mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-25 05:04:09 +08:00
Merge branch 'timers-clocksource-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'timers-clocksource-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: clocksource: apb: Share APB timer code with other platforms
This commit is contained in:
commit
9d0715630e
@ -623,6 +623,7 @@ config HPET_EMULATE_RTC
|
||||
config APB_TIMER
|
||||
def_bool y if MRST
|
||||
prompt "Langwell APB Timer Support" if X86_MRST
|
||||
select DW_APB_TIMER
|
||||
help
|
||||
APB timer is the replacement for 8254, HPET on X86 MID platforms.
|
||||
The APBT provides a stable time base on SMP
|
||||
|
@ -18,24 +18,6 @@
|
||||
|
||||
#ifdef CONFIG_APB_TIMER
|
||||
|
||||
/* Langwell DW APB timer registers */
|
||||
#define APBTMR_N_LOAD_COUNT 0x00
|
||||
#define APBTMR_N_CURRENT_VALUE 0x04
|
||||
#define APBTMR_N_CONTROL 0x08
|
||||
#define APBTMR_N_EOI 0x0c
|
||||
#define APBTMR_N_INT_STATUS 0x10
|
||||
|
||||
#define APBTMRS_INT_STATUS 0xa0
|
||||
#define APBTMRS_EOI 0xa4
|
||||
#define APBTMRS_RAW_INT_STATUS 0xa8
|
||||
#define APBTMRS_COMP_VERSION 0xac
|
||||
#define APBTMRS_REG_SIZE 0x14
|
||||
|
||||
/* register bits */
|
||||
#define APBTMR_CONTROL_ENABLE (1<<0)
|
||||
#define APBTMR_CONTROL_MODE_PERIODIC (1<<1) /*1: periodic 0:free running */
|
||||
#define APBTMR_CONTROL_INT (1<<2)
|
||||
|
||||
/* default memory mapped register base */
|
||||
#define LNW_SCU_ADDR 0xFF100000
|
||||
#define LNW_EXT_TIMER_OFFSET 0x1B800
|
||||
@ -43,8 +25,8 @@
|
||||
#define LNW_EXT_TIMER_PGOFFSET 0x800
|
||||
|
||||
/* APBT clock speed range from PCLK to fabric base, 25-100MHz */
|
||||
#define APBT_MAX_FREQ 50
|
||||
#define APBT_MIN_FREQ 1
|
||||
#define APBT_MAX_FREQ 50000000
|
||||
#define APBT_MIN_FREQ 1000000
|
||||
#define APBT_MMAP_SIZE 1024
|
||||
|
||||
#define APBT_DEV_USED 1
|
||||
|
@ -27,15 +27,12 @@
|
||||
* timer, but by default APB timer has higher rating than local APIC timers.
|
||||
*/
|
||||
|
||||
#include <linux/clocksource.h>
|
||||
#include <linux/clockchips.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/dw_apb_timer.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/sysdev.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/pm.h>
|
||||
#include <linux/pci.h>
|
||||
#include <linux/sfi.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/cpu.h>
|
||||
@ -46,75 +43,46 @@
|
||||
#include <asm/mrst.h>
|
||||
#include <asm/time.h>
|
||||
|
||||
#define APBT_MASK CLOCKSOURCE_MASK(32)
|
||||
#define APBT_SHIFT 22
|
||||
#define APBT_CLOCKEVENT_RATING 110
|
||||
#define APBT_CLOCKSOURCE_RATING 250
|
||||
#define APBT_MIN_DELTA_USEC 200
|
||||
|
||||
#define EVT_TO_APBT_DEV(evt) container_of(evt, struct apbt_dev, evt)
|
||||
#define APBT_CLOCKEVENT0_NUM (0)
|
||||
#define APBT_CLOCKEVENT1_NUM (1)
|
||||
#define APBT_CLOCKSOURCE_NUM (2)
|
||||
|
||||
static unsigned long apbt_address;
|
||||
static phys_addr_t apbt_address;
|
||||
static int apb_timer_block_enabled;
|
||||
static void __iomem *apbt_virt_address;
|
||||
static int phy_cs_timer_id;
|
||||
|
||||
/*
|
||||
* Common DW APB timer info
|
||||
*/
|
||||
static uint64_t apbt_freq;
|
||||
|
||||
static void apbt_set_mode(enum clock_event_mode mode,
|
||||
struct clock_event_device *evt);
|
||||
static int apbt_next_event(unsigned long delta,
|
||||
struct clock_event_device *evt);
|
||||
static cycle_t apbt_read_clocksource(struct clocksource *cs);
|
||||
static void apbt_restart_clocksource(struct clocksource *cs);
|
||||
static unsigned long apbt_freq;
|
||||
|
||||
struct apbt_dev {
|
||||
struct clock_event_device evt;
|
||||
unsigned int num;
|
||||
int cpu;
|
||||
unsigned int irq;
|
||||
unsigned int tick;
|
||||
unsigned int count;
|
||||
unsigned int flags;
|
||||
char name[10];
|
||||
struct dw_apb_clock_event_device *timer;
|
||||
unsigned int num;
|
||||
int cpu;
|
||||
unsigned int irq;
|
||||
char name[10];
|
||||
};
|
||||
|
||||
static struct dw_apb_clocksource *clocksource_apbt;
|
||||
|
||||
static inline void __iomem *adev_virt_addr(struct apbt_dev *adev)
|
||||
{
|
||||
return apbt_virt_address + adev->num * APBTMRS_REG_SIZE;
|
||||
}
|
||||
|
||||
static DEFINE_PER_CPU(struct apbt_dev, cpu_apbt_dev);
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
static unsigned int apbt_num_timers_used;
|
||||
static struct apbt_dev *apbt_devs;
|
||||
#endif
|
||||
|
||||
static inline unsigned long apbt_readl_reg(unsigned long a)
|
||||
{
|
||||
return readl(apbt_virt_address + a);
|
||||
}
|
||||
|
||||
static inline void apbt_writel_reg(unsigned long d, unsigned long a)
|
||||
{
|
||||
writel(d, apbt_virt_address + a);
|
||||
}
|
||||
|
||||
static inline unsigned long apbt_readl(int n, unsigned long a)
|
||||
{
|
||||
return readl(apbt_virt_address + a + n * APBTMRS_REG_SIZE);
|
||||
}
|
||||
|
||||
static inline void apbt_writel(int n, unsigned long d, unsigned long a)
|
||||
{
|
||||
writel(d, apbt_virt_address + a + n * APBTMRS_REG_SIZE);
|
||||
}
|
||||
|
||||
static inline void apbt_set_mapping(void)
|
||||
{
|
||||
struct sfi_timer_table_entry *mtmr;
|
||||
int phy_cs_timer_id = 0;
|
||||
|
||||
if (apbt_virt_address) {
|
||||
pr_debug("APBT base already mapped\n");
|
||||
@ -126,21 +94,18 @@ static inline void apbt_set_mapping(void)
|
||||
APBT_CLOCKEVENT0_NUM);
|
||||
return;
|
||||
}
|
||||
apbt_address = (unsigned long)mtmr->phys_addr;
|
||||
apbt_address = (phys_addr_t)mtmr->phys_addr;
|
||||
if (!apbt_address) {
|
||||
printk(KERN_WARNING "No timer base from SFI, use default\n");
|
||||
apbt_address = APBT_DEFAULT_BASE;
|
||||
}
|
||||
apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE);
|
||||
if (apbt_virt_address) {
|
||||
pr_debug("Mapped APBT physical addr %p at virtual addr %p\n",\
|
||||
(void *)apbt_address, (void *)apbt_virt_address);
|
||||
} else {
|
||||
pr_debug("Failed mapping APBT phy address at %p\n",\
|
||||
(void *)apbt_address);
|
||||
if (!apbt_virt_address) {
|
||||
pr_debug("Failed mapping APBT phy address at %lu\n",\
|
||||
(unsigned long)apbt_address);
|
||||
goto panic_noapbt;
|
||||
}
|
||||
apbt_freq = mtmr->freq_hz / USEC_PER_SEC;
|
||||
apbt_freq = mtmr->freq_hz;
|
||||
sfi_free_mtmr(mtmr);
|
||||
|
||||
/* Now figure out the physical timer id for clocksource device */
|
||||
@ -149,9 +114,14 @@ static inline void apbt_set_mapping(void)
|
||||
goto panic_noapbt;
|
||||
|
||||
/* Now figure out the physical timer id */
|
||||
phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff)
|
||||
/ APBTMRS_REG_SIZE;
|
||||
pr_debug("Use timer %d for clocksource\n", phy_cs_timer_id);
|
||||
pr_debug("Use timer %d for clocksource\n",
|
||||
(int)(mtmr->phys_addr & 0xff) / APBTMRS_REG_SIZE);
|
||||
phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff) /
|
||||
APBTMRS_REG_SIZE;
|
||||
|
||||
clocksource_apbt = dw_apb_clocksource_init(APBT_CLOCKSOURCE_RATING,
|
||||
"apbt0", apbt_virt_address + phy_cs_timer_id *
|
||||
APBTMRS_REG_SIZE, apbt_freq);
|
||||
return;
|
||||
|
||||
panic_noapbt:
|
||||
@ -173,82 +143,6 @@ static inline int is_apbt_capable(void)
|
||||
return apbt_virt_address ? 1 : 0;
|
||||
}
|
||||
|
||||
static struct clocksource clocksource_apbt = {
|
||||
.name = "apbt",
|
||||
.rating = APBT_CLOCKSOURCE_RATING,
|
||||
.read = apbt_read_clocksource,
|
||||
.mask = APBT_MASK,
|
||||
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
||||
.resume = apbt_restart_clocksource,
|
||||
};
|
||||
|
||||
/* boot APB clock event device */
|
||||
static struct clock_event_device apbt_clockevent = {
|
||||
.name = "apbt0",
|
||||
.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
|
||||
.set_mode = apbt_set_mode,
|
||||
.set_next_event = apbt_next_event,
|
||||
.shift = APBT_SHIFT,
|
||||
.irq = 0,
|
||||
.rating = APBT_CLOCKEVENT_RATING,
|
||||
};
|
||||
|
||||
/*
|
||||
* start count down from 0xffff_ffff. this is done by toggling the enable bit
|
||||
* then load initial load count to ~0.
|
||||
*/
|
||||
static void apbt_start_counter(int n)
|
||||
{
|
||||
unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
|
||||
|
||||
ctrl &= ~APBTMR_CONTROL_ENABLE;
|
||||
apbt_writel(n, ctrl, APBTMR_N_CONTROL);
|
||||
apbt_writel(n, ~0, APBTMR_N_LOAD_COUNT);
|
||||
/* enable, mask interrupt */
|
||||
ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
|
||||
ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
|
||||
apbt_writel(n, ctrl, APBTMR_N_CONTROL);
|
||||
/* read it once to get cached counter value initialized */
|
||||
apbt_read_clocksource(&clocksource_apbt);
|
||||
}
|
||||
|
||||
static irqreturn_t apbt_interrupt_handler(int irq, void *data)
|
||||
{
|
||||
struct apbt_dev *dev = (struct apbt_dev *)data;
|
||||
struct clock_event_device *aevt = &dev->evt;
|
||||
|
||||
if (!aevt->event_handler) {
|
||||
printk(KERN_INFO "Spurious APBT timer interrupt on %d\n",
|
||||
dev->num);
|
||||
return IRQ_NONE;
|
||||
}
|
||||
aevt->event_handler(aevt);
|
||||
return IRQ_HANDLED;
|
||||
}
|
||||
|
||||
static void apbt_restart_clocksource(struct clocksource *cs)
|
||||
{
|
||||
apbt_start_counter(phy_cs_timer_id);
|
||||
}
|
||||
|
||||
static void apbt_enable_int(int n)
|
||||
{
|
||||
unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
|
||||
/* clear pending intr */
|
||||
apbt_readl(n, APBTMR_N_EOI);
|
||||
ctrl &= ~APBTMR_CONTROL_INT;
|
||||
apbt_writel(n, ctrl, APBTMR_N_CONTROL);
|
||||
}
|
||||
|
||||
static void apbt_disable_int(int n)
|
||||
{
|
||||
unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
|
||||
|
||||
ctrl |= APBTMR_CONTROL_INT;
|
||||
apbt_writel(n, ctrl, APBTMR_N_CONTROL);
|
||||
}
|
||||
|
||||
|
||||
static int __init apbt_clockevent_register(void)
|
||||
{
|
||||
struct sfi_timer_table_entry *mtmr;
|
||||
@ -261,45 +155,21 @@ static int __init apbt_clockevent_register(void)
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
/*
|
||||
* We need to calculate the scaled math multiplication factor for
|
||||
* nanosecond to apbt tick conversion.
|
||||
* mult = (nsec/cycle)*2^APBT_SHIFT
|
||||
*/
|
||||
apbt_clockevent.mult = div_sc((unsigned long) mtmr->freq_hz
|
||||
, NSEC_PER_SEC, APBT_SHIFT);
|
||||
|
||||
/* Calculate the min / max delta */
|
||||
apbt_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
|
||||
&apbt_clockevent);
|
||||
apbt_clockevent.min_delta_ns = clockevent_delta2ns(
|
||||
APBT_MIN_DELTA_USEC*apbt_freq,
|
||||
&apbt_clockevent);
|
||||
/*
|
||||
* Start apbt with the boot cpu mask and make it
|
||||
* global if not used for per cpu timer.
|
||||
*/
|
||||
apbt_clockevent.cpumask = cpumask_of(smp_processor_id());
|
||||
adev->num = smp_processor_id();
|
||||
memcpy(&adev->evt, &apbt_clockevent, sizeof(struct clock_event_device));
|
||||
adev->timer = dw_apb_clockevent_init(smp_processor_id(), "apbt0",
|
||||
mrst_timer_options == MRST_TIMER_LAPIC_APBT ?
|
||||
APBT_CLOCKEVENT_RATING - 100 : APBT_CLOCKEVENT_RATING,
|
||||
adev_virt_addr(adev), 0, apbt_freq);
|
||||
/* Firmware does EOI handling for us. */
|
||||
adev->timer->eoi = NULL;
|
||||
|
||||
if (mrst_timer_options == MRST_TIMER_LAPIC_APBT) {
|
||||
adev->evt.rating = APBT_CLOCKEVENT_RATING - 100;
|
||||
global_clock_event = &adev->evt;
|
||||
global_clock_event = &adev->timer->ced;
|
||||
printk(KERN_DEBUG "%s clockevent registered as global\n",
|
||||
global_clock_event->name);
|
||||
}
|
||||
|
||||
if (request_irq(apbt_clockevent.irq, apbt_interrupt_handler,
|
||||
IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
|
||||
apbt_clockevent.name, adev)) {
|
||||
printk(KERN_ERR "Failed request IRQ for APBT%d\n",
|
||||
apbt_clockevent.irq);
|
||||
}
|
||||
|
||||
clockevents_register_device(&adev->evt);
|
||||
/* Start APBT 0 interrupts */
|
||||
apbt_enable_int(APBT_CLOCKEVENT0_NUM);
|
||||
dw_apb_clockevent_register(adev->timer);
|
||||
|
||||
sfi_free_mtmr(mtmr);
|
||||
return 0;
|
||||
@ -317,52 +187,34 @@ static void apbt_setup_irq(struct apbt_dev *adev)
|
||||
irq_set_affinity(adev->irq, cpumask_of(adev->cpu));
|
||||
/* APB timer irqs are set up as mp_irqs, timer is edge type */
|
||||
__irq_set_handler(adev->irq, handle_edge_irq, 0, "edge");
|
||||
|
||||
if (system_state == SYSTEM_BOOTING) {
|
||||
if (request_irq(adev->irq, apbt_interrupt_handler,
|
||||
IRQF_TIMER | IRQF_DISABLED |
|
||||
IRQF_NOBALANCING,
|
||||
adev->name, adev)) {
|
||||
printk(KERN_ERR "Failed request IRQ for APBT%d\n",
|
||||
adev->num);
|
||||
}
|
||||
} else
|
||||
enable_irq(adev->irq);
|
||||
}
|
||||
|
||||
/* Should be called with per cpu */
|
||||
void apbt_setup_secondary_clock(void)
|
||||
{
|
||||
struct apbt_dev *adev;
|
||||
struct clock_event_device *aevt;
|
||||
int cpu;
|
||||
|
||||
/* Don't register boot CPU clockevent */
|
||||
cpu = smp_processor_id();
|
||||
if (!cpu)
|
||||
return;
|
||||
/*
|
||||
* We need to calculate the scaled math multiplication factor for
|
||||
* nanosecond to apbt tick conversion.
|
||||
* mult = (nsec/cycle)*2^APBT_SHIFT
|
||||
*/
|
||||
printk(KERN_INFO "Init per CPU clockevent %d\n", cpu);
|
||||
adev = &per_cpu(cpu_apbt_dev, cpu);
|
||||
aevt = &adev->evt;
|
||||
|
||||
memcpy(aevt, &apbt_clockevent, sizeof(*aevt));
|
||||
aevt->cpumask = cpumask_of(cpu);
|
||||
aevt->name = adev->name;
|
||||
aevt->mode = CLOCK_EVT_MODE_UNUSED;
|
||||
adev = &__get_cpu_var(cpu_apbt_dev);
|
||||
if (!adev->timer) {
|
||||
adev->timer = dw_apb_clockevent_init(cpu, adev->name,
|
||||
APBT_CLOCKEVENT_RATING, adev_virt_addr(adev),
|
||||
adev->irq, apbt_freq);
|
||||
adev->timer->eoi = NULL;
|
||||
} else {
|
||||
dw_apb_clockevent_resume(adev->timer);
|
||||
}
|
||||
|
||||
printk(KERN_INFO "Registering CPU %d clockevent device %s, mask %08x\n",
|
||||
cpu, aevt->name, *(u32 *)aevt->cpumask);
|
||||
printk(KERN_INFO "Registering CPU %d clockevent device %s, cpu %08x\n",
|
||||
cpu, adev->name, adev->cpu);
|
||||
|
||||
apbt_setup_irq(adev);
|
||||
|
||||
clockevents_register_device(aevt);
|
||||
|
||||
apbt_enable_int(cpu);
|
||||
dw_apb_clockevent_register(adev->timer);
|
||||
|
||||
return;
|
||||
}
|
||||
@ -385,13 +237,12 @@ static int apbt_cpuhp_notify(struct notifier_block *n,
|
||||
|
||||
switch (action & 0xf) {
|
||||
case CPU_DEAD:
|
||||
disable_irq(adev->irq);
|
||||
apbt_disable_int(cpu);
|
||||
dw_apb_clockevent_pause(adev->timer);
|
||||
if (system_state == SYSTEM_RUNNING) {
|
||||
pr_debug("skipping APBT CPU %lu offline\n", cpu);
|
||||
} else if (adev) {
|
||||
pr_debug("APBT clockevent for cpu %lu offline\n", cpu);
|
||||
free_irq(adev->irq, adev);
|
||||
dw_apb_clockevent_stop(adev->timer);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
@ -416,116 +267,16 @@ void apbt_setup_secondary_clock(void) {}
|
||||
|
||||
#endif /* CONFIG_SMP */
|
||||
|
||||
static void apbt_set_mode(enum clock_event_mode mode,
|
||||
struct clock_event_device *evt)
|
||||
{
|
||||
unsigned long ctrl;
|
||||
uint64_t delta;
|
||||
int timer_num;
|
||||
struct apbt_dev *adev = EVT_TO_APBT_DEV(evt);
|
||||
|
||||
BUG_ON(!apbt_virt_address);
|
||||
|
||||
timer_num = adev->num;
|
||||
pr_debug("%s CPU %d timer %d mode=%d\n",
|
||||
__func__, first_cpu(*evt->cpumask), timer_num, mode);
|
||||
|
||||
switch (mode) {
|
||||
case CLOCK_EVT_MODE_PERIODIC:
|
||||
delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * apbt_clockevent.mult;
|
||||
delta >>= apbt_clockevent.shift;
|
||||
ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
|
||||
ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
|
||||
apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
|
||||
/*
|
||||
* DW APB p. 46, have to disable timer before load counter,
|
||||
* may cause sync problem.
|
||||
*/
|
||||
ctrl &= ~APBTMR_CONTROL_ENABLE;
|
||||
apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
|
||||
udelay(1);
|
||||
pr_debug("Setting clock period %d for HZ %d\n", (int)delta, HZ);
|
||||
apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT);
|
||||
ctrl |= APBTMR_CONTROL_ENABLE;
|
||||
apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
|
||||
break;
|
||||
/* APB timer does not have one-shot mode, use free running mode */
|
||||
case CLOCK_EVT_MODE_ONESHOT:
|
||||
ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
|
||||
/*
|
||||
* set free running mode, this mode will let timer reload max
|
||||
* timeout which will give time (3min on 25MHz clock) to rearm
|
||||
* the next event, therefore emulate the one-shot mode.
|
||||
*/
|
||||
ctrl &= ~APBTMR_CONTROL_ENABLE;
|
||||
ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
|
||||
|
||||
apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
|
||||
/* write again to set free running mode */
|
||||
apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
|
||||
|
||||
/*
|
||||
* DW APB p. 46, load counter with all 1s before starting free
|
||||
* running mode.
|
||||
*/
|
||||
apbt_writel(timer_num, ~0, APBTMR_N_LOAD_COUNT);
|
||||
ctrl &= ~APBTMR_CONTROL_INT;
|
||||
ctrl |= APBTMR_CONTROL_ENABLE;
|
||||
apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
|
||||
break;
|
||||
|
||||
case CLOCK_EVT_MODE_UNUSED:
|
||||
case CLOCK_EVT_MODE_SHUTDOWN:
|
||||
apbt_disable_int(timer_num);
|
||||
ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
|
||||
ctrl &= ~APBTMR_CONTROL_ENABLE;
|
||||
apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
|
||||
break;
|
||||
|
||||
case CLOCK_EVT_MODE_RESUME:
|
||||
apbt_enable_int(timer_num);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
static int apbt_next_event(unsigned long delta,
|
||||
struct clock_event_device *evt)
|
||||
{
|
||||
unsigned long ctrl;
|
||||
int timer_num;
|
||||
|
||||
struct apbt_dev *adev = EVT_TO_APBT_DEV(evt);
|
||||
|
||||
timer_num = adev->num;
|
||||
/* Disable timer */
|
||||
ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
|
||||
ctrl &= ~APBTMR_CONTROL_ENABLE;
|
||||
apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
|
||||
/* write new count */
|
||||
apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT);
|
||||
ctrl |= APBTMR_CONTROL_ENABLE;
|
||||
apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static cycle_t apbt_read_clocksource(struct clocksource *cs)
|
||||
{
|
||||
unsigned long current_count;
|
||||
|
||||
current_count = apbt_readl(phy_cs_timer_id, APBTMR_N_CURRENT_VALUE);
|
||||
return (cycle_t)~current_count;
|
||||
}
|
||||
|
||||
static int apbt_clocksource_register(void)
|
||||
{
|
||||
u64 start, now;
|
||||
cycle_t t1;
|
||||
|
||||
/* Start the counter, use timer 2 as source, timer 0/1 for event */
|
||||
apbt_start_counter(phy_cs_timer_id);
|
||||
dw_apb_clocksource_start(clocksource_apbt);
|
||||
|
||||
/* Verify whether apbt counter works */
|
||||
t1 = apbt_read_clocksource(&clocksource_apbt);
|
||||
t1 = dw_apb_clocksource_read(clocksource_apbt);
|
||||
rdtscll(start);
|
||||
|
||||
/*
|
||||
@ -540,10 +291,10 @@ static int apbt_clocksource_register(void)
|
||||
} while ((now - start) < 200000UL);
|
||||
|
||||
/* APBT is the only always on clocksource, it has to work! */
|
||||
if (t1 == apbt_read_clocksource(&clocksource_apbt))
|
||||
if (t1 == dw_apb_clocksource_read(clocksource_apbt))
|
||||
panic("APBT counter not counting. APBT disabled\n");
|
||||
|
||||
clocksource_register_khz(&clocksource_apbt, (u32)apbt_freq*1000);
|
||||
dw_apb_clocksource_register(clocksource_apbt);
|
||||
|
||||
return 0;
|
||||
}
|
||||
@ -567,10 +318,7 @@ void __init apbt_time_init(void)
|
||||
if (apb_timer_block_enabled)
|
||||
return;
|
||||
apbt_set_mapping();
|
||||
if (apbt_virt_address) {
|
||||
pr_debug("Found APBT version 0x%lx\n",\
|
||||
apbt_readl_reg(APBTMRS_COMP_VERSION));
|
||||
} else
|
||||
if (!apbt_virt_address)
|
||||
goto out_noapbt;
|
||||
/*
|
||||
* Read the frequency and check for a sane value, for ESL model
|
||||
@ -578,7 +326,7 @@ void __init apbt_time_init(void)
|
||||
*/
|
||||
|
||||
if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) {
|
||||
pr_debug("APBT has invalid freq 0x%llx\n", apbt_freq);
|
||||
pr_debug("APBT has invalid freq 0x%lx\n", apbt_freq);
|
||||
goto out_noapbt;
|
||||
}
|
||||
if (apbt_clocksource_register()) {
|
||||
@ -604,30 +352,20 @@ void __init apbt_time_init(void)
|
||||
} else {
|
||||
percpu_timer = 0;
|
||||
apbt_num_timers_used = 1;
|
||||
adev = &per_cpu(cpu_apbt_dev, 0);
|
||||
adev->flags &= ~APBT_DEV_USED;
|
||||
}
|
||||
pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used);
|
||||
|
||||
/* here we set up per CPU timer data structure */
|
||||
apbt_devs = kzalloc(sizeof(struct apbt_dev) * apbt_num_timers_used,
|
||||
GFP_KERNEL);
|
||||
if (!apbt_devs) {
|
||||
printk(KERN_ERR "Failed to allocate APB timer devices\n");
|
||||
return;
|
||||
}
|
||||
for (i = 0; i < apbt_num_timers_used; i++) {
|
||||
adev = &per_cpu(cpu_apbt_dev, i);
|
||||
adev->num = i;
|
||||
adev->cpu = i;
|
||||
p_mtmr = sfi_get_mtmr(i);
|
||||
if (p_mtmr) {
|
||||
adev->tick = p_mtmr->freq_hz;
|
||||
if (p_mtmr)
|
||||
adev->irq = p_mtmr->irq;
|
||||
} else
|
||||
else
|
||||
printk(KERN_ERR "Failed to get timer for cpu %d\n", i);
|
||||
adev->count = 0;
|
||||
sprintf(adev->name, "apbt%d", i);
|
||||
snprintf(adev->name, sizeof(adev->name) - 1, "apbt%d", i);
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -639,17 +377,8 @@ out_noapbt:
|
||||
panic("failed to enable APB timer\n");
|
||||
}
|
||||
|
||||
static inline void apbt_disable(int n)
|
||||
{
|
||||
if (is_apbt_capable()) {
|
||||
unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
|
||||
ctrl &= ~APBTMR_CONTROL_ENABLE;
|
||||
apbt_writel(n, ctrl, APBTMR_N_CONTROL);
|
||||
}
|
||||
}
|
||||
|
||||
/* called before apb_timer_enable, use early map */
|
||||
unsigned long apbt_quick_calibrate()
|
||||
unsigned long apbt_quick_calibrate(void)
|
||||
{
|
||||
int i, scale;
|
||||
u64 old, new;
|
||||
@ -658,31 +387,31 @@ unsigned long apbt_quick_calibrate()
|
||||
u32 loop, shift;
|
||||
|
||||
apbt_set_mapping();
|
||||
apbt_start_counter(phy_cs_timer_id);
|
||||
dw_apb_clocksource_start(clocksource_apbt);
|
||||
|
||||
/* check if the timer can count down, otherwise return */
|
||||
old = apbt_read_clocksource(&clocksource_apbt);
|
||||
old = dw_apb_clocksource_read(clocksource_apbt);
|
||||
i = 10000;
|
||||
while (--i) {
|
||||
if (old != apbt_read_clocksource(&clocksource_apbt))
|
||||
if (old != dw_apb_clocksource_read(clocksource_apbt))
|
||||
break;
|
||||
}
|
||||
if (!i)
|
||||
goto failed;
|
||||
|
||||
/* count 16 ms */
|
||||
loop = (apbt_freq * 1000) << 4;
|
||||
loop = (apbt_freq / 1000) << 4;
|
||||
|
||||
/* restart the timer to ensure it won't get to 0 in the calibration */
|
||||
apbt_start_counter(phy_cs_timer_id);
|
||||
dw_apb_clocksource_start(clocksource_apbt);
|
||||
|
||||
old = apbt_read_clocksource(&clocksource_apbt);
|
||||
old = dw_apb_clocksource_read(clocksource_apbt);
|
||||
old += loop;
|
||||
|
||||
t1 = __native_read_tsc();
|
||||
|
||||
do {
|
||||
new = apbt_read_clocksource(&clocksource_apbt);
|
||||
new = dw_apb_clocksource_read(clocksource_apbt);
|
||||
} while (new < old);
|
||||
|
||||
t2 = __native_read_tsc();
|
||||
@ -694,7 +423,7 @@ unsigned long apbt_quick_calibrate()
|
||||
return 0;
|
||||
}
|
||||
scale = (int)div_u64((t2 - t1), loop >> shift);
|
||||
khz = (scale * apbt_freq * 1000) >> shift;
|
||||
khz = (scale * (apbt_freq / 1000)) >> shift;
|
||||
printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz);
|
||||
return khz;
|
||||
failed:
|
||||
|
@ -12,3 +12,6 @@ config CLKBLD_I8253
|
||||
|
||||
config CLKSRC_MMIO
|
||||
bool
|
||||
|
||||
config DW_APB_TIMER
|
||||
bool
|
||||
|
@ -8,3 +8,4 @@ obj-$(CONFIG_SH_TIMER_MTU2) += sh_mtu2.o
|
||||
obj-$(CONFIG_SH_TIMER_TMU) += sh_tmu.o
|
||||
obj-$(CONFIG_CLKBLD_I8253) += i8253.o
|
||||
obj-$(CONFIG_CLKSRC_MMIO) += mmio.o
|
||||
obj-$(CONFIG_DW_APB_TIMER) += dw_apb_timer.o
|
||||
|
401
drivers/clocksource/dw_apb_timer.c
Normal file
401
drivers/clocksource/dw_apb_timer.c
Normal file
@ -0,0 +1,401 @@
|
||||
/*
|
||||
* (C) Copyright 2009 Intel Corporation
|
||||
* Author: Jacob Pan (jacob.jun.pan@intel.com)
|
||||
*
|
||||
* Shared with ARM platforms, Jamie Iles, Picochip 2011
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*
|
||||
* Support for the Synopsys DesignWare APB Timers.
|
||||
*/
|
||||
#include <linux/dw_apb_timer.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/irq.h>
|
||||
#include <linux/io.h>
|
||||
#include <linux/slab.h>
|
||||
|
||||
#define APBT_MIN_PERIOD 4
|
||||
#define APBT_MIN_DELTA_USEC 200
|
||||
|
||||
#define APBTMR_N_LOAD_COUNT 0x00
|
||||
#define APBTMR_N_CURRENT_VALUE 0x04
|
||||
#define APBTMR_N_CONTROL 0x08
|
||||
#define APBTMR_N_EOI 0x0c
|
||||
#define APBTMR_N_INT_STATUS 0x10
|
||||
|
||||
#define APBTMRS_INT_STATUS 0xa0
|
||||
#define APBTMRS_EOI 0xa4
|
||||
#define APBTMRS_RAW_INT_STATUS 0xa8
|
||||
#define APBTMRS_COMP_VERSION 0xac
|
||||
|
||||
#define APBTMR_CONTROL_ENABLE (1 << 0)
|
||||
/* 1: periodic, 0:free running. */
|
||||
#define APBTMR_CONTROL_MODE_PERIODIC (1 << 1)
|
||||
#define APBTMR_CONTROL_INT (1 << 2)
|
||||
|
||||
static inline struct dw_apb_clock_event_device *
|
||||
ced_to_dw_apb_ced(struct clock_event_device *evt)
|
||||
{
|
||||
return container_of(evt, struct dw_apb_clock_event_device, ced);
|
||||
}
|
||||
|
||||
static inline struct dw_apb_clocksource *
|
||||
clocksource_to_dw_apb_clocksource(struct clocksource *cs)
|
||||
{
|
||||
return container_of(cs, struct dw_apb_clocksource, cs);
|
||||
}
|
||||
|
||||
static unsigned long apbt_readl(struct dw_apb_timer *timer, unsigned long offs)
|
||||
{
|
||||
return readl(timer->base + offs);
|
||||
}
|
||||
|
||||
static void apbt_writel(struct dw_apb_timer *timer, unsigned long val,
|
||||
unsigned long offs)
|
||||
{
|
||||
writel(val, timer->base + offs);
|
||||
}
|
||||
|
||||
static void apbt_disable_int(struct dw_apb_timer *timer)
|
||||
{
|
||||
unsigned long ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
|
||||
|
||||
ctrl |= APBTMR_CONTROL_INT;
|
||||
apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
|
||||
}
|
||||
|
||||
/**
|
||||
* dw_apb_clockevent_pause() - stop the clock_event_device from running
|
||||
*
|
||||
* @dw_ced: The APB clock to stop generating events.
|
||||
*/
|
||||
void dw_apb_clockevent_pause(struct dw_apb_clock_event_device *dw_ced)
|
||||
{
|
||||
disable_irq(dw_ced->timer.irq);
|
||||
apbt_disable_int(&dw_ced->timer);
|
||||
}
|
||||
|
||||
static void apbt_eoi(struct dw_apb_timer *timer)
|
||||
{
|
||||
apbt_readl(timer, APBTMR_N_EOI);
|
||||
}
|
||||
|
||||
static irqreturn_t dw_apb_clockevent_irq(int irq, void *data)
|
||||
{
|
||||
struct clock_event_device *evt = data;
|
||||
struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
|
||||
|
||||
if (!evt->event_handler) {
|
||||
pr_info("Spurious APBT timer interrupt %d", irq);
|
||||
return IRQ_NONE;
|
||||
}
|
||||
|
||||
if (dw_ced->eoi)
|
||||
dw_ced->eoi(&dw_ced->timer);
|
||||
|
||||
evt->event_handler(evt);
|
||||
return IRQ_HANDLED;
|
||||
}
|
||||
|
||||
static void apbt_enable_int(struct dw_apb_timer *timer)
|
||||
{
|
||||
unsigned long ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
|
||||
/* clear pending intr */
|
||||
apbt_readl(timer, APBTMR_N_EOI);
|
||||
ctrl &= ~APBTMR_CONTROL_INT;
|
||||
apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
|
||||
}
|
||||
|
||||
static void apbt_set_mode(enum clock_event_mode mode,
|
||||
struct clock_event_device *evt)
|
||||
{
|
||||
unsigned long ctrl;
|
||||
unsigned long period;
|
||||
struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
|
||||
|
||||
pr_debug("%s CPU %d mode=%d\n", __func__, first_cpu(*evt->cpumask),
|
||||
mode);
|
||||
|
||||
switch (mode) {
|
||||
case CLOCK_EVT_MODE_PERIODIC:
|
||||
period = DIV_ROUND_UP(dw_ced->timer.freq, HZ);
|
||||
ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
|
||||
ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
|
||||
apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
|
||||
/*
|
||||
* DW APB p. 46, have to disable timer before load counter,
|
||||
* may cause sync problem.
|
||||
*/
|
||||
ctrl &= ~APBTMR_CONTROL_ENABLE;
|
||||
apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
|
||||
udelay(1);
|
||||
pr_debug("Setting clock period %lu for HZ %d\n", period, HZ);
|
||||
apbt_writel(&dw_ced->timer, period, APBTMR_N_LOAD_COUNT);
|
||||
ctrl |= APBTMR_CONTROL_ENABLE;
|
||||
apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
|
||||
break;
|
||||
|
||||
case CLOCK_EVT_MODE_ONESHOT:
|
||||
ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
|
||||
/*
|
||||
* set free running mode, this mode will let timer reload max
|
||||
* timeout which will give time (3min on 25MHz clock) to rearm
|
||||
* the next event, therefore emulate the one-shot mode.
|
||||
*/
|
||||
ctrl &= ~APBTMR_CONTROL_ENABLE;
|
||||
ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
|
||||
|
||||
apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
|
||||
/* write again to set free running mode */
|
||||
apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
|
||||
|
||||
/*
|
||||
* DW APB p. 46, load counter with all 1s before starting free
|
||||
* running mode.
|
||||
*/
|
||||
apbt_writel(&dw_ced->timer, ~0, APBTMR_N_LOAD_COUNT);
|
||||
ctrl &= ~APBTMR_CONTROL_INT;
|
||||
ctrl |= APBTMR_CONTROL_ENABLE;
|
||||
apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
|
||||
break;
|
||||
|
||||
case CLOCK_EVT_MODE_UNUSED:
|
||||
case CLOCK_EVT_MODE_SHUTDOWN:
|
||||
ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
|
||||
ctrl &= ~APBTMR_CONTROL_ENABLE;
|
||||
apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
|
||||
break;
|
||||
|
||||
case CLOCK_EVT_MODE_RESUME:
|
||||
apbt_enable_int(&dw_ced->timer);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
static int apbt_next_event(unsigned long delta,
|
||||
struct clock_event_device *evt)
|
||||
{
|
||||
unsigned long ctrl;
|
||||
struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
|
||||
|
||||
/* Disable timer */
|
||||
ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
|
||||
ctrl &= ~APBTMR_CONTROL_ENABLE;
|
||||
apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
|
||||
/* write new count */
|
||||
apbt_writel(&dw_ced->timer, delta, APBTMR_N_LOAD_COUNT);
|
||||
ctrl |= APBTMR_CONTROL_ENABLE;
|
||||
apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* dw_apb_clockevent_init() - use an APB timer as a clock_event_device
|
||||
*
|
||||
* @cpu: The CPU the events will be targeted at.
|
||||
* @name: The name used for the timer and the IRQ for it.
|
||||
* @rating: The rating to give the timer.
|
||||
* @base: I/O base for the timer registers.
|
||||
* @irq: The interrupt number to use for the timer.
|
||||
* @freq: The frequency that the timer counts at.
|
||||
*
|
||||
* This creates a clock_event_device for using with the generic clock layer
|
||||
* but does not start and register it. This should be done with
|
||||
* dw_apb_clockevent_register() as the next step. If this is the first time
|
||||
* it has been called for a timer then the IRQ will be requested, if not it
|
||||
* just be enabled to allow CPU hotplug to avoid repeatedly requesting and
|
||||
* releasing the IRQ.
|
||||
*/
|
||||
struct dw_apb_clock_event_device *
|
||||
dw_apb_clockevent_init(int cpu, const char *name, unsigned rating,
|
||||
void __iomem *base, int irq, unsigned long freq)
|
||||
{
|
||||
struct dw_apb_clock_event_device *dw_ced =
|
||||
kzalloc(sizeof(*dw_ced), GFP_KERNEL);
|
||||
int err;
|
||||
|
||||
if (!dw_ced)
|
||||
return NULL;
|
||||
|
||||
dw_ced->timer.base = base;
|
||||
dw_ced->timer.irq = irq;
|
||||
dw_ced->timer.freq = freq;
|
||||
|
||||
clockevents_calc_mult_shift(&dw_ced->ced, freq, APBT_MIN_PERIOD);
|
||||
dw_ced->ced.max_delta_ns = clockevent_delta2ns(0x7fffffff,
|
||||
&dw_ced->ced);
|
||||
dw_ced->ced.min_delta_ns = clockevent_delta2ns(5000, &dw_ced->ced);
|
||||
dw_ced->ced.cpumask = cpumask_of(cpu);
|
||||
dw_ced->ced.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
|
||||
dw_ced->ced.set_mode = apbt_set_mode;
|
||||
dw_ced->ced.set_next_event = apbt_next_event;
|
||||
dw_ced->ced.irq = dw_ced->timer.irq;
|
||||
dw_ced->ced.rating = rating;
|
||||
dw_ced->ced.name = name;
|
||||
|
||||
dw_ced->irqaction.name = dw_ced->ced.name;
|
||||
dw_ced->irqaction.handler = dw_apb_clockevent_irq;
|
||||
dw_ced->irqaction.dev_id = &dw_ced->ced;
|
||||
dw_ced->irqaction.irq = irq;
|
||||
dw_ced->irqaction.flags = IRQF_TIMER | IRQF_IRQPOLL |
|
||||
IRQF_NOBALANCING |
|
||||
IRQF_DISABLED;
|
||||
|
||||
dw_ced->eoi = apbt_eoi;
|
||||
err = setup_irq(irq, &dw_ced->irqaction);
|
||||
if (err) {
|
||||
pr_err("failed to request timer irq\n");
|
||||
kfree(dw_ced);
|
||||
dw_ced = NULL;
|
||||
}
|
||||
|
||||
return dw_ced;
|
||||
}
|
||||
|
||||
/**
|
||||
* dw_apb_clockevent_resume() - resume a clock that has been paused.
|
||||
*
|
||||
* @dw_ced: The APB clock to resume.
|
||||
*/
|
||||
void dw_apb_clockevent_resume(struct dw_apb_clock_event_device *dw_ced)
|
||||
{
|
||||
enable_irq(dw_ced->timer.irq);
|
||||
}
|
||||
|
||||
/**
|
||||
* dw_apb_clockevent_stop() - stop the clock_event_device and release the IRQ.
|
||||
*
|
||||
* @dw_ced: The APB clock to stop generating the events.
|
||||
*/
|
||||
void dw_apb_clockevent_stop(struct dw_apb_clock_event_device *dw_ced)
|
||||
{
|
||||
free_irq(dw_ced->timer.irq, &dw_ced->ced);
|
||||
}
|
||||
|
||||
/**
|
||||
* dw_apb_clockevent_register() - register the clock with the generic layer
|
||||
*
|
||||
* @dw_ced: The APB clock to register as a clock_event_device.
|
||||
*/
|
||||
void dw_apb_clockevent_register(struct dw_apb_clock_event_device *dw_ced)
|
||||
{
|
||||
apbt_writel(&dw_ced->timer, 0, APBTMR_N_CONTROL);
|
||||
clockevents_register_device(&dw_ced->ced);
|
||||
apbt_enable_int(&dw_ced->timer);
|
||||
}
|
||||
|
||||
/**
|
||||
* dw_apb_clocksource_start() - start the clocksource counting.
|
||||
*
|
||||
* @dw_cs: The clocksource to start.
|
||||
*
|
||||
* This is used to start the clocksource before registration and can be used
|
||||
* to enable calibration of timers.
|
||||
*/
|
||||
void dw_apb_clocksource_start(struct dw_apb_clocksource *dw_cs)
|
||||
{
|
||||
/*
|
||||
* start count down from 0xffff_ffff. this is done by toggling the
|
||||
* enable bit then load initial load count to ~0.
|
||||
*/
|
||||
unsigned long ctrl = apbt_readl(&dw_cs->timer, APBTMR_N_CONTROL);
|
||||
|
||||
ctrl &= ~APBTMR_CONTROL_ENABLE;
|
||||
apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
|
||||
apbt_writel(&dw_cs->timer, ~0, APBTMR_N_LOAD_COUNT);
|
||||
/* enable, mask interrupt */
|
||||
ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
|
||||
ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
|
||||
apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
|
||||
/* read it once to get cached counter value initialized */
|
||||
dw_apb_clocksource_read(dw_cs);
|
||||
}
|
||||
|
||||
static cycle_t __apbt_read_clocksource(struct clocksource *cs)
|
||||
{
|
||||
unsigned long current_count;
|
||||
struct dw_apb_clocksource *dw_cs =
|
||||
clocksource_to_dw_apb_clocksource(cs);
|
||||
|
||||
current_count = apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
|
||||
|
||||
return (cycle_t)~current_count;
|
||||
}
|
||||
|
||||
static void apbt_restart_clocksource(struct clocksource *cs)
|
||||
{
|
||||
struct dw_apb_clocksource *dw_cs =
|
||||
clocksource_to_dw_apb_clocksource(cs);
|
||||
|
||||
dw_apb_clocksource_start(dw_cs);
|
||||
}
|
||||
|
||||
/**
|
||||
* dw_apb_clocksource_init() - use an APB timer as a clocksource.
|
||||
*
|
||||
* @rating: The rating to give the clocksource.
|
||||
* @name: The name for the clocksource.
|
||||
* @base: The I/O base for the timer registers.
|
||||
* @freq: The frequency that the timer counts at.
|
||||
*
|
||||
* This creates a clocksource using an APB timer but does not yet register it
|
||||
* with the clocksource system. This should be done with
|
||||
* dw_apb_clocksource_register() as the next step.
|
||||
*/
|
||||
struct dw_apb_clocksource *
|
||||
dw_apb_clocksource_init(unsigned rating, char *name, void __iomem *base,
|
||||
unsigned long freq)
|
||||
{
|
||||
struct dw_apb_clocksource *dw_cs = kzalloc(sizeof(*dw_cs), GFP_KERNEL);
|
||||
|
||||
if (!dw_cs)
|
||||
return NULL;
|
||||
|
||||
dw_cs->timer.base = base;
|
||||
dw_cs->timer.freq = freq;
|
||||
dw_cs->cs.name = name;
|
||||
dw_cs->cs.rating = rating;
|
||||
dw_cs->cs.read = __apbt_read_clocksource;
|
||||
dw_cs->cs.mask = CLOCKSOURCE_MASK(32);
|
||||
dw_cs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
|
||||
dw_cs->cs.resume = apbt_restart_clocksource;
|
||||
|
||||
return dw_cs;
|
||||
}
|
||||
|
||||
/**
|
||||
* dw_apb_clocksource_register() - register the APB clocksource.
|
||||
*
|
||||
* @dw_cs: The clocksource to register.
|
||||
*/
|
||||
void dw_apb_clocksource_register(struct dw_apb_clocksource *dw_cs)
|
||||
{
|
||||
clocksource_register_hz(&dw_cs->cs, dw_cs->timer.freq);
|
||||
}
|
||||
|
||||
/**
|
||||
* dw_apb_clocksource_read() - read the current value of a clocksource.
|
||||
*
|
||||
* @dw_cs: The clocksource to read.
|
||||
*/
|
||||
cycle_t dw_apb_clocksource_read(struct dw_apb_clocksource *dw_cs)
|
||||
{
|
||||
return (cycle_t)~apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
|
||||
}
|
||||
|
||||
/**
|
||||
* dw_apb_clocksource_unregister() - unregister and free a clocksource.
|
||||
*
|
||||
* @dw_cs: The clocksource to unregister/free.
|
||||
*/
|
||||
void dw_apb_clocksource_unregister(struct dw_apb_clocksource *dw_cs)
|
||||
{
|
||||
clocksource_unregister(&dw_cs->cs);
|
||||
|
||||
kfree(dw_cs);
|
||||
}
|
56
include/linux/dw_apb_timer.h
Normal file
56
include/linux/dw_apb_timer.h
Normal file
@ -0,0 +1,56 @@
|
||||
/*
|
||||
* (C) Copyright 2009 Intel Corporation
|
||||
* Author: Jacob Pan (jacob.jun.pan@intel.com)
|
||||
*
|
||||
* Shared with ARM platforms, Jamie Iles, Picochip 2011
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*
|
||||
* Support for the Synopsys DesignWare APB Timers.
|
||||
*/
|
||||
#ifndef __DW_APB_TIMER_H__
|
||||
#define __DW_APB_TIMER_H__
|
||||
|
||||
#include <linux/clockchips.h>
|
||||
#include <linux/clocksource.h>
|
||||
#include <linux/interrupt.h>
|
||||
|
||||
#define APBTMRS_REG_SIZE 0x14
|
||||
|
||||
struct dw_apb_timer {
|
||||
void __iomem *base;
|
||||
unsigned long freq;
|
||||
int irq;
|
||||
};
|
||||
|
||||
struct dw_apb_clock_event_device {
|
||||
struct clock_event_device ced;
|
||||
struct dw_apb_timer timer;
|
||||
struct irqaction irqaction;
|
||||
void (*eoi)(struct dw_apb_timer *);
|
||||
};
|
||||
|
||||
struct dw_apb_clocksource {
|
||||
struct dw_apb_timer timer;
|
||||
struct clocksource cs;
|
||||
};
|
||||
|
||||
void dw_apb_clockevent_register(struct dw_apb_clock_event_device *dw_ced);
|
||||
void dw_apb_clockevent_pause(struct dw_apb_clock_event_device *dw_ced);
|
||||
void dw_apb_clockevent_resume(struct dw_apb_clock_event_device *dw_ced);
|
||||
void dw_apb_clockevent_stop(struct dw_apb_clock_event_device *dw_ced);
|
||||
|
||||
struct dw_apb_clock_event_device *
|
||||
dw_apb_clockevent_init(int cpu, const char *name, unsigned rating,
|
||||
void __iomem *base, int irq, unsigned long freq);
|
||||
struct dw_apb_clocksource *
|
||||
dw_apb_clocksource_init(unsigned rating, char *name, void __iomem *base,
|
||||
unsigned long freq);
|
||||
void dw_apb_clocksource_register(struct dw_apb_clocksource *dw_cs);
|
||||
void dw_apb_clocksource_start(struct dw_apb_clocksource *dw_cs);
|
||||
cycle_t dw_apb_clocksource_read(struct dw_apb_clocksource *dw_cs);
|
||||
void dw_apb_clocksource_unregister(struct dw_apb_clocksource *dw_cs);
|
||||
|
||||
#endif /* __DW_APB_TIMER_H__ */
|
Loading…
Reference in New Issue
Block a user