
|
||||
*
|
||||
* vecs(A) - V >= ncpu(A) - delta - V
|
||||
* =>
|
||||
* V - vecs(A) <= V + delta - ncpu(A)
|
||||
* =>
|
||||
* vecs(B) <= N - ncpu(A)
|
||||
* =>
|
||||
* vecs(B) <= cpu(B)
|
||||
*
|
||||
* For nodes >= 3, it can be thought as one node and another big
|
||||
* node given that is exactly what this algorithm is implemented,
|
||||
* and we always re-calculate 'remaining_ncpus' & 'numvecs', and
|
||||
* finally for each node X: vecs(X) <= ncpu(X).
|
||||
*
|
||||
*/
|
||||
for (n = 0; n < nr_node_ids; n++) {
|
||||
unsigned nvectors, ncpus;
|
||||
|
||||
if (node_vectors[n].ncpus == UINT_MAX)
|
||||
continue;
|
||||
|
||||
WARN_ON_ONCE(numvecs == 0);
|
||||
|
||||
ncpus = node_vectors[n].ncpus;
|
||||
nvectors = max_t(unsigned, 1,
|
||||
numvecs * ncpus / remaining_ncpus);
|
||||
WARN_ON_ONCE(nvectors > ncpus);
|
||||
|
||||
node_vectors[n].nvectors = nvectors;
|
||||
|
||||
remaining_ncpus -= ncpus;
|
||||
numvecs -= nvectors;
|
||||
}
|
||||
}
|
||||
|
||||
static int __irq_build_affinity_masks(unsigned int startvec,
|
||||
unsigned int numvecs,
|
||||
unsigned int firstvec,
|
||||
cpumask_var_t *node_to_cpumask,
|
||||
const struct cpumask *cpu_mask,
|
||||
struct cpumask *nmsk,
|
||||
struct irq_affinity_desc *masks)
|
||||
{
|
||||
unsigned int i, n, nodes, cpus_per_vec, extra_vecs, done = 0;
|
||||
unsigned int last_affv = firstvec + numvecs;
|
||||
unsigned int curvec = startvec;
|
||||
nodemask_t nodemsk = NODE_MASK_NONE;
|
||||
struct node_vectors *node_vectors;
|
||||
|
||||
if (cpumask_empty(cpu_mask))
|
||||
return 0;
|
||||
|
||||
nodes = get_nodes_in_cpumask(node_to_cpumask, cpu_mask, &nodemsk);
|
||||
|
||||
/*
|
||||
* If the number of nodes in the mask is greater than or equal the
|
||||
* number of vectors we just spread the vectors across the nodes.
|
||||
*/
|
||||
if (numvecs <= nodes) {
|
||||
for_each_node_mask(n, nodemsk) {
|
||||
/* Ensure that only CPUs which are in both masks are set */
|
||||
cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
|
||||
cpumask_or(&masks[curvec].mask, &masks[curvec].mask, nmsk);
|
||||
if (++curvec == last_affv)
|
||||
curvec = firstvec;
|
||||
}
|
||||
return numvecs;
|
||||
}
|
||||
|
||||
node_vectors = kcalloc(nr_node_ids,
|
||||
sizeof(struct node_vectors),
|
||||
GFP_KERNEL);
|
||||
if (!node_vectors)
|
||||
return -ENOMEM;
|
||||
|
||||
/* allocate vector number for each node */
|
||||
alloc_nodes_vectors(numvecs, node_to_cpumask, cpu_mask,
|
||||
nodemsk, nmsk, node_vectors);
|
||||
|
||||
for (i = 0; i < nr_node_ids; i++) {
|
||||
unsigned int ncpus, v;
|
||||
struct node_vectors *nv = &node_vectors[i];
|
||||
|
||||
if (nv->nvectors == UINT_MAX)
|
||||
continue;
|
||||
|
||||
/* Get the cpus on this node which are in the mask */
|
||||
cpumask_and(nmsk, cpu_mask, node_to_cpumask[nv->id]);
|
||||
ncpus = cpumask_weight(nmsk);
|
||||
if (!ncpus)
|
||||
continue;
|
||||
|
||||
WARN_ON_ONCE(nv->nvectors > ncpus);
|
||||
|
||||
/* Account for rounding errors */
|
||||
extra_vecs = ncpus - nv->nvectors * (ncpus / nv->nvectors);
|
||||
|
||||
/* Spread allocated vectors on CPUs of the current node */
|
||||
for (v = 0; v < nv->nvectors; v++, curvec++) {
|
||||
cpus_per_vec = ncpus / nv->nvectors;
|
||||
|
||||
/* Account for extra vectors to compensate rounding errors */
|
||||
if (extra_vecs) {
|
||||
cpus_per_vec++;
|
||||
--extra_vecs;
|
||||
}
|
||||
|
||||
/*
|
||||
* wrapping has to be considered given 'startvec'
|
||||
* may start anywhere
|
||||
*/
|
||||
if (curvec >= last_affv)
|
||||
curvec = firstvec;
|
||||
irq_spread_init_one(&masks[curvec].mask, nmsk,
|
||||
cpus_per_vec);
|
||||
}
|
||||
done += nv->nvectors;
|
||||
}
|
||||
kfree(node_vectors);
|
||||
return done;
|
||||
}
|
||||
|
||||
/*
|
||||
* build affinity in two stages:
|
||||
* 1) spread present CPU on these vectors
|
||||
* 2) spread other possible CPUs on these vectors
|
||||
*/
|
||||
static int irq_build_affinity_masks(unsigned int startvec, unsigned int numvecs,
|
||||
unsigned int firstvec,
|
||||
struct irq_affinity_desc *masks)
|
||||
{
|
||||
unsigned int curvec = startvec, nr_present = 0, nr_others = 0;
|
||||
cpumask_var_t *node_to_cpumask;
|
||||
cpumask_var_t nmsk, npresmsk;
|
||||
int ret = -ENOMEM;
|
||||
|
||||
if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL))
|
||||
return ret;
|
||||
|
||||
if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL))
|
||||
goto fail_nmsk;
|
||||
|
||||
node_to_cpumask = alloc_node_to_cpumask();
|
||||
if (!node_to_cpumask)
|
||||
goto fail_npresmsk;
|
||||
|
||||
/* Stabilize the cpumasks */
|
||||
cpus_read_lock();
|
||||
build_node_to_cpumask(node_to_cpumask);
|
||||
|
||||
/* Spread on present CPUs starting from affd->pre_vectors */
|
||||
ret = __irq_build_affinity_masks(curvec, numvecs, firstvec,
|
||||
node_to_cpumask, cpu_present_mask,
|
||||
nmsk, masks);
|
||||
if (ret < 0)
|
||||
goto fail_build_affinity;
|
||||
nr_present = ret;
|
||||
|
||||
/*
|
||||
* Spread on non present CPUs starting from the next vector to be
|
||||
* handled. If the spreading of present CPUs already exhausted the
|
||||
* vector space, assign the non present CPUs to the already spread
|
||||
* out vectors.
|
||||
*/
|
||||
if (nr_present >= numvecs)
|
||||
curvec = firstvec;
|
||||
else
|
||||
curvec = firstvec + nr_present;
|
||||
cpumask_andnot(npresmsk, cpu_possible_mask, cpu_present_mask);
|
||||
ret = __irq_build_affinity_masks(curvec, numvecs, firstvec,
|
||||
node_to_cpumask, npresmsk, nmsk,
|
||||
masks);
|
||||
if (ret >= 0)
|
||||
nr_others = ret;
|
||||
|
||||
fail_build_affinity:
|
||||
cpus_read_unlock();
|
||||
|
||||
if (ret >= 0)
|
||||
WARN_ON(nr_present + nr_others < numvecs);
|
||||
|
||||
free_node_to_cpumask(node_to_cpumask);
|
||||
|
||||
fail_npresmsk:
|
||||
free_cpumask_var(npresmsk);
|
||||
|
||||
fail_nmsk:
|
||||
free_cpumask_var(nmsk);
|
||||
return ret < 0 ? ret : 0;
|
||||
}
|
||||
#include <linux/group_cpus.h>
|
||||
|
||||
static void default_calc_sets(struct irq_affinity *affd, unsigned int affvecs)
|
||||
{
|
||||
@ -461,14 +70,18 @@ irq_create_affinity_masks(unsigned int nvecs, struct irq_affinity *affd)
|
||||
*/
|
||||
for (i = 0, usedvecs = 0; i < affd->nr_sets; i++) {
|
||||
unsigned int this_vecs = affd->set_size[i];
|
||||
int ret;
|
||||
int j;
|
||||
struct cpumask *result = group_cpus_evenly(this_vecs);
|
||||
|
||||
ret = irq_build_affinity_masks(curvec, this_vecs,
|
||||
curvec, masks);
|
||||
if (ret) {
|
||||
if (!result) {
|
||||
kfree(masks);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
for (j = 0; j < this_vecs; j++)
|
||||
cpumask_copy(&masks[curvec + j].mask, &result[j]);
|
||||
kfree(result);
|
||||
|
||||
curvec += this_vecs;
|
||||
usedvecs += this_vecs;
|
||||
}
|
||||
|
206
kernel/irq/ipi-mux.c
Normal file
206
kernel/irq/ipi-mux.c
Normal file
@ -0,0 +1,206 @@
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
/*
|
||||
* Multiplex several virtual IPIs over a single HW IPI.
|
||||
*
|
||||
* Copyright The Asahi Linux Contributors
|
||||
* Copyright (c) 2022 Ventana Micro Systems Inc.
|
||||
*/
|
||||
|
||||
#define pr_fmt(fmt) "ipi-mux: " fmt
|
||||
#include <linux/cpu.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/irq.h>
|
||||
#include <linux/irqchip.h>
|
||||
#include <linux/irqchip/chained_irq.h>
|
||||
#include <linux/irqdomain.h>
|
||||
#include <linux/jump_label.h>
|
||||
#include <linux/percpu.h>
|
||||
#include <linux/smp.h>
|
||||
|
||||
struct ipi_mux_cpu {
|
||||
atomic_t enable;
|
||||
atomic_t bits;
|
||||
};
|
||||
|
||||
static struct ipi_mux_cpu __percpu *ipi_mux_pcpu;
|
||||
static struct irq_domain *ipi_mux_domain;
|
||||
static void (*ipi_mux_send)(unsigned int cpu);
|
||||
|
||||
static void ipi_mux_mask(struct irq_data *d)
|
||||
{
|
||||
struct ipi_mux_cpu *icpu = this_cpu_ptr(ipi_mux_pcpu);
|
||||
|
||||
atomic_andnot(BIT(irqd_to_hwirq(d)), &icpu->enable);
|
||||
}
|
||||
|
||||
static void ipi_mux_unmask(struct irq_data *d)
|
||||
{
|
||||
struct ipi_mux_cpu *icpu = this_cpu_ptr(ipi_mux_pcpu);
|
||||
u32 ibit = BIT(irqd_to_hwirq(d));
|
||||
|
||||
atomic_or(ibit, &icpu->enable);
|
||||
|
||||
/*
|
||||
* The atomic_or() above must complete before the atomic_read()
|
||||
* below to avoid racing ipi_mux_send_mask().
|
||||
*/
|
||||
smp_mb__after_atomic();
|
||||
|
||||
/* If a pending IPI was unmasked, raise a parent IPI immediately. */
|
||||
if (atomic_read(&icpu->bits) & ibit)
|
||||
ipi_mux_send(smp_processor_id());
|
||||
}
|
||||
|
||||
static void ipi_mux_send_mask(struct irq_data *d, const struct cpumask *mask)
|
||||
{
|
||||
struct ipi_mux_cpu *icpu = this_cpu_ptr(ipi_mux_pcpu);
|
||||
u32 ibit = BIT(irqd_to_hwirq(d));
|
||||
unsigned long pending;
|
||||
int cpu;
|
||||
|
||||
for_each_cpu(cpu, mask) {
|
||||
icpu = per_cpu_ptr(ipi_mux_pcpu, cpu);
|
||||
|
||||
/*
|
||||
* This sequence is the mirror of the one in ipi_mux_unmask();
|
||||
* see the comment there. Additionally, release semantics
|
||||
* ensure that the vIPI flag set is ordered after any shared
|
||||
* memory accesses that precede it. This therefore also pairs
|
||||
* with the atomic_fetch_andnot in ipi_mux_process().
|
||||
*/
|
||||
pending = atomic_fetch_or_release(ibit, &icpu->bits);
|
||||
|
||||
/*
|
||||
* The atomic_fetch_or_release() above must complete
|
||||
* before the atomic_read() below to avoid racing with
|
||||
* ipi_mux_unmask().
|
||||
*/
|
||||
smp_mb__after_atomic();
|
||||
|
||||
/*
|
||||
* The flag writes must complete before the physical IPI is
|
||||
* issued to another CPU. This is implied by the control
|
||||
* dependency on the result of atomic_read() below, which is
|
||||
* itself already ordered after the vIPI flag write.
|
||||
*/
|
||||
if (!(pending & ibit) && (atomic_read(&icpu->enable) & ibit))
|
||||
ipi_mux_send(cpu);
|
||||
}
|
||||
}
|
||||
|
||||
static const struct irq_chip ipi_mux_chip = {
|
||||
.name = "IPI Mux",
|
||||
.irq_mask = ipi_mux_mask,
|
||||
.irq_unmask = ipi_mux_unmask,
|
||||
.ipi_send_mask = ipi_mux_send_mask,
|
||||
};
|
||||
|
||||
static int ipi_mux_domain_alloc(struct irq_domain *d, unsigned int virq,
|
||||
unsigned int nr_irqs, void *arg)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < nr_irqs; i++) {
|
||||
irq_set_percpu_devid(virq + i);
|
||||
irq_domain_set_info(d, virq + i, i, &ipi_mux_chip, NULL,
|
||||
handle_percpu_devid_irq, NULL, NULL);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static const struct irq_domain_ops ipi_mux_domain_ops = {
|
||||
.alloc = ipi_mux_domain_alloc,
|
||||
.free = irq_domain_free_irqs_top,
|
||||
};
|
||||
|
||||
/**
|
||||
* ipi_mux_process - Process multiplexed virtual IPIs
|
||||
*/
|
||||
void ipi_mux_process(void)
|
||||
{
|
||||
struct ipi_mux_cpu *icpu = this_cpu_ptr(ipi_mux_pcpu);
|
||||
irq_hw_number_t hwirq;
|
||||
unsigned long ipis;
|
||||
unsigned int en;
|
||||
|
||||
/*
|
||||
* Reading enable mask does not need to be ordered as long as
|
||||
* this function is called from interrupt handler because only
|
||||
* the CPU itself can change it's own enable mask.
|
||||
*/
|
||||
en = atomic_read(&icpu->enable);
|
||||
|
||||
/*
|
||||
* Clear the IPIs we are about to handle. This pairs with the
|
||||
* atomic_fetch_or_release() in ipi_mux_send_mask().
|
||||
*/
|
||||
ipis = atomic_fetch_andnot(en, &icpu->bits) & en;
|
||||
|
||||
for_each_set_bit(hwirq, &ipis, BITS_PER_TYPE(int))
|
||||
generic_handle_domain_irq(ipi_mux_domain, hwirq);
|
||||
}
|
||||
|
||||
/**
|
||||
* ipi_mux_create - Create virtual IPIs multiplexed on top of a single
|
||||
* parent IPI.
|
||||
* @nr_ipi: number of virtual IPIs to create. This should
|
||||
* be <= BITS_PER_TYPE(int)
|
||||
* @mux_send: callback to trigger parent IPI for a particular CPU
|
||||
*
|
||||
* Returns first virq of the newly created virtual IPIs upon success
|
||||
* or <=0 upon failure
|
||||
*/
|
||||
int ipi_mux_create(unsigned int nr_ipi, void (*mux_send)(unsigned int cpu))
|
||||
{
|
||||
struct fwnode_handle *fwnode;
|
||||
struct irq_domain *domain;
|
||||
int rc;
|
||||
|
||||
if (ipi_mux_domain)
|
||||
return -EEXIST;
|
||||
|
||||
if (BITS_PER_TYPE(int) < nr_ipi || !mux_send)
|
||||
return -EINVAL;
|
||||
|
||||
ipi_mux_pcpu = alloc_percpu(typeof(*ipi_mux_pcpu));
|
||||
if (!ipi_mux_pcpu)
|
||||
return -ENOMEM;
|
||||
|
||||
fwnode = irq_domain_alloc_named_fwnode("IPI-Mux");
|
||||
if (!fwnode) {
|
||||
pr_err("unable to create IPI Mux fwnode\n");
|
||||
rc = -ENOMEM;
|
||||
goto fail_free_cpu;
|
||||
}
|
||||
|
||||
domain = irq_domain_create_linear(fwnode, nr_ipi,
|
||||
&ipi_mux_domain_ops, NULL);
|
||||
if (!domain) {
|
||||
pr_err("unable to add IPI Mux domain\n");
|
||||
rc = -ENOMEM;
|
||||
goto fail_free_fwnode;
|
||||
}
|
||||
|
||||
domain->flags |= IRQ_DOMAIN_FLAG_IPI_SINGLE;
|
||||
irq_domain_update_bus_token(domain, DOMAIN_BUS_IPI);
|
||||
|
||||
rc = irq_domain_alloc_irqs(domain, nr_ipi, NUMA_NO_NODE, NULL);
|
||||
if (rc <= 0) {
|
||||
pr_err("unable to alloc IRQs from IPI Mux domain\n");
|
||||
goto fail_free_domain;
|
||||
}
|
||||
|
||||
ipi_mux_domain = domain;
|
||||
ipi_mux_send = mux_send;
|
||||
|
||||
return rc;
|
||||
|
||||
fail_free_domain:
|
||||
irq_domain_remove(domain);
|
||||
fail_free_fwnode:
|
||||
irq_domain_free_fwnode(fwnode);
|
||||
fail_free_cpu:
|
||||
free_percpu(ipi_mux_pcpu);
|
||||
return rc;
|
||||
}
|
@ -25,6 +25,9 @@ static DEFINE_MUTEX(irq_domain_mutex);
|
||||
|
||||
static struct irq_domain *irq_default_domain;
|
||||
|
||||
static int irq_domain_alloc_irqs_locked(struct irq_domain *domain, int irq_base,
|
||||
unsigned int nr_irqs, int node, void *arg,
|
||||
bool realloc, const struct irq_affinity_desc *affinity);
|
||||
static void irq_domain_check_hierarchy(struct irq_domain *domain);
|
||||
|
||||
struct irqchip_fwid {
|
||||
@ -123,23 +126,12 @@ void irq_domain_free_fwnode(struct fwnode_handle *fwnode)
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(irq_domain_free_fwnode);
|
||||
|
||||
/**
|
||||
* __irq_domain_add() - Allocate a new irq_domain data structure
|
||||
* @fwnode: firmware node for the interrupt controller
|
||||
* @size: Size of linear map; 0 for radix mapping only
|
||||
* @hwirq_max: Maximum number of interrupts supported by controller
|
||||
* @direct_max: Maximum value of direct maps; Use ~0 for no limit; 0 for no
|
||||
* direct mapping
|
||||
* @ops: domain callbacks
|
||||
* @host_data: Controller private data pointer
|
||||
*
|
||||
* Allocates and initializes an irq_domain structure.
|
||||
* Returns pointer to IRQ domain, or NULL on failure.
|
||||
*/
|
||||
struct irq_domain *__irq_domain_add(struct fwnode_handle *fwnode, unsigned int size,
|
||||
irq_hw_number_t hwirq_max, int direct_max,
|
||||
const struct irq_domain_ops *ops,
|
||||
void *host_data)
|
||||
static struct irq_domain *__irq_domain_create(struct fwnode_handle *fwnode,
|
||||
unsigned int size,
|
||||
irq_hw_number_t hwirq_max,
|
||||
int direct_max,
|
||||
const struct irq_domain_ops *ops,
|
||||
void *host_data)
|
||||
{
|
||||
struct irqchip_fwid *fwid;
|
||||
struct irq_domain *domain;
|
||||
@ -214,25 +206,66 @@ struct irq_domain *__irq_domain_add(struct fwnode_handle *fwnode, unsigned int s
|
||||
|
||||
/* Fill structure */
|
||||
INIT_RADIX_TREE(&domain->revmap_tree, GFP_KERNEL);
|
||||
mutex_init(&domain->revmap_mutex);
|
||||
domain->ops = ops;
|
||||
domain->host_data = host_data;
|
||||
domain->hwirq_max = hwirq_max;
|
||||
|
||||
if (direct_max) {
|
||||
if (direct_max)
|
||||
domain->flags |= IRQ_DOMAIN_FLAG_NO_MAP;
|
||||
}
|
||||
|
||||
domain->revmap_size = size;
|
||||
|
||||
/*
|
||||
* Hierarchical domains use the domain lock of the root domain
|
||||
* (innermost domain).
|
||||
*
|
||||
* For non-hierarchical domains (as for root domains), the root
|
||||
* pointer is set to the domain itself so that &domain->root->mutex
|
||||
* always points to the right lock.
|
||||
*/
|
||||
mutex_init(&domain->mutex);
|
||||
domain->root = domain;
|
||||
|
||||
irq_domain_check_hierarchy(domain);
|
||||
|
||||
return domain;
|
||||
}
|
||||
|
||||
static void __irq_domain_publish(struct irq_domain *domain)
|
||||
{
|
||||
mutex_lock(&irq_domain_mutex);
|
||||
debugfs_add_domain_dir(domain);
|
||||
list_add(&domain->link, &irq_domain_list);
|
||||
mutex_unlock(&irq_domain_mutex);
|
||||
|
||||
pr_debug("Added domain %s\n", domain->name);
|
||||
}
|
||||
|
||||
/**
|
||||
* __irq_domain_add() - Allocate a new irq_domain data structure
|
||||
* @fwnode: firmware node for the interrupt controller
|
||||
* @size: Size of linear map; 0 for radix mapping only
|
||||
* @hwirq_max: Maximum number of interrupts supported by controller
|
||||
* @direct_max: Maximum value of direct maps; Use ~0 for no limit; 0 for no
|
||||
* direct mapping
|
||||
* @ops: domain callbacks
|
||||
* @host_data: Controller private data pointer
|
||||
*
|
||||
* Allocates and initializes an irq_domain structure.
|
||||
* Returns pointer to IRQ domain, or NULL on failure.
|
||||
*/
|
||||
struct irq_domain *__irq_domain_add(struct fwnode_handle *fwnode, unsigned int size,
|
||||
irq_hw_number_t hwirq_max, int direct_max,
|
||||
const struct irq_domain_ops *ops,
|
||||
void *host_data)
|
||||
{
|
||||
struct irq_domain *domain;
|
||||
|
||||
domain = __irq_domain_create(fwnode, size, hwirq_max, direct_max,
|
||||
ops, host_data);
|
||||
if (domain)
|
||||
__irq_domain_publish(domain);
|
||||
|
||||
return domain;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(__irq_domain_add);
|
||||
@ -502,30 +535,34 @@ static bool irq_domain_is_nomap(struct irq_domain *domain)
|
||||
static void irq_domain_clear_mapping(struct irq_domain *domain,
|
||||
irq_hw_number_t hwirq)
|
||||
{
|
||||
lockdep_assert_held(&domain->root->mutex);
|
||||
|
||||
if (irq_domain_is_nomap(domain))
|
||||
return;
|
||||
|
||||
mutex_lock(&domain->revmap_mutex);
|
||||
if (hwirq < domain->revmap_size)
|
||||
rcu_assign_pointer(domain->revmap[hwirq], NULL);
|
||||
else
|
||||
radix_tree_delete(&domain->revmap_tree, hwirq);
|
||||
mutex_unlock(&domain->revmap_mutex);
|
||||
}
|
||||
|
||||
static void irq_domain_set_mapping(struct irq_domain *domain,
|
||||
irq_hw_number_t hwirq,
|
||||
struct irq_data *irq_data)
|
||||
{
|
||||
/*
|
||||
* This also makes sure that all domains point to the same root when
|
||||
* called from irq_domain_insert_irq() for each domain in a hierarchy.
|
||||
*/
|
||||
lockdep_assert_held(&domain->root->mutex);
|
||||
|
||||
if (irq_domain_is_nomap(domain))
|
||||
return;
|
||||
|
||||
mutex_lock(&domain->revmap_mutex);
|
||||
if (hwirq < domain->revmap_size)
|
||||
rcu_assign_pointer(domain->revmap[hwirq], irq_data);
|
||||
else
|
||||
radix_tree_insert(&domain->revmap_tree, hwirq, irq_data);
|
||||
mutex_unlock(&domain->revmap_mutex);
|
||||
}
|
||||
|
||||
static void irq_domain_disassociate(struct irq_domain *domain, unsigned int irq)
|
||||
@ -538,6 +575,9 @@ static void irq_domain_disassociate(struct irq_domain *domain, unsigned int irq)
|
||||
return;
|
||||
|
||||
hwirq = irq_data->hwirq;
|
||||
|
||||
mutex_lock(&domain->root->mutex);
|
||||
|
||||
irq_set_status_flags(irq, IRQ_NOREQUEST);
|
||||
|
||||
/* remove chip and handler */
|
||||
@ -557,10 +597,12 @@ static void irq_domain_disassociate(struct irq_domain *domain, unsigned int irq)
|
||||
|
||||
/* Clear reverse map for this hwirq */
|
||||
irq_domain_clear_mapping(domain, hwirq);
|
||||
|
||||
mutex_unlock(&domain->root->mutex);
|
||||
}
|
||||
|
||||
int irq_domain_associate(struct irq_domain *domain, unsigned int virq,
|
||||
irq_hw_number_t hwirq)
|
||||
static int irq_domain_associate_locked(struct irq_domain *domain, unsigned int virq,
|
||||
irq_hw_number_t hwirq)
|
||||
{
|
||||
struct irq_data *irq_data = irq_get_irq_data(virq);
|
||||
int ret;
|
||||
@ -573,7 +615,6 @@ int irq_domain_associate(struct irq_domain *domain, unsigned int virq,
|
||||
if (WARN(irq_data->domain, "error: virq%i is already associated", virq))
|
||||
return -EINVAL;
|
||||
|
||||
mutex_lock(&irq_domain_mutex);
|
||||
irq_data->hwirq = hwirq;
|
||||
irq_data->domain = domain;
|
||||
if (domain->ops->map) {
|
||||
@ -590,23 +631,29 @@ int irq_domain_associate(struct irq_domain *domain, unsigned int virq,
|
||||
}
|
||||
irq_data->domain = NULL;
|
||||
irq_data->hwirq = 0;
|
||||
mutex_unlock(&irq_domain_mutex);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* If not already assigned, give the domain the chip's name */
|
||||
if (!domain->name && irq_data->chip)
|
||||
domain->name = irq_data->chip->name;
|
||||
}
|
||||
|
||||
domain->mapcount++;
|
||||
irq_domain_set_mapping(domain, hwirq, irq_data);
|
||||
mutex_unlock(&irq_domain_mutex);
|
||||
|
||||
irq_clear_status_flags(virq, IRQ_NOREQUEST);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int irq_domain_associate(struct irq_domain *domain, unsigned int virq,
|
||||
irq_hw_number_t hwirq)
|
||||
{
|
||||
int ret;
|
||||
|
||||
mutex_lock(&domain->root->mutex);
|
||||
ret = irq_domain_associate_locked(domain, virq, hwirq);
|
||||
mutex_unlock(&domain->root->mutex);
|
||||
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(irq_domain_associate);
|
||||
|
||||
void irq_domain_associate_many(struct irq_domain *domain, unsigned int irq_base,
|
||||
@ -619,9 +666,8 @@ void irq_domain_associate_many(struct irq_domain *domain, unsigned int irq_base,
|
||||
pr_debug("%s(%s, irqbase=%i, hwbase=%i, count=%i)\n", __func__,
|
||||
of_node_full_name(of_node), irq_base, (int)hwirq_base, count);
|
||||
|
||||
for (i = 0; i < count; i++) {
|
||||
for (i = 0; i < count; i++)
|
||||
irq_domain_associate(domain, irq_base + i, hwirq_base + i);
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(irq_domain_associate_many);
|
||||
|
||||
@ -668,6 +714,34 @@ unsigned int irq_create_direct_mapping(struct irq_domain *domain)
|
||||
EXPORT_SYMBOL_GPL(irq_create_direct_mapping);
|
||||
#endif
|
||||
|
||||
static unsigned int irq_create_mapping_affinity_locked(struct irq_domain *domain,
|
||||
irq_hw_number_t hwirq,
|
||||
const struct irq_affinity_desc *affinity)
|
||||
{
|
||||
struct device_node *of_node = irq_domain_get_of_node(domain);
|
||||
int virq;
|
||||
|
||||
pr_debug("irq_create_mapping(0x%p, 0x%lx)\n", domain, hwirq);
|
||||
|
||||
/* Allocate a virtual interrupt number */
|
||||
virq = irq_domain_alloc_descs(-1, 1, hwirq, of_node_to_nid(of_node),
|
||||
affinity);
|
||||
if (virq <= 0) {
|
||||
pr_debug("-> virq allocation failed\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (irq_domain_associate_locked(domain, virq, hwirq)) {
|
||||
irq_free_desc(virq);
|
||||
return 0;
|
||||
}
|
||||
|
||||
pr_debug("irq %lu on domain %s mapped to virtual irq %u\n",
|
||||
hwirq, of_node_full_name(of_node), virq);
|
||||
|
||||
return virq;
|
||||
}
|
||||
|
||||
/**
|
||||
* irq_create_mapping_affinity() - Map a hardware interrupt into linux irq space
|
||||
* @domain: domain owning this hardware interrupt or NULL for default domain
|
||||
@ -680,14 +754,11 @@ EXPORT_SYMBOL_GPL(irq_create_direct_mapping);
|
||||
* on the number returned from that call.
|
||||
*/
|
||||
unsigned int irq_create_mapping_affinity(struct irq_domain *domain,
|
||||
irq_hw_number_t hwirq,
|
||||
const struct irq_affinity_desc *affinity)
|
||||
irq_hw_number_t hwirq,
|
||||
const struct irq_affinity_desc *affinity)
|
||||
{
|
||||
struct device_node *of_node;
|
||||
int virq;
|
||||
|
||||
pr_debug("irq_create_mapping(0x%p, 0x%lx)\n", domain, hwirq);
|
||||
|
||||
/* Look for default domain if necessary */
|
||||
if (domain == NULL)
|
||||
domain = irq_default_domain;
|
||||
@ -695,32 +766,19 @@ unsigned int irq_create_mapping_affinity(struct irq_domain *domain,
|
||||
WARN(1, "%s(, %lx) called with NULL domain\n", __func__, hwirq);
|
||||
return 0;
|
||||
}
|
||||
pr_debug("-> using domain @%p\n", domain);
|
||||
|
||||
of_node = irq_domain_get_of_node(domain);
|
||||
mutex_lock(&domain->root->mutex);
|
||||
|
||||
/* Check if mapping already exists */
|
||||
virq = irq_find_mapping(domain, hwirq);
|
||||
if (virq) {
|
||||
pr_debug("-> existing mapping on virq %d\n", virq);
|
||||
return virq;
|
||||
pr_debug("existing mapping on virq %d\n", virq);
|
||||
goto out;
|
||||
}
|
||||
|
||||
/* Allocate a virtual interrupt number */
|
||||
virq = irq_domain_alloc_descs(-1, 1, hwirq, of_node_to_nid(of_node),
|
||||
affinity);
|
||||
if (virq <= 0) {
|
||||
pr_debug("-> virq allocation failed\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (irq_domain_associate(domain, virq, hwirq)) {
|
||||
irq_free_desc(virq);
|
||||
return 0;
|
||||
}
|
||||
|
||||
pr_debug("irq %lu on domain %s mapped to virtual irq %u\n",
|
||||
hwirq, of_node_full_name(of_node), virq);
|
||||
virq = irq_create_mapping_affinity_locked(domain, hwirq, affinity);
|
||||
out:
|
||||
mutex_unlock(&domain->root->mutex);
|
||||
|
||||
return virq;
|
||||
}
|
||||
@ -789,6 +847,8 @@ unsigned int irq_create_fwspec_mapping(struct irq_fwspec *fwspec)
|
||||
if (WARN_ON(type & ~IRQ_TYPE_SENSE_MASK))
|
||||
type &= IRQ_TYPE_SENSE_MASK;
|
||||
|
||||
mutex_lock(&domain->root->mutex);
|
||||
|
||||
/*
|
||||
* If we've already configured this interrupt,
|
||||
* don't do it again, or hell will break loose.
|
||||
@ -801,7 +861,7 @@ unsigned int irq_create_fwspec_mapping(struct irq_fwspec *fwspec)
|
||||
* interrupt number.
|
||||
*/
|
||||
if (type == IRQ_TYPE_NONE || type == irq_get_trigger_type(virq))
|
||||
return virq;
|
||||
goto out;
|
||||
|
||||
/*
|
||||
* If the trigger type has not been set yet, then set
|
||||
@ -809,40 +869,45 @@ unsigned int irq_create_fwspec_mapping(struct irq_fwspec *fwspec)
|
||||
*/
|
||||
if (irq_get_trigger_type(virq) == IRQ_TYPE_NONE) {
|
||||
irq_data = irq_get_irq_data(virq);
|
||||
if (!irq_data)
|
||||
return 0;
|
||||
if (!irq_data) {
|
||||
virq = 0;
|
||||
goto out;
|
||||
}
|
||||
|
||||
irqd_set_trigger_type(irq_data, type);
|
||||
return virq;
|
||||
goto out;
|
||||
}
|
||||
|
||||
pr_warn("type mismatch, failed to map hwirq-%lu for %s!\n",
|
||||
hwirq, of_node_full_name(to_of_node(fwspec->fwnode)));
|
||||
return 0;
|
||||
virq = 0;
|
||||
goto out;
|
||||
}
|
||||
|
||||
if (irq_domain_is_hierarchy(domain)) {
|
||||
virq = irq_domain_alloc_irqs(domain, 1, NUMA_NO_NODE, fwspec);
|
||||
if (virq <= 0)
|
||||
return 0;
|
||||
virq = irq_domain_alloc_irqs_locked(domain, -1, 1, NUMA_NO_NODE,
|
||||
fwspec, false, NULL);
|
||||
if (virq <= 0) {
|
||||
virq = 0;
|
||||
goto out;
|
||||
}
|
||||
} else {
|
||||
/* Create mapping */
|
||||
virq = irq_create_mapping(domain, hwirq);
|
||||
virq = irq_create_mapping_affinity_locked(domain, hwirq, NULL);
|
||||
if (!virq)
|
||||
return virq;
|
||||
goto out;
|
||||
}
|
||||
|
||||
irq_data = irq_get_irq_data(virq);
|
||||
if (!irq_data) {
|
||||
if (irq_domain_is_hierarchy(domain))
|
||||
irq_domain_free_irqs(virq, 1);
|
||||
else
|
||||
irq_dispose_mapping(virq);
|
||||
return 0;
|
||||
if (WARN_ON(!irq_data)) {
|
||||
virq = 0;
|
||||
goto out;
|
||||
}
|
||||
|
||||
/* Store trigger type */
|
||||
irqd_set_trigger_type(irq_data, type);
|
||||
out:
|
||||
mutex_unlock(&domain->root->mutex);
|
||||
|
||||
return virq;
|
||||
}
|
||||
@ -1102,12 +1167,16 @@ struct irq_domain *irq_domain_create_hierarchy(struct irq_domain *parent,
|
||||
struct irq_domain *domain;
|
||||
|
||||
if (size)
|
||||
domain = irq_domain_create_linear(fwnode, size, ops, host_data);
|
||||
domain = __irq_domain_create(fwnode, size, size, 0, ops, host_data);
|
||||
else
|
||||
domain = irq_domain_create_tree(fwnode, ops, host_data);
|
||||
domain = __irq_domain_create(fwnode, 0, ~0, 0, ops, host_data);
|
||||
|
||||
if (domain) {
|
||||
domain->root = parent->root;
|
||||
domain->parent = parent;
|
||||
domain->flags |= flags;
|
||||
|
||||
__irq_domain_publish(domain);
|
||||
}
|
||||
|
||||
return domain;
|
||||
@ -1123,10 +1192,6 @@ static void irq_domain_insert_irq(int virq)
|
||||
|
||||
domain->mapcount++;
|
||||
irq_domain_set_mapping(domain, data->hwirq, data);
|
||||
|
||||
/* If not already assigned, give the domain the chip's name */
|
||||
if (!domain->name && data->chip)
|
||||
domain->name = data->chip->name;
|
||||
}
|
||||
|
||||
irq_clear_status_flags(virq, IRQ_NOREQUEST);
|
||||
@ -1426,6 +1491,52 @@ int irq_domain_alloc_irqs_hierarchy(struct irq_domain *domain,
|
||||
return domain->ops->alloc(domain, irq_base, nr_irqs, arg);
|
||||
}
|
||||
|
||||
static int irq_domain_alloc_irqs_locked(struct irq_domain *domain, int irq_base,
|
||||
unsigned int nr_irqs, int node, void *arg,
|
||||
bool realloc, const struct irq_affinity_desc *affinity)
|
||||
{
|
||||
int i, ret, virq;
|
||||
|
||||
if (realloc && irq_base >= 0) {
|
||||
virq = irq_base;
|
||||
} else {
|
||||
virq = irq_domain_alloc_descs(irq_base, nr_irqs, 0, node,
|
||||
affinity);
|
||||
if (virq < 0) {
|
||||
pr_debug("cannot allocate IRQ(base %d, count %d)\n",
|
||||
irq_base, nr_irqs);
|
||||
return virq;
|
||||
}
|
||||
}
|
||||
|
||||
if (irq_domain_alloc_irq_data(domain, virq, nr_irqs)) {
|
||||
pr_debug("cannot allocate memory for IRQ%d\n", virq);
|
||||
ret = -ENOMEM;
|
||||
goto out_free_desc;
|
||||
}
|
||||
|
||||
ret = irq_domain_alloc_irqs_hierarchy(domain, virq, nr_irqs, arg);
|
||||
if (ret < 0)
|
||||
goto out_free_irq_data;
|
||||
|
||||
for (i = 0; i < nr_irqs; i++) {
|
||||
ret = irq_domain_trim_hierarchy(virq + i);
|
||||
if (ret)
|
||||
goto out_free_irq_data;
|
||||
}
|
||||
|
||||
for (i = 0; i < nr_irqs; i++)
|
||||
irq_domain_insert_irq(virq + i);
|
||||
|
||||
return virq;
|
||||
|
||||
out_free_irq_data:
|
||||
irq_domain_free_irq_data(virq, nr_irqs);
|
||||
out_free_desc:
|
||||
irq_free_descs(virq, nr_irqs);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* __irq_domain_alloc_irqs - Allocate IRQs from domain
|
||||
* @domain: domain to allocate from
|
||||
@ -1452,7 +1563,7 @@ int __irq_domain_alloc_irqs(struct irq_domain *domain, int irq_base,
|
||||
unsigned int nr_irqs, int node, void *arg,
|
||||
bool realloc, const struct irq_affinity_desc *affinity)
|
||||
{
|
||||
int i, ret, virq;
|
||||
int ret;
|
||||
|
||||
if (domain == NULL) {
|
||||
domain = irq_default_domain;
|
||||
@ -1460,49 +1571,11 @@ int __irq_domain_alloc_irqs(struct irq_domain *domain, int irq_base,
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
if (realloc && irq_base >= 0) {
|
||||
virq = irq_base;
|
||||
} else {
|
||||
virq = irq_domain_alloc_descs(irq_base, nr_irqs, 0, node,
|
||||
affinity);
|
||||
if (virq < 0) {
|
||||
pr_debug("cannot allocate IRQ(base %d, count %d)\n",
|
||||
irq_base, nr_irqs);
|
||||
return virq;
|
||||
}
|
||||
}
|
||||
mutex_lock(&domain->root->mutex);
|
||||
ret = irq_domain_alloc_irqs_locked(domain, irq_base, nr_irqs, node, arg,
|
||||
realloc, affinity);
|
||||
mutex_unlock(&domain->root->mutex);
|
||||
|
||||
if (irq_domain_alloc_irq_data(domain, virq, nr_irqs)) {
|
||||
pr_debug("cannot allocate memory for IRQ%d\n", virq);
|
||||
ret = -ENOMEM;
|
||||
goto out_free_desc;
|
||||
}
|
||||
|
||||
mutex_lock(&irq_domain_mutex);
|
||||
ret = irq_domain_alloc_irqs_hierarchy(domain, virq, nr_irqs, arg);
|
||||
if (ret < 0) {
|
||||
mutex_unlock(&irq_domain_mutex);
|
||||
goto out_free_irq_data;
|
||||
}
|
||||
|
||||
for (i = 0; i < nr_irqs; i++) {
|
||||
ret = irq_domain_trim_hierarchy(virq + i);
|
||||
if (ret) {
|
||||
mutex_unlock(&irq_domain_mutex);
|
||||
goto out_free_irq_data;
|
||||
}
|
||||
}
|
||||
|
||||
for (i = 0; i < nr_irqs; i++)
|
||||
irq_domain_insert_irq(virq + i);
|
||||
mutex_unlock(&irq_domain_mutex);
|
||||
|
||||
return virq;
|
||||
|
||||
out_free_irq_data:
|
||||
irq_domain_free_irq_data(virq, nr_irqs);
|
||||
out_free_desc:
|
||||
irq_free_descs(virq, nr_irqs);
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(__irq_domain_alloc_irqs);
|
||||
@ -1512,11 +1585,12 @@ static void irq_domain_fix_revmap(struct irq_data *d)
|
||||
{
|
||||
void __rcu **slot;
|
||||
|
||||
lockdep_assert_held(&d->domain->root->mutex);
|
||||
|
||||
if (irq_domain_is_nomap(d->domain))
|
||||
return;
|
||||
|
||||
/* Fix up the revmap. */
|
||||
mutex_lock(&d->domain->revmap_mutex);
|
||||
if (d->hwirq < d->domain->revmap_size) {
|
||||
/* Not using radix tree */
|
||||
rcu_assign_pointer(d->domain->revmap[d->hwirq], d);
|
||||
@ -1525,7 +1599,6 @@ static void irq_domain_fix_revmap(struct irq_data *d)
|
||||
if (slot)
|
||||
radix_tree_replace_slot(&d->domain->revmap_tree, slot, d);
|
||||
}
|
||||
mutex_unlock(&d->domain->revmap_mutex);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -1541,8 +1614,8 @@ static void irq_domain_fix_revmap(struct irq_data *d)
|
||||
*/
|
||||
int irq_domain_push_irq(struct irq_domain *domain, int virq, void *arg)
|
||||
{
|
||||
struct irq_data *child_irq_data;
|
||||
struct irq_data *root_irq_data = irq_get_irq_data(virq);
|
||||
struct irq_data *irq_data = irq_get_irq_data(virq);
|
||||
struct irq_data *parent_irq_data;
|
||||
struct irq_desc *desc;
|
||||
int rv = 0;
|
||||
|
||||
@ -1567,47 +1640,46 @@ int irq_domain_push_irq(struct irq_domain *domain, int virq, void *arg)
|
||||
if (WARN_ON(!irq_domain_is_hierarchy(domain)))
|
||||
return -EINVAL;
|
||||
|
||||
if (!root_irq_data)
|
||||
if (!irq_data)
|
||||
return -EINVAL;
|
||||
|
||||
if (domain->parent != root_irq_data->domain)
|
||||
if (domain->parent != irq_data->domain)
|
||||
return -EINVAL;
|
||||
|
||||
child_irq_data = kzalloc_node(sizeof(*child_irq_data), GFP_KERNEL,
|
||||
irq_data_get_node(root_irq_data));
|
||||
if (!child_irq_data)
|
||||
parent_irq_data = kzalloc_node(sizeof(*parent_irq_data), GFP_KERNEL,
|
||||
irq_data_get_node(irq_data));
|
||||
if (!parent_irq_data)
|
||||
return -ENOMEM;
|
||||
|
||||
mutex_lock(&irq_domain_mutex);
|
||||
mutex_lock(&domain->root->mutex);
|
||||
|
||||
/* Copy the original irq_data. */
|
||||
*child_irq_data = *root_irq_data;
|
||||
*parent_irq_data = *irq_data;
|
||||
|
||||
/*
|
||||
* Overwrite the root_irq_data, which is embedded in struct
|
||||
* irq_desc, with values for this domain.
|
||||
* Overwrite the irq_data, which is embedded in struct irq_desc, with
|
||||
* values for this domain.
|
||||
*/
|
||||
root_irq_data->parent_data = child_irq_data;
|
||||
root_irq_data->domain = domain;
|
||||
root_irq_data->mask = 0;
|
||||
root_irq_data->hwirq = 0;
|
||||
root_irq_data->chip = NULL;
|
||||
root_irq_data->chip_data = NULL;
|
||||
irq_data->parent_data = parent_irq_data;
|
||||
irq_data->domain = domain;
|
||||
irq_data->mask = 0;
|
||||
irq_data->hwirq = 0;
|
||||
irq_data->chip = NULL;
|
||||
irq_data->chip_data = NULL;
|
||||
|
||||
/* May (probably does) set hwirq, chip, etc. */
|
||||
rv = irq_domain_alloc_irqs_hierarchy(domain, virq, 1, arg);
|
||||
if (rv) {
|
||||
/* Restore the original irq_data. */
|
||||
*root_irq_data = *child_irq_data;
|
||||
kfree(child_irq_data);
|
||||
*irq_data = *parent_irq_data;
|
||||
kfree(parent_irq_data);
|
||||
goto error;
|
||||
}
|
||||
|
||||
irq_domain_fix_revmap(child_irq_data);
|
||||
irq_domain_set_mapping(domain, root_irq_data->hwirq, root_irq_data);
|
||||
|
||||
irq_domain_fix_revmap(parent_irq_data);
|
||||
irq_domain_set_mapping(domain, irq_data->hwirq, irq_data);
|
||||
error:
|
||||
mutex_unlock(&irq_domain_mutex);
|
||||
mutex_unlock(&domain->root->mutex);
|
||||
|
||||
return rv;
|
||||
}
|
||||
@ -1623,8 +1695,8 @@ EXPORT_SYMBOL_GPL(irq_domain_push_irq);
|
||||
*/
|
||||
int irq_domain_pop_irq(struct irq_domain *domain, int virq)
|
||||
{
|
||||
struct irq_data *root_irq_data = irq_get_irq_data(virq);
|
||||
struct irq_data *child_irq_data;
|
||||
struct irq_data *irq_data = irq_get_irq_data(virq);
|
||||
struct irq_data *parent_irq_data;
|
||||
struct irq_data *tmp_irq_data;
|
||||
struct irq_desc *desc;
|
||||
|
||||
@ -1646,37 +1718,37 @@ int irq_domain_pop_irq(struct irq_domain *domain, int virq)
|
||||
if (domain == NULL)
|
||||
return -EINVAL;
|
||||
|
||||
if (!root_irq_data)
|
||||
if (!irq_data)
|
||||
return -EINVAL;
|
||||
|
||||
tmp_irq_data = irq_domain_get_irq_data(domain, virq);
|
||||
|
||||
/* We can only "pop" if this domain is at the top of the list */
|
||||
if (WARN_ON(root_irq_data != tmp_irq_data))
|
||||
if (WARN_ON(irq_data != tmp_irq_data))
|
||||
return -EINVAL;
|
||||
|
||||
if (WARN_ON(root_irq_data->domain != domain))
|
||||
if (WARN_ON(irq_data->domain != domain))
|
||||
return -EINVAL;
|
||||
|
||||
child_irq_data = root_irq_data->parent_data;
|
||||
if (WARN_ON(!child_irq_data))
|
||||
parent_irq_data = irq_data->parent_data;
|
||||
if (WARN_ON(!parent_irq_data))
|
||||
return -EINVAL;
|
||||
|
||||
mutex_lock(&irq_domain_mutex);
|
||||
mutex_lock(&domain->root->mutex);
|
||||
|
||||
root_irq_data->parent_data = NULL;
|
||||
irq_data->parent_data = NULL;
|
||||
|
||||
irq_domain_clear_mapping(domain, root_irq_data->hwirq);
|
||||
irq_domain_clear_mapping(domain, irq_data->hwirq);
|
||||
irq_domain_free_irqs_hierarchy(domain, virq, 1);
|
||||
|
||||
/* Restore the original irq_data. */
|
||||
*root_irq_data = *child_irq_data;
|
||||
*irq_data = *parent_irq_data;
|
||||
|
||||
irq_domain_fix_revmap(root_irq_data);
|
||||
irq_domain_fix_revmap(irq_data);
|
||||
|
||||
mutex_unlock(&irq_domain_mutex);
|
||||
mutex_unlock(&domain->root->mutex);
|
||||
|
||||
kfree(child_irq_data);
|
||||
kfree(parent_irq_data);
|
||||
|
||||
return 0;
|
||||
}
|
||||
@ -1690,17 +1762,20 @@ EXPORT_SYMBOL_GPL(irq_domain_pop_irq);
|
||||
void irq_domain_free_irqs(unsigned int virq, unsigned int nr_irqs)
|
||||
{
|
||||
struct irq_data *data = irq_get_irq_data(virq);
|
||||
struct irq_domain *domain;
|
||||
int i;
|
||||
|
||||
if (WARN(!data || !data->domain || !data->domain->ops->free,
|
||||
"NULL pointer, cannot free irq\n"))
|
||||
return;
|
||||
|
||||
mutex_lock(&irq_domain_mutex);
|
||||
domain = data->domain;
|
||||
|
||||
mutex_lock(&domain->root->mutex);
|
||||
for (i = 0; i < nr_irqs; i++)
|
||||
irq_domain_remove_irq(virq + i);
|
||||
irq_domain_free_irqs_hierarchy(data->domain, virq, nr_irqs);
|
||||
mutex_unlock(&irq_domain_mutex);
|
||||
irq_domain_free_irqs_hierarchy(domain, virq, nr_irqs);
|
||||
mutex_unlock(&domain->root->mutex);
|
||||
|
||||
irq_domain_free_irq_data(virq, nr_irqs);
|
||||
irq_free_descs(virq, nr_irqs);
|
||||
@ -1865,6 +1940,13 @@ void irq_domain_set_info(struct irq_domain *domain, unsigned int virq,
|
||||
irq_set_handler_data(virq, handler_data);
|
||||
}
|
||||
|
||||
static int irq_domain_alloc_irqs_locked(struct irq_domain *domain, int irq_base,
|
||||
unsigned int nr_irqs, int node, void *arg,
|
||||
bool realloc, const struct irq_affinity_desc *affinity)
|
||||
{
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
static void irq_domain_check_hierarchy(struct irq_domain *domain)
|
||||
{
|
||||
}
|
||||
|
@ -723,10 +723,13 @@ EXPORT_SYMBOL(disable_irq_nosync);
|
||||
* to complete before returning. If you use this function while
|
||||
* holding a resource the IRQ handler may need you will deadlock.
|
||||
*
|
||||
* This function may be called - with care - from IRQ context.
|
||||
* Can only be called from preemptible code as it might sleep when
|
||||
* an interrupt thread is associated to @irq.
|
||||
*
|
||||
*/
|
||||
void disable_irq(unsigned int irq)
|
||||
{
|
||||
might_sleep();
|
||||
if (!__disable_irq_nosync(irq))
|
||||
synchronize_irq(irq);
|
||||
}
|
||||
|
@ -353,6 +353,8 @@ obj-$(CONFIG_SBITMAP) += sbitmap.o
|
||||
|
||||
obj-$(CONFIG_PARMAN) += parman.o
|
||||
|
||||
obj-y += group_cpus.o
|
||||
|
||||
# GCC library routines
|
||||
obj-$(CONFIG_GENERIC_LIB_ASHLDI3) += ashldi3.o
|
||||
obj-$(CONFIG_GENERIC_LIB_ASHRDI3) += ashrdi3.o
|
||||
|
428
lib/group_cpus.c
Normal file
428
lib/group_cpus.c
Normal file
@ -0,0 +1,428 @@
|
||||
// SPDX-License-Identifier: GPL-2.0
|
||||
/*
|
||||
* Copyright (C) 2016 Thomas Gleixner.
|
||||
* Copyright (C) 2016-2017 Christoph Hellwig.
|
||||
*/
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/cpu.h>
|
||||
#include <linux/sort.h>
|
||||
#include <linux/group_cpus.h>
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
|
||||
static void grp_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk,
|
||||
unsigned int cpus_per_grp)
|
||||
{
|
||||
const struct cpumask *siblmsk;
|
||||
int cpu, sibl;
|
||||
|
||||
for ( ; cpus_per_grp > 0; ) {
|
||||
cpu = cpumask_first(nmsk);
|
||||
|
||||
/* Should not happen, but I'm too lazy to think about it */
|
||||
if (cpu >= nr_cpu_ids)
|
||||
return;
|
||||
|
||||
cpumask_clear_cpu(cpu, nmsk);
|
||||
cpumask_set_cpu(cpu, irqmsk);
|
||||
cpus_per_grp--;
|
||||
|
||||
/* If the cpu has siblings, use them first */
|
||||
siblmsk = topology_sibling_cpumask(cpu);
|
||||
for (sibl = -1; cpus_per_grp > 0; ) {
|
||||
sibl = cpumask_next(sibl, siblmsk);
|
||||
if (sibl >= nr_cpu_ids)
|
||||
break;
|
||||
if (!cpumask_test_and_clear_cpu(sibl, nmsk))
|
||||
continue;
|
||||
cpumask_set_cpu(sibl, irqmsk);
|
||||
cpus_per_grp--;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static cpumask_var_t *alloc_node_to_cpumask(void)
|
||||
{
|
||||
cpumask_var_t *masks;
|
||||
int node;
|
||||
|
||||
masks = kcalloc(nr_node_ids, sizeof(cpumask_var_t), GFP_KERNEL);
|
||||
if (!masks)
|
||||
return NULL;
|
||||
|
||||
for (node = 0; node < nr_node_ids; node++) {
|
||||
if (!zalloc_cpumask_var(&masks[node], GFP_KERNEL))
|
||||
goto out_unwind;
|
||||
}
|
||||
|
||||
return masks;
|
||||
|
||||
out_unwind:
|
||||
while (--node >= 0)
|
||||
free_cpumask_var(masks[node]);
|
||||
kfree(masks);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static void free_node_to_cpumask(cpumask_var_t *masks)
|
||||
{
|
||||
int node;
|
||||
|
||||
for (node = 0; node < nr_node_ids; node++)
|
||||
free_cpumask_var(masks[node]);
|
||||
kfree(masks);
|
||||
}
|
||||
|
||||
static void build_node_to_cpumask(cpumask_var_t *masks)
|
||||
{
|
||||
int cpu;
|
||||
|
||||
for_each_possible_cpu(cpu)
|
||||
cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]);
|
||||
}
|
||||
|
||||
static int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask,
|
||||
const struct cpumask *mask, nodemask_t *nodemsk)
|
||||
{
|
||||
int n, nodes = 0;
|
||||
|
||||
/* Calculate the number of nodes in the supplied affinity mask */
|
||||
for_each_node(n) {
|
||||
if (cpumask_intersects(mask, node_to_cpumask[n])) {
|
||||
node_set(n, *nodemsk);
|
||||
nodes++;
|
||||
}
|
||||
}
|
||||
return nodes;
|
||||
}
|
||||
|
||||
struct node_groups {
|
||||
unsigned id;
|
||||
|
||||
union {
|
||||
unsigned ngroups;
|
||||
unsigned ncpus;
|
||||
};
|
||||
};
|
||||
|
||||
static int ncpus_cmp_func(const void *l, const void *r)
|
||||
{
|
||||
const struct node_groups *ln = l;
|
||||
const struct node_groups *rn = r;
|
||||
|
||||
return ln->ncpus - rn->ncpus;
|
||||
}
|
||||
|
||||
/*
|
||||
* Allocate group number for each node, so that for each node:
|
||||
*
|
||||
* 1) the allocated number is >= 1
|
||||
*
|
||||
* 2) the allocated number is <= active CPU number of this node
|
||||
*
|
||||
* The actual allocated total groups may be less than @numgrps when
|
||||
* active total CPU number is less than @numgrps.
|
||||
*
|
||||
* Active CPUs means the CPUs in '@cpu_mask AND @node_to_cpumask[]'
|
||||
* for each node.
|
||||
*/
|
||||
static void alloc_nodes_groups(unsigned int numgrps,
|
||||
cpumask_var_t *node_to_cpumask,
|
||||
const struct cpumask *cpu_mask,
|
||||
const nodemask_t nodemsk,
|
||||
struct cpumask *nmsk,
|
||||
struct node_groups *node_groups)
|
||||
{
|
||||
unsigned n, remaining_ncpus = 0;
|
||||
|
||||
for (n = 0; n < nr_node_ids; n++) {
|
||||
node_groups[n].id = n;
|
||||
node_groups[n].ncpus = UINT_MAX;
|
||||
}
|
||||
|
||||
for_each_node_mask(n, nodemsk) {
|
||||
unsigned ncpus;
|
||||
|
||||
cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
|
||||
ncpus = cpumask_weight(nmsk);
|
||||
|
||||
if (!ncpus)
|
||||
continue;
|
||||
remaining_ncpus += ncpus;
|
||||
node_groups[n].ncpus = ncpus;
|
||||
}
|
||||
|
||||
numgrps = min_t(unsigned, remaining_ncpus, numgrps);
|
||||
|
||||
sort(node_groups, nr_node_ids, sizeof(node_groups[0]),
|
||||
ncpus_cmp_func, NULL);
|
||||
|
||||
/*
|
||||
* Allocate groups for each node according to the ratio of this
|
||||
* node's nr_cpus to remaining un-assigned ncpus. 'numgrps' is
|
||||
* bigger than number of active numa nodes. Always start the
|
||||
* allocation from the node with minimized nr_cpus.
|
||||
*
|
||||
* This way guarantees that each active node gets allocated at
|
||||
* least one group, and the theory is simple: over-allocation
|
||||
* is only done when this node is assigned by one group, so
|
||||
* other nodes will be allocated >= 1 groups, since 'numgrps' is
|
||||
* bigger than number of numa nodes.
|
||||
*
|
||||
* One perfect invariant is that number of allocated groups for
|
||||
* each node is <= CPU count of this node:
|
||||
*
|
||||
* 1) suppose there are two nodes: A and B
|
||||
* ncpu(X) is CPU count of node X
|
||||
* grps(X) is the group count allocated to node X via this
|
||||
* algorithm
|
||||
*
|
||||
* ncpu(A) <= ncpu(B)
|
||||
* ncpu(A) + ncpu(B) = N
|
||||
* grps(A) + grps(B) = G
|
||||
*
|
||||
* grps(A) = max(1, round_down(G * ncpu(A) / N))
|
||||
* grps(B) = G - grps(A)
|
||||
*
|
||||
* both N and G are integer, and 2 <= G <= N, suppose
|
||||
* G = N - delta, and 0 <= delta <= N - 2
|
||||
*
|
||||
* 2) obviously grps(A) <= ncpu(A) because:
|
||||
*
|
||||
* if grps(A) is 1, then grps(A) <= ncpu(A) given
|
||||
* ncpu(A) >= 1
|
||||
*
|
||||
* otherwise,
|
||||
* grps(A) <= G * ncpu(A) / N <= ncpu(A), given G <= N
|
||||
*
|
||||
* 3) prove how grps(B) <= ncpu(B):
|
||||
*
|
||||
* if round_down(G * ncpu(A) / N) == 0, vecs(B) won't be
|
||||
* over-allocated, so grps(B) <= ncpu(B),
|
||||
*
|
||||
* otherwise:
|
||||
*
|
||||
* grps(A) =
|
||||
* round_down(G * ncpu(A) / N) =
|
||||
* round_down((N - delta) * ncpu(A) / N) =
|
||||
* round_down((N * ncpu(A) - delta * ncpu(A)) / N) >=
|
||||
* round_down((N * ncpu(A) - delta * N) / N) =
|
||||
* cpu(A) - delta
|
||||
*
|
||||
* then:
|
||||
*
|
||||
* grps(A) - G >= ncpu(A) - delta - G
|
||||
* =>
|
||||
* G - grps(A) <= G + delta - ncpu(A)
|
||||
* =>
|
||||
* grps(B) <= N - ncpu(A)
|
||||
* =>
|
||||
* grps(B) <= cpu(B)
|
||||
*
|
||||
* For nodes >= 3, it can be thought as one node and another big
|
||||
* node given that is exactly what this algorithm is implemented,
|
||||
* and we always re-calculate 'remaining_ncpus' & 'numgrps', and
|
||||
* finally for each node X: grps(X) <= ncpu(X).
|
||||
*
|
||||
*/
|
||||
for (n = 0; n < nr_node_ids; n++) {
|
||||
unsigned ngroups, ncpus;
|
||||
|
||||
if (node_groups[n].ncpus == UINT_MAX)
|
||||
continue;
|
||||
|
||||
WARN_ON_ONCE(numgrps == 0);
|
||||
|
||||
ncpus = node_groups[n].ncpus;
|
||||
ngroups = max_t(unsigned, 1,
|
||||
numgrps * ncpus / remaining_ncpus);
|
||||
WARN_ON_ONCE(ngroups > ncpus);
|
||||
|
||||
node_groups[n].ngroups = ngroups;
|
||||
|
||||
remaining_ncpus -= ncpus;
|
||||
numgrps -= ngroups;
|
||||
}
|
||||
}
|
||||
|
||||
static int __group_cpus_evenly(unsigned int startgrp, unsigned int numgrps,
|
||||
cpumask_var_t *node_to_cpumask,
|
||||
const struct cpumask *cpu_mask,
|
||||
struct cpumask *nmsk, struct cpumask *masks)
|
||||
{
|
||||
unsigned int i, n, nodes, cpus_per_grp, extra_grps, done = 0;
|
||||
unsigned int last_grp = numgrps;
|
||||
unsigned int curgrp = startgrp;
|
||||
nodemask_t nodemsk = NODE_MASK_NONE;
|
||||
struct node_groups *node_groups;
|
||||
|
||||
if (cpumask_empty(cpu_mask))
|
||||
return 0;
|
||||
|
||||
nodes = get_nodes_in_cpumask(node_to_cpumask, cpu_mask, &nodemsk);
|
||||
|
||||
/*
|
||||
* If the number of nodes in the mask is greater than or equal the
|
||||
* number of groups we just spread the groups across the nodes.
|
||||
*/
|
||||
if (numgrps <= nodes) {
|
||||
for_each_node_mask(n, nodemsk) {
|
||||
/* Ensure that only CPUs which are in both masks are set */
|
||||
cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
|
||||
cpumask_or(&masks[curgrp], &masks[curgrp], nmsk);
|
||||
if (++curgrp == last_grp)
|
||||
curgrp = 0;
|
||||
}
|
||||
return numgrps;
|
||||
}
|
||||
|
||||
node_groups = kcalloc(nr_node_ids,
|
||||
sizeof(struct node_groups),
|
||||
GFP_KERNEL);
|
||||
if (!node_groups)
|
||||
return -ENOMEM;
|
||||
|
||||
/* allocate group number for each node */
|
||||
alloc_nodes_groups(numgrps, node_to_cpumask, cpu_mask,
|
||||
nodemsk, nmsk, node_groups);
|
||||
for (i = 0; i < nr_node_ids; i++) {
|
||||
unsigned int ncpus, v;
|
||||
struct node_groups *nv = &node_groups[i];
|
||||
|
||||
if (nv->ngroups == UINT_MAX)
|
||||
continue;
|
||||
|
||||
/* Get the cpus on this node which are in the mask */
|
||||
cpumask_and(nmsk, cpu_mask, node_to_cpumask[nv->id]);
|
||||
ncpus = cpumask_weight(nmsk);
|
||||
if (!ncpus)
|
||||
continue;
|
||||
|
||||
WARN_ON_ONCE(nv->ngroups > ncpus);
|
||||
|
||||
/* Account for rounding errors */
|
||||
extra_grps = ncpus - nv->ngroups * (ncpus / nv->ngroups);
|
||||
|
||||
/* Spread allocated groups on CPUs of the current node */
|
||||
for (v = 0; v < nv->ngroups; v++, curgrp++) {
|
||||
cpus_per_grp = ncpus / nv->ngroups;
|
||||
|
||||
/* Account for extra groups to compensate rounding errors */
|
||||
if (extra_grps) {
|
||||
cpus_per_grp++;
|
||||
--extra_grps;
|
||||
}
|
||||
|
||||
/*
|
||||
* wrapping has to be considered given 'startgrp'
|
||||
* may start anywhere
|
||||
*/
|
||||
if (curgrp >= last_grp)
|
||||
curgrp = 0;
|
||||
grp_spread_init_one(&masks[curgrp], nmsk,
|
||||
cpus_per_grp);
|
||||
}
|
||||
done += nv->ngroups;
|
||||
}
|
||||
kfree(node_groups);
|
||||
return done;
|
||||
}
|
||||
|
||||
/**
|
||||
* group_cpus_evenly - Group all CPUs evenly per NUMA/CPU locality
|
||||
* @numgrps: number of groups
|
||||
*
|
||||
* Return: cpumask array if successful, NULL otherwise. And each element
|
||||
* includes CPUs assigned to this group
|
||||
*
|
||||
* Try to put close CPUs from viewpoint of CPU and NUMA locality into
|
||||
* same group, and run two-stage grouping:
|
||||
* 1) allocate present CPUs on these groups evenly first
|
||||
* 2) allocate other possible CPUs on these groups evenly
|
||||
*
|
||||
* We guarantee in the resulted grouping that all CPUs are covered, and
|
||||
* no same CPU is assigned to multiple groups
|
||||
*/
|
||||
struct cpumask *group_cpus_evenly(unsigned int numgrps)
|
||||
{
|
||||
unsigned int curgrp = 0, nr_present = 0, nr_others = 0;
|
||||
cpumask_var_t *node_to_cpumask;
|
||||
cpumask_var_t nmsk, npresmsk;
|
||||
int ret = -ENOMEM;
|
||||
struct cpumask *masks = NULL;
|
||||
|
||||
if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL))
|
||||
return NULL;
|
||||
|
||||
if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL))
|
||||
goto fail_nmsk;
|
||||
|
||||
node_to_cpumask = alloc_node_to_cpumask();
|
||||
if (!node_to_cpumask)
|
||||
goto fail_npresmsk;
|
||||
|
||||
masks = kcalloc(numgrps, sizeof(*masks), GFP_KERNEL);
|
||||
if (!masks)
|
||||
goto fail_node_to_cpumask;
|
||||
|
||||
/* Stabilize the cpumasks */
|
||||
cpus_read_lock();
|
||||
build_node_to_cpumask(node_to_cpumask);
|
||||
|
||||
/* grouping present CPUs first */
|
||||
ret = __group_cpus_evenly(curgrp, numgrps, node_to_cpumask,
|
||||
cpu_present_mask, nmsk, masks);
|
||||
if (ret < 0)
|
||||
goto fail_build_affinity;
|
||||
nr_present = ret;
|
||||
|
||||
/*
|
||||
* Allocate non present CPUs starting from the next group to be
|
||||
* handled. If the grouping of present CPUs already exhausted the
|
||||
* group space, assign the non present CPUs to the already
|
||||
* allocated out groups.
|
||||
*/
|
||||
if (nr_present >= numgrps)
|
||||
curgrp = 0;
|
||||
else
|
||||
curgrp = nr_present;
|
||||
cpumask_andnot(npresmsk, cpu_possible_mask, cpu_present_mask);
|
||||
ret = __group_cpus_evenly(curgrp, numgrps, node_to_cpumask,
|
||||
npresmsk, nmsk, masks);
|
||||
if (ret >= 0)
|
||||
nr_others = ret;
|
||||
|
||||
fail_build_affinity:
|
||||
cpus_read_unlock();
|
||||
|
||||
if (ret >= 0)
|
||||
WARN_ON(nr_present + nr_others < numgrps);
|
||||
|
||||
fail_node_to_cpumask:
|
||||
free_node_to_cpumask(node_to_cpumask);
|
||||
|
||||
fail_npresmsk:
|
||||
free_cpumask_var(npresmsk);
|
||||
|
||||
fail_nmsk:
|
||||
free_cpumask_var(nmsk);
|
||||
if (ret < 0) {
|
||||
kfree(masks);
|
||||
return NULL;
|
||||
}
|
||||
return masks;
|
||||
}
|
||||
#else /* CONFIG_SMP */
|
||||
struct cpumask *group_cpus_evenly(unsigned int numgrps)
|
||||
{
|
||||
struct cpumask *masks = kcalloc(numgrps, sizeof(*masks), GFP_KERNEL);
|
||||
|
||||
if (!masks)
|
||||
return NULL;
|
||||
|
||||
/* assign all CPUs(cpu 0) to the 1st group only */
|
||||
cpumask_copy(&masks[0], cpu_possible_mask);
|
||||
return masks;
|
||||
}
|
||||
#endif /* CONFIG_SMP */
|
Loading…
Reference in New Issue
Block a user