mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-15 10:24:44 +08:00
x86/speculation: Fill RSB on vmexit for IBRS
Prevent RSB underflow/poisoning attacks with RSB. While at it, add a bunch of comments to attempt to document the current state of tribal knowledge about RSB attacks and what exactly is being mitigated. Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de>
This commit is contained in:
parent
bea7e31a5c
commit
9756bba284
@ -204,7 +204,7 @@
|
||||
#define X86_FEATURE_XCOMPACTED ( 7*32+10) /* "" Use compacted XSTATE (XSAVES or XSAVEC) */
|
||||
#define X86_FEATURE_PTI ( 7*32+11) /* Kernel Page Table Isolation enabled */
|
||||
#define X86_FEATURE_KERNEL_IBRS ( 7*32+12) /* "" Set/clear IBRS on kernel entry/exit */
|
||||
/* FREE! ( 7*32+13) */
|
||||
#define X86_FEATURE_RSB_VMEXIT ( 7*32+13) /* "" Fill RSB on VM-Exit */
|
||||
#define X86_FEATURE_INTEL_PPIN ( 7*32+14) /* Intel Processor Inventory Number */
|
||||
#define X86_FEATURE_CDP_L2 ( 7*32+15) /* Code and Data Prioritization L2 */
|
||||
#define X86_FEATURE_MSR_SPEC_CTRL ( 7*32+16) /* "" MSR SPEC_CTRL is implemented */
|
||||
|
@ -1401,16 +1401,69 @@ static void __init spectre_v2_select_mitigation(void)
|
||||
pr_info("%s\n", spectre_v2_strings[mode]);
|
||||
|
||||
/*
|
||||
* If spectre v2 protection has been enabled, unconditionally fill
|
||||
* RSB during a context switch; this protects against two independent
|
||||
* issues:
|
||||
* If Spectre v2 protection has been enabled, fill the RSB during a
|
||||
* context switch. In general there are two types of RSB attacks
|
||||
* across context switches, for which the CALLs/RETs may be unbalanced.
|
||||
*
|
||||
* - RSB underflow (and switch to BTB) on Skylake+
|
||||
* - SpectreRSB variant of spectre v2 on X86_BUG_SPECTRE_V2 CPUs
|
||||
* 1) RSB underflow
|
||||
*
|
||||
* Some Intel parts have "bottomless RSB". When the RSB is empty,
|
||||
* speculated return targets may come from the branch predictor,
|
||||
* which could have a user-poisoned BTB or BHB entry.
|
||||
*
|
||||
* AMD has it even worse: *all* returns are speculated from the BTB,
|
||||
* regardless of the state of the RSB.
|
||||
*
|
||||
* When IBRS or eIBRS is enabled, the "user -> kernel" attack
|
||||
* scenario is mitigated by the IBRS branch prediction isolation
|
||||
* properties, so the RSB buffer filling wouldn't be necessary to
|
||||
* protect against this type of attack.
|
||||
*
|
||||
* The "user -> user" attack scenario is mitigated by RSB filling.
|
||||
*
|
||||
* 2) Poisoned RSB entry
|
||||
*
|
||||
* If the 'next' in-kernel return stack is shorter than 'prev',
|
||||
* 'next' could be tricked into speculating with a user-poisoned RSB
|
||||
* entry.
|
||||
*
|
||||
* The "user -> kernel" attack scenario is mitigated by SMEP and
|
||||
* eIBRS.
|
||||
*
|
||||
* The "user -> user" scenario, also known as SpectreBHB, requires
|
||||
* RSB clearing.
|
||||
*
|
||||
* So to mitigate all cases, unconditionally fill RSB on context
|
||||
* switches.
|
||||
*
|
||||
* FIXME: Is this pointless for retbleed-affected AMD?
|
||||
*/
|
||||
setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
|
||||
pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
|
||||
|
||||
/*
|
||||
* Similar to context switches, there are two types of RSB attacks
|
||||
* after vmexit:
|
||||
*
|
||||
* 1) RSB underflow
|
||||
*
|
||||
* 2) Poisoned RSB entry
|
||||
*
|
||||
* When retpoline is enabled, both are mitigated by filling/clearing
|
||||
* the RSB.
|
||||
*
|
||||
* When IBRS is enabled, while #1 would be mitigated by the IBRS branch
|
||||
* prediction isolation protections, RSB still needs to be cleared
|
||||
* because of #2. Note that SMEP provides no protection here, unlike
|
||||
* user-space-poisoned RSB entries.
|
||||
*
|
||||
* eIBRS, on the other hand, has RSB-poisoning protections, so it
|
||||
* doesn't need RSB clearing after vmexit.
|
||||
*/
|
||||
if (boot_cpu_has(X86_FEATURE_RETPOLINE) ||
|
||||
boot_cpu_has(X86_FEATURE_KERNEL_IBRS))
|
||||
setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
|
||||
|
||||
/*
|
||||
* Retpoline protects the kernel, but doesn't protect firmware. IBRS
|
||||
* and Enhanced IBRS protect firmware too, so enable IBRS around
|
||||
|
@ -194,15 +194,15 @@ SYM_INNER_LABEL(vmx_vmexit, SYM_L_GLOBAL)
|
||||
* IMPORTANT: RSB filling and SPEC_CTRL handling must be done before
|
||||
* the first unbalanced RET after vmexit!
|
||||
*
|
||||
* For retpoline, RSB filling is needed to prevent poisoned RSB entries
|
||||
* and (in some cases) RSB underflow.
|
||||
* For retpoline or IBRS, RSB filling is needed to prevent poisoned RSB
|
||||
* entries and (in some cases) RSB underflow.
|
||||
*
|
||||
* eIBRS has its own protection against poisoned RSB, so it doesn't
|
||||
* need the RSB filling sequence. But it does need to be enabled
|
||||
* before the first unbalanced RET.
|
||||
*/
|
||||
|
||||
FILL_RETURN_BUFFER %_ASM_CX, RSB_CLEAR_LOOPS, X86_FEATURE_RETPOLINE
|
||||
FILL_RETURN_BUFFER %_ASM_CX, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_VMEXIT
|
||||
|
||||
pop %_ASM_ARG2 /* @flags */
|
||||
pop %_ASM_ARG1 /* @vmx */
|
||||
|
Loading…
Reference in New Issue
Block a user