Staging: comedi: add me_daq driver

This adds the me_daq comedi driver to the build.

From: Michael Hillmann <hillmann@syscongroup.de>
Cc: David Schleef <ds@schleef.org>
Cc: Frank Mori Hess <fmhess@users.sourceforge.net>
Cc: Ian Abbott <abbotti@mev.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This commit is contained in:
Michael Hillmann 2008-11-19 14:26:25 -08:00 committed by Greg Kroah-Hartman
parent 3d9f073994
commit 85acac6109
2 changed files with 860 additions and 0 deletions

View File

@ -10,6 +10,7 @@ obj-$(CONFIG_COMEDI) += comedi_parport.o
# Comedi PCI drivers
obj-$(CONFIG_COMEDI_PCI_DRIVERS) += mite.o
obj-$(CONFIG_COMEDI_PCI_DRIVERS) += icp_multi.o
obj-$(CONFIG_COMEDI_PCI_DRIVERS) += me_daq.o
obj-$(CONFIG_COMEDI_PCI_DRIVERS) += me4000.o
obj-$(CONFIG_COMEDI_PCI_DRIVERS) += rtd520.o
obj-$(CONFIG_COMEDI_PCI_DRIVERS) += s626.o

View File

@ -0,0 +1,859 @@
/*
comedi/drivers/me_daq.c
Hardware driver for Meilhaus data acquisition cards:
ME-2000i, ME-2600i, ME-3000vm1
Copyright (C) 2002 Michael Hillmann <hillmann@syscongroup.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
Driver: me_daq
Description: Meilhaus PCI data acquisition cards
Author: Michael Hillmann <hillmann@syscongroup.de>
Devices: [Meilhaus] ME-2600i (me_daq), ME-2000i
Status: experimental
Supports:
Analog Output
Configuration options:
[0] - PCI bus number (optional)
[1] - PCI slot number (optional)
If bus/slot is not specified, the first available PCI
device will be used.
The 2600 requires a firmware upload, which can be accomplished
using the -i or --init-data option of comedi_config.
The firmware can be
found in the comedi_nonfree_firmware tarball available
from http://www.comedi.org
*/
#include "../comedidev.h"
#include "comedi_pci.h"
//#include "me2600_fw.h"
#define ME_DRIVER_NAME "me_daq"
#define ME2000_DEVICE_ID 0x2000
#define ME2600_DEVICE_ID 0x2600
#define PLX_INTCSR 0x4C // PLX interrupt status register
#define XILINX_DOWNLOAD_RESET 0x42 // Xilinx registers
#define ME_CONTROL_1 0x0000 // - | W
#define INTERRUPT_ENABLE (1<<15)
#define COUNTER_B_IRQ (1<<12)
#define COUNTER_A_IRQ (1<<11)
#define CHANLIST_READY_IRQ (1<<10)
#define EXT_IRQ (1<<9)
#define ADFIFO_HALFFULL_IRQ (1<<8)
#define SCAN_COUNT_ENABLE (1<<5)
#define SIMULTANEOUS_ENABLE (1<<4)
#define TRIGGER_FALLING_EDGE (1<<3)
#define CONTINUOUS_MODE (1<<2)
#define DISABLE_ADC (0<<0)
#define SOFTWARE_TRIGGERED_ADC (1<<0)
#define SCAN_TRIGGERED_ADC (2<<0)
#define EXT_TRIGGERED_ADC (3<<0)
#define ME_ADC_START 0x0000 // R | -
#define ME_CONTROL_2 0x0002 // - | W
#define ENABLE_ADFIFO (1<<10)
#define ENABLE_CHANLIST (1<<9)
#define ENABLE_PORT_B (1<<7)
#define ENABLE_PORT_A (1<<6)
#define ENABLE_COUNTER_B (1<<4)
#define ENABLE_COUNTER_A (1<<3)
#define ENABLE_DAC (1<<1)
#define BUFFERED_DAC (1<<0)
#define ME_DAC_UPDATE 0x0002 // R | -
#define ME_STATUS 0x0004 // R | -
#define COUNTER_B_IRQ_PENDING (1<<12)
#define COUNTER_A_IRQ_PENDING (1<<11)
#define CHANLIST_READY_IRQ_PENDING (1<<10)
#define EXT_IRQ_PENDING (1<<9)
#define ADFIFO_HALFFULL_IRQ_PENDING (1<<8)
#define ADFIFO_FULL (1<<4)
#define ADFIFO_HALFFULL (1<<3)
#define ADFIFO_EMPTY (1<<2)
#define CHANLIST_FULL (1<<1)
#define FST_ACTIVE (1<<0)
#define ME_RESET_INTERRUPT 0x0004 // - | W
#define ME_DIO_PORT_A 0x0006 // R | W
#define ME_DIO_PORT_B 0x0008 // R | W
#define ME_TIMER_DATA_0 0x000A // - | W
#define ME_TIMER_DATA_1 0x000C // - | W
#define ME_TIMER_DATA_2 0x000E // - | W
#define ME_CHANNEL_LIST 0x0010 // - | W
#define ADC_UNIPOLAR (1<<6)
#define ADC_GAIN_0 (0<<4)
#define ADC_GAIN_1 (1<<4)
#define ADC_GAIN_2 (2<<4)
#define ADC_GAIN_3 (3<<4)
#define ME_READ_AD_FIFO 0x0010 // R | -
#define ME_DAC_CONTROL 0x0012 // - | W
#define DAC_UNIPOLAR_D (0<<4)
#define DAC_BIPOLAR_D (1<<4)
#define DAC_UNIPOLAR_C (0<<5)
#define DAC_BIPOLAR_C (1<<5)
#define DAC_UNIPOLAR_B (0<<6)
#define DAC_BIPOLAR_B (1<<6)
#define DAC_UNIPOLAR_A (0<<7)
#define DAC_BIPOLAR_A (1<<7)
#define DAC_GAIN_0_D (0<<8)
#define DAC_GAIN_1_D (1<<8)
#define DAC_GAIN_0_C (0<<9)
#define DAC_GAIN_1_C (1<<9)
#define DAC_GAIN_0_B (0<<10)
#define DAC_GAIN_1_B (1<<10)
#define DAC_GAIN_0_A (0<<11)
#define DAC_GAIN_1_A (1<<11)
#define ME_DAC_CONTROL_UPDATE 0x0012 // R | -
#define ME_DAC_DATA_A 0x0014 // - | W
#define ME_DAC_DATA_B 0x0016 // - | W
#define ME_DAC_DATA_C 0x0018 // - | W
#define ME_DAC_DATA_D 0x001A // - | W
#define ME_COUNTER_ENDDATA_A 0x001C // - | W
#define ME_COUNTER_ENDDATA_B 0x001E // - | W
#define ME_COUNTER_STARTDATA_A 0x0020 // - | W
#define ME_COUNTER_VALUE_A 0x0020 // R | -
#define ME_COUNTER_STARTDATA_B 0x0022 // - | W
#define ME_COUNTER_VALUE_B 0x0022 // R | -
//
// Function prototypes
//
static int me_attach(comedi_device * dev, comedi_devconfig * it);
static int me_detach(comedi_device * dev);
static const comedi_lrange me2000_ai_range = {
8,
{
BIP_RANGE(10),
BIP_RANGE(5),
BIP_RANGE(2.5),
BIP_RANGE(1.25),
UNI_RANGE(10),
UNI_RANGE(5),
UNI_RANGE(2.5),
UNI_RANGE(1.25)
}
};
static const comedi_lrange me2600_ai_range = {
8,
{
BIP_RANGE(10),
BIP_RANGE(5),
BIP_RANGE(2.5),
BIP_RANGE(1.25),
UNI_RANGE(10),
UNI_RANGE(5),
UNI_RANGE(2.5),
UNI_RANGE(1.25)
}
};
static const comedi_lrange me2600_ao_range = {
3,
{
BIP_RANGE(10),
BIP_RANGE(5),
UNI_RANGE(10)
}
};
static DEFINE_PCI_DEVICE_TABLE(me_pci_table) = {
{PCI_VENDOR_ID_MEILHAUS, ME2600_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
0},
{PCI_VENDOR_ID_MEILHAUS, ME2000_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
0},
{0}
};
MODULE_DEVICE_TABLE(pci, me_pci_table);
//
// Board specification structure
//
typedef struct {
const char *name; // driver name
int device_id;
int ao_channel_nbr; // DA config
int ao_resolution;
int ao_resolution_mask;
const comedi_lrange *ao_range_list;
int ai_channel_nbr; // AD config
int ai_resolution;
int ai_resolution_mask;
const comedi_lrange *ai_range_list;
int dio_channel_nbr; // DIO config
} me_board_struct;
static const me_board_struct me_boards[] = {
{ // -- ME-2600i --
name: ME_DRIVER_NAME,
device_id:ME2600_DEVICE_ID,
ao_channel_nbr:4,// Analog Output
ao_resolution:12,
ao_resolution_mask:0x0fff,
ao_range_list:&me2600_ao_range,
ai_channel_nbr:16,
// Analog Input
ai_resolution:12,
ai_resolution_mask:0x0fff,
ai_range_list:&me2600_ai_range,
dio_channel_nbr:32,
},
{ // -- ME-2000i --
name: ME_DRIVER_NAME,
device_id:ME2000_DEVICE_ID,
ao_channel_nbr:0,// Analog Output
ao_resolution:0,
ao_resolution_mask:0,
ao_range_list:0,
ai_channel_nbr:16,
// Analog Input
ai_resolution:12,
ai_resolution_mask:0x0fff,
ai_range_list:&me2000_ai_range,
dio_channel_nbr:32,
}
};
#define me_board_nbr (sizeof(me_boards)/sizeof(me_board_struct))
static comedi_driver me_driver = {
driver_name:ME_DRIVER_NAME,
module:THIS_MODULE,
attach:me_attach,
detach:me_detach,
};
COMEDI_PCI_INITCLEANUP(me_driver, me_pci_table);
//
// Private data structure
//
typedef struct {
struct pci_dev *pci_device;
void *plx_regbase; // PLX configuration base address
void *me_regbase; // Base address of the Meilhaus card
unsigned long plx_regbase_size; // Size of PLX configuration space
unsigned long me_regbase_size; // Size of Meilhaus space
unsigned short control_1; // Mirror of CONTROL_1 register
unsigned short control_2; // Mirror of CONTROL_2 register
unsigned short dac_control; // Mirror of the DAC_CONTROL register
int ao_readback[4]; // Mirror of analog output data
} me_private_data_struct;
#define dev_private ((me_private_data_struct *)dev->private)
// ------------------------------------------------------------------
//
// Helpful functions
//
// ------------------------------------------------------------------
static __inline__ void sleep(unsigned sec)
{
current->state = TASK_INTERRUPTIBLE;
schedule_timeout(sec * HZ);
}
// ------------------------------------------------------------------
//
// DIGITAL INPUT/OUTPUT SECTION
//
// ------------------------------------------------------------------
static int me_dio_insn_config(comedi_device * dev,
comedi_subdevice * s, comedi_insn * insn, lsampl_t * data)
{
int bits;
int mask = 1 << CR_CHAN(insn->chanspec);
/* calculate port */
if (mask & 0x0000ffff) { /* Port A in use */
bits = 0x0000ffff;
/* Enable Port A */
dev_private->control_2 |= ENABLE_PORT_A;
writew(dev_private->control_2,
dev_private->me_regbase + ME_CONTROL_2);
} else { /* Port B in use */
bits = 0xffff0000;
/* Enable Port B */
dev_private->control_2 |= ENABLE_PORT_B;
writew(dev_private->control_2,
dev_private->me_regbase + ME_CONTROL_2);
}
if (data[0]) { /* Config port as output */
s->io_bits |= bits;
} else { /* Config port as input */
s->io_bits &= ~bits;
}
return 1;
}
//
// Digital instant input/outputs
//
static int me_dio_insn_bits(comedi_device * dev,
comedi_subdevice * s, comedi_insn * insn, lsampl_t * data)
{
unsigned int mask = data[0];
s->state &= ~mask;
s->state |= (mask & data[1]);
mask &= s->io_bits;
if (mask & 0x0000ffff) { /* Port A */
writew((s->state & 0xffff),
dev_private->me_regbase + ME_DIO_PORT_A);
} else {
data[1] &= ~0x0000ffff;
data[1] |= readw(dev_private->me_regbase + ME_DIO_PORT_A);
}
if (mask & 0xffff0000) { /* Port B */
writew(((s->state >> 16) & 0xffff),
dev_private->me_regbase + ME_DIO_PORT_B);
} else {
data[1] &= ~0xffff0000;
data[1] |= readw(dev_private->me_regbase + ME_DIO_PORT_B) << 16;
}
return 2;
}
// ------------------------------------------------------------------
//
// ANALOG INPUT SECTION
//
// ------------------------------------------------------------------
//
// Analog instant input
//
static int me_ai_insn_read(comedi_device * dev,
comedi_subdevice * subdevice, comedi_insn * insn, lsampl_t * data)
{
unsigned short value;
int chan = CR_CHAN((&insn->chanspec)[0]);
int rang = CR_RANGE((&insn->chanspec)[0]);
int aref = CR_AREF((&insn->chanspec)[0]);
int i;
/* stop any running conversion */
dev_private->control_1 &= 0xFFFC;
writew(dev_private->control_1, dev_private->me_regbase + ME_CONTROL_1);
/* clear chanlist and ad fifo */
dev_private->control_2 &= ~(ENABLE_ADFIFO | ENABLE_CHANLIST);
writew(dev_private->control_2, dev_private->me_regbase + ME_CONTROL_2);
/* reset any pending interrupt */
writew(0x00, dev_private->me_regbase + ME_RESET_INTERRUPT);
/* enable the chanlist and ADC fifo */
dev_private->control_2 |= (ENABLE_ADFIFO | ENABLE_CHANLIST);
writew(dev_private->control_2, dev_private->me_regbase + ME_CONTROL_2);
/* write to channel list fifo */
value = chan & 0x0f; // b3:b0 are the channel number
value |= (rang & 0x03) << 4; // b5:b4 are the channel gain
value |= (rang & 0x04) << 4; // b6 channel polarity
value |= ((aref & AREF_DIFF) ? 0x80 : 0); // b7 single or differential
writew(value & 0xff, dev_private->me_regbase + ME_CHANNEL_LIST);
/* set ADC mode to software trigger */
dev_private->control_1 |= SOFTWARE_TRIGGERED_ADC;
writew(dev_private->control_1, dev_private->me_regbase + ME_CONTROL_1);
/* start conversion by reading from ADC_START */
readw(dev_private->me_regbase + ME_ADC_START);
/* wait for ADC fifo not empty flag */
for (i = 100000; i > 0; i--) {
if (!(readw(dev_private->me_regbase + ME_STATUS) & 0x0004)) {
break;
}
}
/* get value from ADC fifo */
if (i) {
data[0] =
(readw(dev_private->me_regbase +
ME_READ_AD_FIFO) ^ 0x800) & 0x0FFF;
} else {
printk("comedi%d: Cannot get single value\n", dev->minor);
return -EIO;
}
/* stop any running conversion */
dev_private->control_1 &= 0xFFFC;
writew(dev_private->control_1, dev_private->me_regbase + ME_CONTROL_1);
return 1;
}
// ------------------------------------------------------------------
//
// HARDWARE TRIGGERED ANALOG INPUT SECTION
//
// ------------------------------------------------------------------
//
// Cancel analog input autoscan
//
static int me_ai_cancel(comedi_device * dev, comedi_subdevice * s)
{
/* disable interrupts */
/* stop any running conversion */
dev_private->control_1 &= 0xFFFC;
writew(dev_private->control_1, dev_private->me_regbase + ME_CONTROL_1);
return 0;
}
//
// Test analog input command
//
static int me_ai_do_cmd_test(comedi_device * dev,
comedi_subdevice * s, comedi_cmd * cmd)
{
return 0;
}
//
// Analog input command
//
static int me_ai_do_cmd(comedi_device * dev, comedi_subdevice * subdevice)
{
return 0;
}
// ------------------------------------------------------------------
//
// ANALOG OUTPUT SECTION
//
// ------------------------------------------------------------------
//
// Analog instant output
//
static int me_ao_insn_write(comedi_device * dev,
comedi_subdevice * s, comedi_insn * insn, lsampl_t * data)
{
int chan;
int rang;
int i;
/* Enable all DAC */
dev_private->control_2 |= ENABLE_DAC;
writew(dev_private->control_2, dev_private->me_regbase + ME_CONTROL_2);
/* and set DAC to "buffered" mode */
dev_private->control_2 |= BUFFERED_DAC;
writew(dev_private->control_2, dev_private->me_regbase + ME_CONTROL_2);
/* Set dac-control register */
for (i = 0; i < insn->n; i++) {
chan = CR_CHAN((&insn->chanspec)[i]);
rang = CR_RANGE((&insn->chanspec)[i]);
dev_private->dac_control &= ~(0x0880 >> chan); /* clear bits for this channel */
if (rang == 0)
dev_private->dac_control |=
((DAC_BIPOLAR_A | DAC_GAIN_1_A) >> chan);
else if (rang == 1)
dev_private->dac_control |=
((DAC_BIPOLAR_A | DAC_GAIN_0_A) >> chan);
}
writew(dev_private->dac_control,
dev_private->me_regbase + ME_DAC_CONTROL);
/* Update dac-control register */
readw(dev_private->me_regbase + ME_DAC_CONTROL_UPDATE);
/* Set data register */
for (i = 0; i < insn->n; i++) {
chan = CR_CHAN((&insn->chanspec)[i]);
writew((data[0] & s->maxdata),
dev_private->me_regbase + ME_DAC_DATA_A + (chan << 1));
dev_private->ao_readback[chan] = (data[0] & s->maxdata);
}
/* Update dac with data registers */
readw(dev_private->me_regbase + ME_DAC_UPDATE);
return i;
}
//
// Analog output readback
//
static int me_ao_insn_read(comedi_device * dev,
comedi_subdevice * s, comedi_insn * insn, lsampl_t * data)
{
int i;
for (i = 0; i < insn->n; i++) {
data[i] =
dev_private->ao_readback[CR_CHAN((&insn->chanspec)[i])];
}
return 1;
}
// ------------------------------------------------------------------
//
// INITIALISATION SECTION
//
// ------------------------------------------------------------------
//
// Xilinx firmware download for card: ME-2600i
//
static int me2600_xilinx_download(comedi_device * dev, unsigned char
*me2600_firmware, unsigned int length)
{
unsigned int value;
unsigned int file_length;
unsigned int i;
/* disable irq's on PLX */
writel(0x00, dev_private->plx_regbase + PLX_INTCSR);
/* First, make a dummy read to reset xilinx */
value = readw(dev_private->me_regbase + XILINX_DOWNLOAD_RESET);
/* Wait until reset is over */
sleep(1);
/* Write a dummy value to Xilinx */
writeb(0x00, dev_private->me_regbase + 0x0);
sleep(1);
/*
* Format of the firmware
* Build longs from the byte-wise coded header
* Byte 1-3: length of the array
* Byte 4-7: version
* Byte 8-11: date
* Byte 12-15: reserved
*/
if (length < 16)
return -EINVAL;
file_length =
(((unsigned int)me2600_firmware[0] & 0xff) << 24) +
(((unsigned int)me2600_firmware[1] & 0xff) << 16) +
(((unsigned int)me2600_firmware[2] & 0xff) << 8) +
((unsigned int)me2600_firmware[3] & 0xff);
/*
* Loop for writing firmware byte by byte to xilinx
* Firmware data start at offfset 16
*/
for (i = 0; i < file_length; i++) {
writeb((me2600_firmware[16 + i] & 0xff),
dev_private->me_regbase + 0x0);
}
/* Write 5 dummy values to xilinx */
for (i = 0; i < 5; i++) {
writeb(0x00, dev_private->me_regbase + 0x0);
}
/* Test if there was an error during download -> INTB was thrown */
value = readl(dev_private->plx_regbase + PLX_INTCSR);
if (value & 0x20) {
/* Disable interrupt */
writel(0x00, dev_private->plx_regbase + PLX_INTCSR);
printk("comedi%d: Xilinx download failed\n", dev->minor);
return -EIO;
}
/* Wait until the Xilinx is ready for real work */
sleep(1);
/* Enable PLX-Interrupts */
writel(0x43, dev_private->plx_regbase + PLX_INTCSR);
return 0;
}
//
// Reset device
//
static int me_reset(comedi_device * dev)
{
/* Reset board */
writew(0x00, dev_private->me_regbase + ME_CONTROL_1);
writew(0x00, dev_private->me_regbase + ME_CONTROL_2);
writew(0x00, dev_private->me_regbase + ME_RESET_INTERRUPT);
writew(0x00, dev_private->me_regbase + ME_DAC_CONTROL);
/* Save values in the board context */
dev_private->dac_control = 0;
dev_private->control_1 = 0;
dev_private->control_2 = 0;
return 0;
}
//
// Attach
//
// - Register PCI device
// - Declare device driver capability
//
static int me_attach(comedi_device * dev, comedi_devconfig * it)
{
struct pci_dev *pci_device;
comedi_subdevice *subdevice;
me_board_struct *board;
resource_size_t plx_regbase_tmp;
unsigned long plx_regbase_size_tmp;
resource_size_t me_regbase_tmp;
unsigned long me_regbase_size_tmp;
resource_size_t swap_regbase_tmp;
unsigned long swap_regbase_size_tmp;
resource_size_t regbase_tmp;
int result, error, i;
// Allocate private memory
if (alloc_private(dev, sizeof(me_private_data_struct)) < 0) {
return -ENOMEM;
}
//
// Probe the device to determine what device in the series it is.
//
for (pci_device = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, NULL);
pci_device != NULL;
pci_device =
pci_get_device(PCI_ANY_ID, PCI_ANY_ID, pci_device)) {
if (pci_device->vendor == PCI_VENDOR_ID_MEILHAUS) {
for (i = 0; i < me_board_nbr; i++) {
if (me_boards[i].device_id ==
pci_device->device) {
// was a particular bus/slot requested?
if ((it->options[0] != 0)
|| (it->options[1] != 0)) {
// are we on the wrong bus/slot?
if (pci_device->bus->number !=
it->options[0]
|| PCI_SLOT(pci_device->
devfn) !=
it->options[1]) {
continue;
}
}
dev->board_ptr = me_boards + i;
board = (me_board_struct *) dev->
board_ptr;
dev_private->pci_device = pci_device;
goto found;
}
}
}
}
printk("comedi%d: no supported board found! (req. bus/slot : %d/%d)\n",
dev->minor, it->options[0], it->options[1]);
return -EIO;
found:
printk("comedi%d: found %s at PCI bus %d, slot %d\n",
dev->minor, me_boards[i].name,
pci_device->bus->number, PCI_SLOT(pci_device->devfn));
// Enable PCI device and request PCI regions
if (comedi_pci_enable(pci_device, ME_DRIVER_NAME) < 0) {
printk("comedi%d: Failed to enable PCI device and request regions\n", dev->minor);
return -EIO;
}
// Set data in device structure
dev->board_name = board->name;
// Read PLX register base address [PCI_BASE_ADDRESS #0].
plx_regbase_tmp = pci_resource_start(pci_device, 0);
plx_regbase_size_tmp = pci_resource_len(pci_device, 0);
dev_private->plx_regbase =
ioremap(plx_regbase_tmp, plx_regbase_size_tmp);
dev_private->plx_regbase_size = plx_regbase_size_tmp;
if (!dev_private->plx_regbase) {
printk("comedi%d: Failed to remap I/O memory\n", dev->minor);
return -ENOMEM;
}
// Read Swap base address [PCI_BASE_ADDRESS #5].
swap_regbase_tmp = pci_resource_start(pci_device, 5);
swap_regbase_size_tmp = pci_resource_len(pci_device, 5);
if (!swap_regbase_tmp) {
printk("comedi%d: Swap not present\n", dev->minor);
}
/*----------------------------------------------------- Workaround start ---*/
if (plx_regbase_tmp & 0x0080) {
printk("comedi%d: PLX-Bug detected\n", dev->minor);
if (swap_regbase_tmp) {
regbase_tmp = plx_regbase_tmp;
plx_regbase_tmp = swap_regbase_tmp;
swap_regbase_tmp = regbase_tmp;
result = pci_write_config_dword(pci_device,
PCI_BASE_ADDRESS_0, plx_regbase_tmp);
if (result != PCIBIOS_SUCCESSFUL)
return -EIO;
result = pci_write_config_dword(pci_device,
PCI_BASE_ADDRESS_5, swap_regbase_tmp);
if (result != PCIBIOS_SUCCESSFUL)
return -EIO;
} else {
plx_regbase_tmp -= 0x80;
result = pci_write_config_dword(pci_device,
PCI_BASE_ADDRESS_0, plx_regbase_tmp);
if (result != PCIBIOS_SUCCESSFUL)
return -EIO;
}
}
/*----------------------------------------------------- Workaround end -----*/
// Read Meilhaus register base address [PCI_BASE_ADDRESS #2].
me_regbase_tmp = pci_resource_start(pci_device, 2);
me_regbase_size_tmp = pci_resource_len(pci_device, 2);
dev_private->me_regbase_size = me_regbase_size_tmp;
dev_private->me_regbase = ioremap(me_regbase_tmp, me_regbase_size_tmp);
if (!dev_private->me_regbase) {
printk("comedi%d: Failed to remap I/O memory\n", dev->minor);
return -ENOMEM;
}
// Download firmware and reset card
if (board->device_id == ME2600_DEVICE_ID) {
unsigned char *aux_data;
int aux_len;
aux_data = comedi_aux_data(it->options, 0);
aux_len = it->options[COMEDI_DEVCONF_AUX_DATA_LENGTH];
if (!aux_data || aux_len < 1) {
comedi_error(dev,
"You must provide me2600 firmware using the --init-data option of comedi_config");
return -EINVAL;
}
me2600_xilinx_download(dev, aux_data, aux_len);
}
me_reset(dev);
// device driver capabilities
if ((error = alloc_subdevices(dev, 3)) < 0)
return error;
subdevice = dev->subdevices + 0;
subdevice->type = COMEDI_SUBD_AI;
subdevice->subdev_flags = SDF_READABLE | SDF_COMMON | SDF_CMD_READ;
subdevice->n_chan = board->ai_channel_nbr;
subdevice->maxdata = board->ai_resolution_mask;
subdevice->len_chanlist = board->ai_channel_nbr;
subdevice->range_table = board->ai_range_list;
subdevice->cancel = me_ai_cancel;
subdevice->insn_read = me_ai_insn_read;
subdevice->do_cmdtest = me_ai_do_cmd_test;
subdevice->do_cmd = me_ai_do_cmd;
subdevice = dev->subdevices + 1;
subdevice->type = COMEDI_SUBD_AO;
subdevice->subdev_flags = SDF_WRITEABLE | SDF_COMMON;
subdevice->n_chan = board->ao_channel_nbr;
subdevice->maxdata = board->ao_resolution_mask;
subdevice->len_chanlist = board->ao_channel_nbr;
subdevice->range_table = board->ao_range_list;
subdevice->insn_read = me_ao_insn_read;
subdevice->insn_write = me_ao_insn_write;
subdevice = dev->subdevices + 2;
subdevice->type = COMEDI_SUBD_DIO;
subdevice->subdev_flags = SDF_READABLE | SDF_WRITEABLE;
subdevice->n_chan = board->dio_channel_nbr;
subdevice->maxdata = 1;
subdevice->len_chanlist = board->dio_channel_nbr;
subdevice->range_table = &range_digital;
subdevice->insn_bits = me_dio_insn_bits;
subdevice->insn_config = me_dio_insn_config;
subdevice->io_bits = 0;
printk("comedi%d: " ME_DRIVER_NAME " attached.\n", dev->minor);
return 0;
}
//
// Detach
//
static int me_detach(comedi_device * dev)
{
if (dev_private) {
if (dev_private->me_regbase) {
me_reset(dev);
iounmap(dev_private->me_regbase);
}
if (dev_private->plx_regbase)
iounmap(dev_private->plx_regbase);
if (dev_private->pci_device) {
if (dev_private->plx_regbase_size) {
comedi_pci_disable(dev_private->pci_device);
}
pci_dev_put(dev_private->pci_device);
}
}
return 0;
}