misc: microchip: pci1xxxx: Add support to read and write into PCI1XXXX EEPROM via NVMEM sysfs

Microchip's pci1xxxx is an unmanaged PCIe3.1a switch for consumer,
industrial, and automotive applications. This switch integrates OTP
and EEPROM to enable customization of the part in the field.
This patch adds support to read and write into PCI1XXXX EEPROM
via NVMEM sysfs.

Signed-off-by: Kumaravel Thiagarajan <kumaravel.thiagarajan@microchip.com>
Co-developed-by: Tharun Kumar P <tharunkumar.pasumarthi@microchip.com>
Signed-off-by: Tharun Kumar P <tharunkumar.pasumarthi@microchip.com>
Co-developed-by: Vaibhaav Ram T.L <vaibhaavram.tl@microchip.com>
Signed-off-by: Vaibhaav Ram T.L <vaibhaavram.tl@microchip.com>
Link: https://lore.kernel.org/r/20230620143520.858-3-vaibhaavram.tl@microchip.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit is contained in:
Kumaravel Thiagarajan 2023-06-20 20:05:20 +05:30 committed by Greg Kroah-Hartman
parent 0969001569
commit 9ab5465349

View File

@ -11,19 +11,30 @@
#include "mchp_pci1xxxx_gp.h"
#define AUX_DRIVER_NAME "PCI1xxxxOTPE2P"
#define EEPROM_NAME "pci1xxxx_eeprom"
#define OTP_NAME "pci1xxxx_otp"
#define PERI_PF3_SYSTEM_REG_ADDR_BASE 0x2000
#define PERI_PF3_SYSTEM_REG_LENGTH 0x4000
#define EEPROM_SIZE_BYTES 8192
#define OTP_SIZE_BYTES 8192
#define CONFIG_REG_ADDR_BASE 0
#define EEPROM_REG_ADDR_BASE 0x0E00
#define OTP_REG_ADDR_BASE 0x1000
#define MMAP_OTP_OFFSET(x) (OTP_REG_ADDR_BASE + (x))
#define MMAP_EEPROM_OFFSET(x) (EEPROM_REG_ADDR_BASE + (x))
#define MMAP_CFG_OFFSET(x) (CONFIG_REG_ADDR_BASE + (x))
#define EEPROM_CMD_REG 0x00
#define EEPROM_DATA_REG 0x04
#define EEPROM_CMD_EPC_WRITE (BIT(29) | BIT(28))
#define EEPROM_CMD_EPC_TIMEOUT_BIT BIT(17)
#define EEPROM_CMD_EPC_BUSY_BIT BIT(31)
#define STATUS_READ_DELAY_US 1
#define STATUS_READ_TIMEOUT_US 20000
@ -56,6 +67,8 @@
struct pci1xxxx_otp_eeprom_device {
struct auxiliary_device *pdev;
void __iomem *reg_base;
struct nvmem_config nvmem_config_eeprom;
struct nvmem_device *nvmem_eeprom;
struct nvmem_config nvmem_config_otp;
struct nvmem_device *nvmem_otp;
};
@ -81,6 +94,115 @@ static void release_sys_lock(struct pci1xxxx_otp_eeprom_device *priv)
writel(0, sys_lock);
}
static bool is_eeprom_responsive(struct pci1xxxx_otp_eeprom_device *priv)
{
void __iomem *rb = priv->reg_base;
u32 regval;
int ret;
writel(EEPROM_CMD_EPC_TIMEOUT_BIT,
rb + MMAP_EEPROM_OFFSET(EEPROM_CMD_REG));
writel(EEPROM_CMD_EPC_BUSY_BIT,
rb + MMAP_EEPROM_OFFSET(EEPROM_CMD_REG));
/* Wait for the EPC_BUSY bit to get cleared or timeout bit to get set*/
ret = read_poll_timeout(readl, regval, !(regval & EEPROM_CMD_EPC_BUSY_BIT),
STATUS_READ_DELAY_US, STATUS_READ_TIMEOUT_US,
true, rb + MMAP_EEPROM_OFFSET(EEPROM_CMD_REG));
/* Return failure if either of software or hardware timeouts happen */
if (ret < 0 || (!ret && (regval & EEPROM_CMD_EPC_TIMEOUT_BIT)))
return false;
return true;
}
static int pci1xxxx_eeprom_read(void *priv_t, unsigned int off,
void *buf_t, size_t count)
{
struct pci1xxxx_otp_eeprom_device *priv = priv_t;
void __iomem *rb = priv->reg_base;
char *buf = buf_t;
u32 regval;
u32 byte;
int ret;
if (off >= priv->nvmem_config_eeprom.size)
return -EFAULT;
if ((off + count) > priv->nvmem_config_eeprom.size)
count = priv->nvmem_config_eeprom.size - off;
ret = set_sys_lock(priv);
if (ret)
return ret;
for (byte = 0; byte < count; byte++) {
writel(EEPROM_CMD_EPC_BUSY_BIT | (off + byte), rb +
MMAP_EEPROM_OFFSET(EEPROM_CMD_REG));
ret = read_poll_timeout(readl, regval,
!(regval & EEPROM_CMD_EPC_BUSY_BIT),
STATUS_READ_DELAY_US,
STATUS_READ_TIMEOUT_US, true,
rb + MMAP_EEPROM_OFFSET(EEPROM_CMD_REG));
if (ret < 0 || (!ret && (regval & EEPROM_CMD_EPC_TIMEOUT_BIT))) {
ret = -EIO;
goto error;
}
buf[byte] = readl(rb + MMAP_EEPROM_OFFSET(EEPROM_DATA_REG));
}
ret = byte;
error:
release_sys_lock(priv);
return ret;
}
static int pci1xxxx_eeprom_write(void *priv_t, unsigned int off,
void *value_t, size_t count)
{
struct pci1xxxx_otp_eeprom_device *priv = priv_t;
void __iomem *rb = priv->reg_base;
char *value = value_t;
u32 regval;
u32 byte;
int ret;
if (off >= priv->nvmem_config_eeprom.size)
return -EFAULT;
if ((off + count) > priv->nvmem_config_eeprom.size)
count = priv->nvmem_config_eeprom.size - off;
ret = set_sys_lock(priv);
if (ret)
return ret;
for (byte = 0; byte < count; byte++) {
writel(*(value + byte), rb + MMAP_EEPROM_OFFSET(EEPROM_DATA_REG));
regval = EEPROM_CMD_EPC_TIMEOUT_BIT | EEPROM_CMD_EPC_WRITE |
(off + byte);
writel(regval, rb + MMAP_EEPROM_OFFSET(EEPROM_CMD_REG));
writel(EEPROM_CMD_EPC_BUSY_BIT | regval,
rb + MMAP_EEPROM_OFFSET(EEPROM_CMD_REG));
ret = read_poll_timeout(readl, regval,
!(regval & EEPROM_CMD_EPC_BUSY_BIT),
STATUS_READ_DELAY_US,
STATUS_READ_TIMEOUT_US, true,
rb + MMAP_EEPROM_OFFSET(EEPROM_CMD_REG));
if (ret < 0 || (!ret && (regval & EEPROM_CMD_EPC_TIMEOUT_BIT))) {
ret = -EIO;
goto error;
}
}
ret = byte;
error:
release_sys_lock(priv);
return ret;
}
static void otp_device_set_address(struct pci1xxxx_otp_eeprom_device *priv,
u16 address)
{
@ -243,6 +365,24 @@ static int pci1xxxx_otp_eeprom_probe(struct auxiliary_device *aux_dev,
dev_set_drvdata(&aux_dev->dev, priv);
if (is_eeprom_responsive(priv)) {
priv->nvmem_config_eeprom.type = NVMEM_TYPE_EEPROM;
priv->nvmem_config_eeprom.name = EEPROM_NAME;
priv->nvmem_config_eeprom.dev = &aux_dev->dev;
priv->nvmem_config_eeprom.owner = THIS_MODULE;
priv->nvmem_config_eeprom.reg_read = pci1xxxx_eeprom_read;
priv->nvmem_config_eeprom.reg_write = pci1xxxx_eeprom_write;
priv->nvmem_config_eeprom.priv = priv;
priv->nvmem_config_eeprom.stride = 1;
priv->nvmem_config_eeprom.word_size = 1;
priv->nvmem_config_eeprom.size = EEPROM_SIZE_BYTES;
priv->nvmem_eeprom = devm_nvmem_register(&aux_dev->dev,
&priv->nvmem_config_eeprom);
if (!priv->nvmem_eeprom)
return -ENOMEM;
}
release_sys_lock(priv);
priv->nvmem_config_otp.type = NVMEM_TYPE_OTP;