arm64: Document Arm Confidential Compute

Add some documentation on Arm CCA and the requirements for running Linux
as a Realm guest. Also update booting.rst to describe the requirement
for RIPAS RAM.

Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Steven Price <steven.price@arm.com>
Link: https://lore.kernel.org/r/20241017131434.40935-12-steven.price@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This commit is contained in:
Steven Price 2024-10-17 14:14:34 +01:00 committed by Catalin Marinas
parent 7999edc484
commit 972d755f01
3 changed files with 73 additions and 0 deletions

View File

@ -0,0 +1,69 @@
.. SPDX-License-Identifier: GPL-2.0
=====================================
Arm Confidential Compute Architecture
=====================================
Arm systems that support the Realm Management Extension (RME) contain
hardware to allow a VM guest to be run in a way which protects the code
and data of the guest from the hypervisor. It extends the older "two
world" model (Normal and Secure World) into four worlds: Normal, Secure,
Root and Realm. Linux can then also be run as a guest to a monitor
running in the Realm world.
The monitor running in the Realm world is known as the Realm Management
Monitor (RMM) and implements the Realm Management Monitor
specification[1]. The monitor acts a bit like a hypervisor (e.g. it runs
in EL2 and manages the stage 2 page tables etc of the guests running in
Realm world), however much of the control is handled by a hypervisor
running in the Normal World. The Normal World hypervisor uses the Realm
Management Interface (RMI) defined by the RMM specification to request
the RMM to perform operations (e.g. mapping memory or executing a vCPU).
The RMM defines an environment for guests where the address space (IPA)
is split into two. The lower half is protected - any memory that is
mapped in this half cannot be seen by the Normal World and the RMM
restricts what operations the Normal World can perform on this memory
(e.g. the Normal World cannot replace pages in this region without the
guest's cooperation). The upper half is shared, the Normal World is free
to make changes to the pages in this region, and is able to emulate MMIO
devices in this region too.
A guest running in a Realm may also communicate with the RMM using the
Realm Services Interface (RSI) to request changes in its environment or
to perform attestation about its environment. In particular it may
request that areas of the protected address space are transitioned
between 'RAM' and 'EMPTY' (in either direction). This allows a Realm
guest to give up memory to be returned to the Normal World, or to
request new memory from the Normal World. Without an explicit request
from the Realm guest the RMM will otherwise prevent the Normal World
from making these changes.
Linux as a Realm Guest
----------------------
To run Linux as a guest within a Realm, the following must be provided
either by the VMM or by a `boot loader` run in the Realm before Linux:
* All protected RAM described to Linux (by DT or ACPI) must be marked
RIPAS RAM before handing control over to Linux.
* MMIO devices must be either unprotected (e.g. emulated by the Normal
World) or marked RIPAS DEV.
* MMIO devices emulated by the Normal World and used very early in boot
(specifically earlycon) must be specified in the upper half of IPA.
For earlycon this can be done by specifying the address on the
command line, e.g. with an IPA size of 33 bits and the base address
of the emulated UART at 0x1000000: ``earlycon=uart,mmio,0x101000000``
* Linux will use bounce buffers for communicating with unprotected
devices. It will transition some protected memory to RIPAS EMPTY and
expect to be able to access unprotected pages at the same IPA address
but with the highest valid IPA bit set. The expectation is that the
VMM will remove the physical pages from the protected mapping and
provide those pages as unprotected pages.
References
----------
[1] https://developer.arm.com/documentation/den0137/

View File

@ -41,6 +41,9 @@ to automatically locate and size all RAM, or it may use knowledge of
the RAM in the machine, or any other method the boot loader designer
sees fit.)
For Arm Confidential Compute Realms this includes ensuring that all
protected RAM has a Realm IPA state (RIPAS) of "RAM".
2. Setup the device tree
-------------------------

View File

@ -10,6 +10,7 @@ ARM64 Architecture
acpi_object_usage
amu
arm-acpi
arm-cca
asymmetric-32bit
booting
cpu-feature-registers