mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-18 08:35:08 +08:00
Merge branch 'doc-net-ieee802154-move-from-plain-text-to-rst'
Stefan Schmidt says: ==================== doc: net: ieee802154: move from plain text to rst The ieee802154 subsystem doc was still in plain text. With the networking book taking shape I thought it was time to do the first step and move it over to rst. This really is only the minimal conversion. I need to take some time to update and extend the docs. The patches are based on net-next, but they only touch the networking book so I would not expect and trouble. From what I have seen they would go through Jonathan's tree after being acked by Dave? If you want this patches against a different tree let me know. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
commit
9bfc445e0e
@ -1,154 +1,38 @@
|
||||
|
||||
Linux IEEE 802.15.4 implementation
|
||||
|
||||
===============================
|
||||
IEEE 802.15.4 Developer's Guide
|
||||
===============================
|
||||
|
||||
Introduction
|
||||
============
|
||||
The IEEE 802.15.4 working group focuses on standardization of the bottom
|
||||
two layers: Medium Access Control (MAC) and Physical access (PHY). And there
|
||||
are mainly two options available for upper layers:
|
||||
- ZigBee - proprietary protocol from the ZigBee Alliance
|
||||
- 6LoWPAN - IPv6 networking over low rate personal area networks
|
||||
|
||||
- ZigBee - proprietary protocol from the ZigBee Alliance
|
||||
- 6LoWPAN - IPv6 networking over low rate personal area networks
|
||||
|
||||
The goal of the Linux-wpan is to provide a complete implementation
|
||||
of the IEEE 802.15.4 and 6LoWPAN protocols. IEEE 802.15.4 is a stack
|
||||
of protocols for organizing Low-Rate Wireless Personal Area Networks.
|
||||
|
||||
The stack is composed of three main parts:
|
||||
- IEEE 802.15.4 layer; We have chosen to use plain Berkeley socket API,
|
||||
the generic Linux networking stack to transfer IEEE 802.15.4 data
|
||||
messages and a special protocol over netlink for configuration/management
|
||||
- MAC - provides access to shared channel and reliable data delivery
|
||||
- PHY - represents device drivers
|
||||
|
||||
- IEEE 802.15.4 layer; We have chosen to use plain Berkeley socket API,
|
||||
the generic Linux networking stack to transfer IEEE 802.15.4 data
|
||||
messages and a special protocol over netlink for configuration/management
|
||||
- MAC - provides access to shared channel and reliable data delivery
|
||||
- PHY - represents device drivers
|
||||
|
||||
Socket API
|
||||
==========
|
||||
|
||||
int sd = socket(PF_IEEE802154, SOCK_DGRAM, 0);
|
||||
.....
|
||||
.. c:function:: int sd = socket(PF_IEEE802154, SOCK_DGRAM, 0);
|
||||
|
||||
The address family, socket addresses etc. are defined in the
|
||||
include/net/af_ieee802154.h header or in the special header
|
||||
in the userspace package (see either http://wpan.cakelab.org/ or the
|
||||
git tree at https://github.com/linux-wpan/wpan-tools).
|
||||
|
||||
|
||||
Kernel side
|
||||
=============
|
||||
|
||||
Like with WiFi, there are several types of devices implementing IEEE 802.15.4.
|
||||
1) 'HardMAC'. The MAC layer is implemented in the device itself, the device
|
||||
exports a management (e.g. MLME) and data API.
|
||||
2) 'SoftMAC' or just radio. These types of devices are just radio transceivers
|
||||
possibly with some kinds of acceleration like automatic CRC computation and
|
||||
comparation, automagic ACK handling, address matching, etc.
|
||||
|
||||
Those types of devices require different approach to be hooked into Linux kernel.
|
||||
|
||||
|
||||
HardMAC
|
||||
=======
|
||||
|
||||
See the header include/net/ieee802154_netdev.h. You have to implement Linux
|
||||
net_device, with .type = ARPHRD_IEEE802154. Data is exchanged with socket family
|
||||
code via plain sk_buffs. On skb reception skb->cb must contain additional
|
||||
info as described in the struct ieee802154_mac_cb. During packet transmission
|
||||
the skb->cb is used to provide additional data to device's header_ops->create
|
||||
function. Be aware that this data can be overridden later (when socket code
|
||||
submits skb to qdisc), so if you need something from that cb later, you should
|
||||
store info in the skb->data on your own.
|
||||
|
||||
To hook the MLME interface you have to populate the ml_priv field of your
|
||||
net_device with a pointer to struct ieee802154_mlme_ops instance. The fields
|
||||
assoc_req, assoc_resp, disassoc_req, start_req, and scan_req are optional.
|
||||
All other fields are required.
|
||||
|
||||
|
||||
SoftMAC
|
||||
=======
|
||||
|
||||
The MAC is the middle layer in the IEEE 802.15.4 Linux stack. This moment it
|
||||
provides interface for drivers registration and management of slave interfaces.
|
||||
|
||||
NOTE: Currently the only monitor device type is supported - it's IEEE 802.15.4
|
||||
stack interface for network sniffers (e.g. WireShark).
|
||||
|
||||
This layer is going to be extended soon.
|
||||
|
||||
See header include/net/mac802154.h and several drivers in
|
||||
drivers/net/ieee802154/.
|
||||
|
||||
|
||||
Device drivers API
|
||||
==================
|
||||
|
||||
The include/net/mac802154.h defines following functions:
|
||||
- struct ieee802154_hw *
|
||||
ieee802154_alloc_hw(size_t priv_data_len, const struct ieee802154_ops *ops):
|
||||
allocation of IEEE 802.15.4 compatible hardware device
|
||||
|
||||
- void ieee802154_free_hw(struct ieee802154_hw *hw):
|
||||
freeing allocated hardware device
|
||||
|
||||
- int ieee802154_register_hw(struct ieee802154_hw *hw):
|
||||
register PHY which is the allocated hardware device, in the system
|
||||
|
||||
- void ieee802154_unregister_hw(struct ieee802154_hw *hw):
|
||||
freeing registered PHY
|
||||
|
||||
- void ieee802154_rx_irqsafe(struct ieee802154_hw *hw, struct sk_buff *skb,
|
||||
u8 lqi):
|
||||
telling 802.15.4 module there is a new received frame in the skb with
|
||||
the RF Link Quality Indicator (LQI) from the hardware device
|
||||
|
||||
- void ieee802154_xmit_complete(struct ieee802154_hw *hw, struct sk_buff *skb,
|
||||
bool ifs_handling):
|
||||
telling 802.15.4 module the frame in the skb is or going to be
|
||||
transmitted through the hardware device
|
||||
|
||||
The device driver must implement the following callbacks in the IEEE 802.15.4
|
||||
operations structure at least:
|
||||
struct ieee802154_ops {
|
||||
...
|
||||
int (*start)(struct ieee802154_hw *hw);
|
||||
void (*stop)(struct ieee802154_hw *hw);
|
||||
...
|
||||
int (*xmit_async)(struct ieee802154_hw *hw, struct sk_buff *skb);
|
||||
int (*ed)(struct ieee802154_hw *hw, u8 *level);
|
||||
int (*set_channel)(struct ieee802154_hw *hw, u8 page, u8 channel);
|
||||
...
|
||||
};
|
||||
|
||||
- int start(struct ieee802154_hw *hw):
|
||||
handler that 802.15.4 module calls for the hardware device initialization.
|
||||
|
||||
- void stop(struct ieee802154_hw *hw):
|
||||
handler that 802.15.4 module calls for the hardware device cleanup.
|
||||
|
||||
- int xmit_async(struct ieee802154_hw *hw, struct sk_buff *skb):
|
||||
handler that 802.15.4 module calls for each frame in the skb going to be
|
||||
transmitted through the hardware device.
|
||||
|
||||
- int ed(struct ieee802154_hw *hw, u8 *level):
|
||||
handler that 802.15.4 module calls for Energy Detection from the hardware
|
||||
device.
|
||||
|
||||
- int set_channel(struct ieee802154_hw *hw, u8 page, u8 channel):
|
||||
set radio for listening on specific channel of the hardware device.
|
||||
|
||||
Moreover IEEE 802.15.4 device operations structure should be filled.
|
||||
|
||||
Fake drivers
|
||||
============
|
||||
|
||||
In addition there is a driver available which simulates a real device with
|
||||
SoftMAC (fakelb - IEEE 802.15.4 loopback driver) interface. This option
|
||||
provides a possibility to test and debug the stack without usage of real hardware.
|
||||
|
||||
See sources in drivers/net/ieee802154 folder for more details.
|
||||
|
||||
|
||||
6LoWPAN Linux implementation
|
||||
============================
|
||||
|
||||
@ -173,5 +57,124 @@ and net/ieee802154/6lowpan/*
|
||||
To setup a 6LoWPAN interface you need:
|
||||
1. Add IEEE802.15.4 interface and set channel and PAN ID;
|
||||
2. Add 6lowpan interface by command like:
|
||||
# ip link add link wpan0 name lowpan0 type lowpan
|
||||
# ip link add link wpan0 name lowpan0 type lowpan
|
||||
3. Bring up 'lowpan0' interface
|
||||
|
||||
Drivers
|
||||
=======
|
||||
|
||||
Like with WiFi, there are several types of devices implementing IEEE 802.15.4.
|
||||
1) 'HardMAC'. The MAC layer is implemented in the device itself, the device
|
||||
exports a management (e.g. MLME) and data API.
|
||||
2) 'SoftMAC' or just radio. These types of devices are just radio transceivers
|
||||
possibly with some kinds of acceleration like automatic CRC computation and
|
||||
comparation, automagic ACK handling, address matching, etc.
|
||||
|
||||
Those types of devices require different approach to be hooked into Linux kernel.
|
||||
|
||||
HardMAC
|
||||
-------
|
||||
|
||||
See the header include/net/ieee802154_netdev.h. You have to implement Linux
|
||||
net_device, with .type = ARPHRD_IEEE802154. Data is exchanged with socket family
|
||||
code via plain sk_buffs. On skb reception skb->cb must contain additional
|
||||
info as described in the struct ieee802154_mac_cb. During packet transmission
|
||||
the skb->cb is used to provide additional data to device's header_ops->create
|
||||
function. Be aware that this data can be overridden later (when socket code
|
||||
submits skb to qdisc), so if you need something from that cb later, you should
|
||||
store info in the skb->data on your own.
|
||||
|
||||
To hook the MLME interface you have to populate the ml_priv field of your
|
||||
net_device with a pointer to struct ieee802154_mlme_ops instance. The fields
|
||||
assoc_req, assoc_resp, disassoc_req, start_req, and scan_req are optional.
|
||||
All other fields are required.
|
||||
|
||||
SoftMAC
|
||||
-------
|
||||
|
||||
The MAC is the middle layer in the IEEE 802.15.4 Linux stack. This moment it
|
||||
provides interface for drivers registration and management of slave interfaces.
|
||||
|
||||
NOTE: Currently the only monitor device type is supported - it's IEEE 802.15.4
|
||||
stack interface for network sniffers (e.g. WireShark).
|
||||
|
||||
This layer is going to be extended soon.
|
||||
|
||||
See header include/net/mac802154.h and several drivers in
|
||||
drivers/net/ieee802154/.
|
||||
|
||||
Fake drivers
|
||||
------------
|
||||
|
||||
In addition there is a driver available which simulates a real device with
|
||||
SoftMAC (fakelb - IEEE 802.15.4 loopback driver) interface. This option
|
||||
provides a possibility to test and debug the stack without usage of real hardware.
|
||||
|
||||
Device drivers API
|
||||
==================
|
||||
|
||||
The include/net/mac802154.h defines following functions:
|
||||
|
||||
.. c:function:: struct ieee802154_dev *ieee802154_alloc_device (size_t priv_size, struct ieee802154_ops *ops)
|
||||
|
||||
Allocation of IEEE 802.15.4 compatible device.
|
||||
|
||||
.. c:function:: void ieee802154_free_device(struct ieee802154_dev *dev)
|
||||
|
||||
Freeing allocated device.
|
||||
|
||||
.. c:function:: int ieee802154_register_device(struct ieee802154_dev *dev)
|
||||
|
||||
Register PHY in the system.
|
||||
|
||||
.. c:function:: void ieee802154_unregister_device(struct ieee802154_dev *dev)
|
||||
|
||||
Freeing registered PHY.
|
||||
|
||||
.. c:function:: void ieee802154_rx_irqsafe(struct ieee802154_hw *hw, struct sk_buff *skb, u8 lqi):
|
||||
|
||||
Telling 802.15.4 module there is a new received frame in the skb with
|
||||
the RF Link Quality Indicator (LQI) from the hardware device.
|
||||
|
||||
.. c:function:: void ieee802154_xmit_complete(struct ieee802154_hw *hw, struct sk_buff *skb, bool ifs_handling):
|
||||
|
||||
Telling 802.15.4 module the frame in the skb is or going to be
|
||||
transmitted through the hardware device
|
||||
|
||||
The device driver must implement the following callbacks in the IEEE 802.15.4
|
||||
operations structure at least::
|
||||
|
||||
struct ieee802154_ops {
|
||||
...
|
||||
int (*start)(struct ieee802154_hw *hw);
|
||||
void (*stop)(struct ieee802154_hw *hw);
|
||||
...
|
||||
int (*xmit_async)(struct ieee802154_hw *hw, struct sk_buff *skb);
|
||||
int (*ed)(struct ieee802154_hw *hw, u8 *level);
|
||||
int (*set_channel)(struct ieee802154_hw *hw, u8 page, u8 channel);
|
||||
...
|
||||
};
|
||||
|
||||
.. c:function:: int start(struct ieee802154_hw *hw):
|
||||
|
||||
Handler that 802.15.4 module calls for the hardware device initialization.
|
||||
|
||||
.. c:function:: void stop(struct ieee802154_hw *hw):
|
||||
|
||||
Handler that 802.15.4 module calls for the hardware device cleanup.
|
||||
|
||||
.. c:function:: int xmit_async(struct ieee802154_hw *hw, struct sk_buff *skb):
|
||||
|
||||
Handler that 802.15.4 module calls for each frame in the skb going to be
|
||||
transmitted through the hardware device.
|
||||
|
||||
.. c:function:: int ed(struct ieee802154_hw *hw, u8 *level):
|
||||
|
||||
Handler that 802.15.4 module calls for Energy Detection from the hardware
|
||||
device.
|
||||
|
||||
.. c:function:: int set_channel(struct ieee802154_hw *hw, u8 page, u8 channel):
|
||||
|
||||
Set radio for listening on specific channel of the hardware device.
|
||||
|
||||
Moreover IEEE 802.15.4 device operations structure should be filled.
|
@ -25,6 +25,7 @@ Contents:
|
||||
device_drivers/intel/iavf
|
||||
device_drivers/intel/ice
|
||||
devlink-info-versions
|
||||
ieee802154
|
||||
kapi
|
||||
z8530book
|
||||
msg_zerocopy
|
||||
|
Loading…
Reference in New Issue
Block a user