mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-24 04:34:08 +08:00
mm/mprotect: allow unfaulted VMAs to be unaccounted on mprotect()
When mprotect() is used to make unwritable VMAs writable, they have the VM_ACCOUNT flag applied and memory accounted accordingly. If the VMA has had no pages faulted in and is then made unwritable once again, it will remain accounted for, despite not being capable of extending memory usage. Consider:- ptr = mmap(NULL, page_size * 3, PROT_READ, MAP_ANON | MAP_PRIVATE, -1, 0); mprotect(ptr + page_size, page_size, PROT_READ | PROT_WRITE); mprotect(ptr + page_size, page_size, PROT_READ); The first mprotect() splits the range into 3 VMAs and the second fails to merge the three as the middle VMA has VM_ACCOUNT set and the others do not, rendering them unmergeable. This is unnecessary, since no pages have actually been allocated and the middle VMA is not capable of utilising more memory, thereby introducing unnecessary VMA fragmentation (and accounting for more memory than is necessary). Since we cannot efficiently determine which pages map to an anonymous VMA, we have to be very conservative - determining whether any pages at all have been faulted in, by checking whether vma->anon_vma is NULL. We can see that the lack of anon_vma implies that no anonymous pages are present as evidenced by vma_needs_copy() utilising this on fork to determine whether page tables need to be copied. The only place where anon_vma is set NULL explicitly is on fork with VM_WIPEONFORK set, however since this flag is intended to cause the child process to not CoW on a given memory range, it is right to interpret this as indicating the VMA has no faulted-in anonymous memory mapped. If the VMA was forked without VM_WIPEONFORK set, then anon_vma_fork() will have ensured that a new anon_vma is assigned (and correctly related to its parent anon_vma) should any pages be CoW-mapped. The overall operation is safe against races as we hold a write lock against mm->mmap_lock. If we could efficiently look up the VMA's faulted-in pages then we would unaccount all those pages not yet faulted in. However as the original comment alludes this simply isn't currently possible, so we are conservative and account all pages or none at all. Link: https://lkml.kernel.org/r/ad5540371a16623a069f03f4db1739f33cde1fab.1696921767.git.lstoakes@gmail.com Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This commit is contained in:
parent
f04eba134e
commit
9b91432985
@ -608,8 +608,11 @@ mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
|
||||
/*
|
||||
* If we make a private mapping writable we increase our commit;
|
||||
* but (without finer accounting) cannot reduce our commit if we
|
||||
* make it unwritable again. hugetlb mapping were accounted for
|
||||
* even if read-only so there is no need to account for them here
|
||||
* make it unwritable again except in the anonymous case where no
|
||||
* anon_vma has yet to be assigned.
|
||||
*
|
||||
* hugetlb mapping were accounted for even if read-only so there is
|
||||
* no need to account for them here.
|
||||
*/
|
||||
if (newflags & VM_WRITE) {
|
||||
/* Check space limits when area turns into data. */
|
||||
@ -623,6 +626,9 @@ mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
|
||||
return -ENOMEM;
|
||||
newflags |= VM_ACCOUNT;
|
||||
}
|
||||
} else if ((oldflags & VM_ACCOUNT) && vma_is_anonymous(vma) &&
|
||||
!vma->anon_vma) {
|
||||
newflags &= ~VM_ACCOUNT;
|
||||
}
|
||||
|
||||
/*
|
||||
@ -665,6 +671,9 @@ success:
|
||||
|
||||
change_protection(tlb, vma, start, end, mm_cp_flags);
|
||||
|
||||
if ((oldflags & VM_ACCOUNT) && !(newflags & VM_ACCOUNT))
|
||||
vm_unacct_memory(nrpages);
|
||||
|
||||
/*
|
||||
* Private VM_LOCKED VMA becoming writable: trigger COW to avoid major
|
||||
* fault on access.
|
||||
|
Loading…
Reference in New Issue
Block a user