mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-18 11:54:37 +08:00
crypto: twofish - add 3-way parallel x86_64 assembler implemention
Patch adds 3-way parallel x86_64 assembly implementation of twofish as new module. New assembler functions crypt data in three blocks chunks, improving cipher performance on out-of-order CPUs. Patch has been tested with tcrypt and automated filesystem tests. Summary of the tcrypt benchmarks: Twofish 3-way-asm vs twofish asm (128bit 8kb block ECB) encrypt: 1.3x speed decrypt: 1.3x speed Twofish 3-way-asm vs twofish asm (128bit 8kb block CBC) encrypt: 1.07x speed decrypt: 1.4x speed Twofish 3-way-asm vs twofish asm (128bit 8kb block CTR) encrypt: 1.4x speed Twofish 3-way-asm vs AES asm (128bit 8kb block ECB) encrypt: 1.0x speed decrypt: 1.0x speed Twofish 3-way-asm vs AES asm (128bit 8kb block CBC) encrypt: 0.84x speed decrypt: 1.09x speed Twofish 3-way-asm vs AES asm (128bit 8kb block CTR) encrypt: 1.15x speed Full output: http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-twofish-3way-asm-x86_64.txt http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-twofish-asm-x86_64.txt http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-aes-asm-x86_64.txt Tests were run on: vendor_id : AuthenticAMD cpu family : 16 model : 10 model name : AMD Phenom(tm) II X6 1055T Processor Also userspace test were run on: vendor_id : GenuineIntel cpu family : 6 model : 15 model name : Intel(R) Xeon(R) CPU E7330 @ 2.40GHz stepping : 11 Userspace test results: Encryption/decryption of twofish 3-way vs x86_64-asm on AMD Phenom II: encrypt: 1.27x decrypt: 1.25x Encryption/decryption of twofish 3-way vs x86_64-asm on Intel Xeon E7330: encrypt: 1.36x decrypt: 1.36x Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
parent
91d41f159d
commit
8280daad43
@ -9,6 +9,7 @@ obj-$(CONFIG_CRYPTO_SALSA20_586) += salsa20-i586.o
|
||||
obj-$(CONFIG_CRYPTO_AES_X86_64) += aes-x86_64.o
|
||||
obj-$(CONFIG_CRYPTO_BLOWFISH_X86_64) += blowfish-x86_64.o
|
||||
obj-$(CONFIG_CRYPTO_TWOFISH_X86_64) += twofish-x86_64.o
|
||||
obj-$(CONFIG_CRYPTO_TWOFISH_X86_64_3WAY) += twofish-x86_64-3way.o
|
||||
obj-$(CONFIG_CRYPTO_SALSA20_X86_64) += salsa20-x86_64.o
|
||||
obj-$(CONFIG_CRYPTO_AES_NI_INTEL) += aesni-intel.o
|
||||
obj-$(CONFIG_CRYPTO_GHASH_CLMUL_NI_INTEL) += ghash-clmulni-intel.o
|
||||
@ -23,6 +24,7 @@ salsa20-i586-y := salsa20-i586-asm_32.o salsa20_glue.o
|
||||
aes-x86_64-y := aes-x86_64-asm_64.o aes_glue.o
|
||||
blowfish-x86_64-y := blowfish-x86_64-asm_64.o blowfish_glue.o
|
||||
twofish-x86_64-y := twofish-x86_64-asm_64.o twofish_glue.o
|
||||
twofish-x86_64-3way-y := twofish-x86_64-asm_64-3way.o twofish_glue_3way.o
|
||||
salsa20-x86_64-y := salsa20-x86_64-asm_64.o salsa20_glue.o
|
||||
|
||||
aesni-intel-y := aesni-intel_asm.o aesni-intel_glue.o fpu.o
|
||||
|
316
arch/x86/crypto/twofish-x86_64-asm_64-3way.S
Normal file
316
arch/x86/crypto/twofish-x86_64-asm_64-3way.S
Normal file
@ -0,0 +1,316 @@
|
||||
/*
|
||||
* Twofish Cipher 3-way parallel algorithm (x86_64)
|
||||
*
|
||||
* Copyright (C) 2011 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
|
||||
* USA
|
||||
*
|
||||
*/
|
||||
|
||||
.file "twofish-x86_64-asm-3way.S"
|
||||
.text
|
||||
|
||||
/* structure of crypto context */
|
||||
#define s0 0
|
||||
#define s1 1024
|
||||
#define s2 2048
|
||||
#define s3 3072
|
||||
#define w 4096
|
||||
#define k 4128
|
||||
|
||||
/**********************************************************************
|
||||
3-way twofish
|
||||
**********************************************************************/
|
||||
#define CTX %rdi
|
||||
#define RIO %rdx
|
||||
|
||||
#define RAB0 %rax
|
||||
#define RAB1 %rbx
|
||||
#define RAB2 %rcx
|
||||
|
||||
#define RAB0d %eax
|
||||
#define RAB1d %ebx
|
||||
#define RAB2d %ecx
|
||||
|
||||
#define RAB0bh %ah
|
||||
#define RAB1bh %bh
|
||||
#define RAB2bh %ch
|
||||
|
||||
#define RAB0bl %al
|
||||
#define RAB1bl %bl
|
||||
#define RAB2bl %cl
|
||||
|
||||
#define RCD0 %r8
|
||||
#define RCD1 %r9
|
||||
#define RCD2 %r10
|
||||
|
||||
#define RCD0d %r8d
|
||||
#define RCD1d %r9d
|
||||
#define RCD2d %r10d
|
||||
|
||||
#define RX0 %rbp
|
||||
#define RX1 %r11
|
||||
#define RX2 %r12
|
||||
|
||||
#define RX0d %ebp
|
||||
#define RX1d %r11d
|
||||
#define RX2d %r12d
|
||||
|
||||
#define RY0 %r13
|
||||
#define RY1 %r14
|
||||
#define RY2 %r15
|
||||
|
||||
#define RY0d %r13d
|
||||
#define RY1d %r14d
|
||||
#define RY2d %r15d
|
||||
|
||||
#define RT0 %rdx
|
||||
#define RT1 %rsi
|
||||
|
||||
#define RT0d %edx
|
||||
#define RT1d %esi
|
||||
|
||||
#define do16bit_ror(rot, op1, op2, T0, T1, tmp1, tmp2, ab, dst) \
|
||||
movzbl ab ## bl, tmp2 ## d; \
|
||||
movzbl ab ## bh, tmp1 ## d; \
|
||||
rorq $(rot), ab; \
|
||||
op1##l T0(CTX, tmp2, 4), dst ## d; \
|
||||
op2##l T1(CTX, tmp1, 4), dst ## d;
|
||||
|
||||
/*
|
||||
* Combined G1 & G2 function. Reordered with help of rotates to have moves
|
||||
* at begining.
|
||||
*/
|
||||
#define g1g2_3(ab, cd, Tx0, Tx1, Tx2, Tx3, Ty0, Ty1, Ty2, Ty3, x, y) \
|
||||
/* G1,1 && G2,1 */ \
|
||||
do16bit_ror(32, mov, xor, Tx0, Tx1, RT0, x ## 0, ab ## 0, x ## 0); \
|
||||
do16bit_ror(48, mov, xor, Ty1, Ty2, RT0, y ## 0, ab ## 0, y ## 0); \
|
||||
\
|
||||
do16bit_ror(32, mov, xor, Tx0, Tx1, RT0, x ## 1, ab ## 1, x ## 1); \
|
||||
do16bit_ror(48, mov, xor, Ty1, Ty2, RT0, y ## 1, ab ## 1, y ## 1); \
|
||||
\
|
||||
do16bit_ror(32, mov, xor, Tx0, Tx1, RT0, x ## 2, ab ## 2, x ## 2); \
|
||||
do16bit_ror(48, mov, xor, Ty1, Ty2, RT0, y ## 2, ab ## 2, y ## 2); \
|
||||
\
|
||||
/* G1,2 && G2,2 */ \
|
||||
do16bit_ror(32, xor, xor, Tx2, Tx3, RT0, RT1, ab ## 0, x ## 0); \
|
||||
do16bit_ror(16, xor, xor, Ty3, Ty0, RT0, RT1, ab ## 0, y ## 0); \
|
||||
xchgq cd ## 0, ab ## 0; \
|
||||
\
|
||||
do16bit_ror(32, xor, xor, Tx2, Tx3, RT0, RT1, ab ## 1, x ## 1); \
|
||||
do16bit_ror(16, xor, xor, Ty3, Ty0, RT0, RT1, ab ## 1, y ## 1); \
|
||||
xchgq cd ## 1, ab ## 1; \
|
||||
\
|
||||
do16bit_ror(32, xor, xor, Tx2, Tx3, RT0, RT1, ab ## 2, x ## 2); \
|
||||
do16bit_ror(16, xor, xor, Ty3, Ty0, RT0, RT1, ab ## 2, y ## 2); \
|
||||
xchgq cd ## 2, ab ## 2;
|
||||
|
||||
#define enc_round_end(ab, x, y, n) \
|
||||
addl y ## d, x ## d; \
|
||||
addl x ## d, y ## d; \
|
||||
addl k+4*(2*(n))(CTX), x ## d; \
|
||||
xorl ab ## d, x ## d; \
|
||||
addl k+4*(2*(n)+1)(CTX), y ## d; \
|
||||
shrq $32, ab; \
|
||||
roll $1, ab ## d; \
|
||||
xorl y ## d, ab ## d; \
|
||||
shlq $32, ab; \
|
||||
rorl $1, x ## d; \
|
||||
orq x, ab;
|
||||
|
||||
#define dec_round_end(ba, x, y, n) \
|
||||
addl y ## d, x ## d; \
|
||||
addl x ## d, y ## d; \
|
||||
addl k+4*(2*(n))(CTX), x ## d; \
|
||||
addl k+4*(2*(n)+1)(CTX), y ## d; \
|
||||
xorl ba ## d, y ## d; \
|
||||
shrq $32, ba; \
|
||||
roll $1, ba ## d; \
|
||||
xorl x ## d, ba ## d; \
|
||||
shlq $32, ba; \
|
||||
rorl $1, y ## d; \
|
||||
orq y, ba;
|
||||
|
||||
#define encrypt_round3(ab, cd, n) \
|
||||
g1g2_3(ab, cd, s0, s1, s2, s3, s0, s1, s2, s3, RX, RY); \
|
||||
\
|
||||
enc_round_end(ab ## 0, RX0, RY0, n); \
|
||||
enc_round_end(ab ## 1, RX1, RY1, n); \
|
||||
enc_round_end(ab ## 2, RX2, RY2, n);
|
||||
|
||||
#define decrypt_round3(ba, dc, n) \
|
||||
g1g2_3(ba, dc, s1, s2, s3, s0, s3, s0, s1, s2, RY, RX); \
|
||||
\
|
||||
dec_round_end(ba ## 0, RX0, RY0, n); \
|
||||
dec_round_end(ba ## 1, RX1, RY1, n); \
|
||||
dec_round_end(ba ## 2, RX2, RY2, n);
|
||||
|
||||
#define encrypt_cycle3(ab, cd, n) \
|
||||
encrypt_round3(ab, cd, n*2); \
|
||||
encrypt_round3(ab, cd, (n*2)+1);
|
||||
|
||||
#define decrypt_cycle3(ba, dc, n) \
|
||||
decrypt_round3(ba, dc, (n*2)+1); \
|
||||
decrypt_round3(ba, dc, (n*2));
|
||||
|
||||
#define inpack3(in, n, xy, m) \
|
||||
movq 4*(n)(in), xy ## 0; \
|
||||
xorq w+4*m(CTX), xy ## 0; \
|
||||
\
|
||||
movq 4*(4+(n))(in), xy ## 1; \
|
||||
xorq w+4*m(CTX), xy ## 1; \
|
||||
\
|
||||
movq 4*(8+(n))(in), xy ## 2; \
|
||||
xorq w+4*m(CTX), xy ## 2;
|
||||
|
||||
#define outunpack3(op, out, n, xy, m) \
|
||||
xorq w+4*m(CTX), xy ## 0; \
|
||||
op ## q xy ## 0, 4*(n)(out); \
|
||||
\
|
||||
xorq w+4*m(CTX), xy ## 1; \
|
||||
op ## q xy ## 1, 4*(4+(n))(out); \
|
||||
\
|
||||
xorq w+4*m(CTX), xy ## 2; \
|
||||
op ## q xy ## 2, 4*(8+(n))(out);
|
||||
|
||||
#define inpack_enc3() \
|
||||
inpack3(RIO, 0, RAB, 0); \
|
||||
inpack3(RIO, 2, RCD, 2);
|
||||
|
||||
#define outunpack_enc3(op) \
|
||||
outunpack3(op, RIO, 2, RAB, 6); \
|
||||
outunpack3(op, RIO, 0, RCD, 4);
|
||||
|
||||
#define inpack_dec3() \
|
||||
inpack3(RIO, 0, RAB, 4); \
|
||||
rorq $32, RAB0; \
|
||||
rorq $32, RAB1; \
|
||||
rorq $32, RAB2; \
|
||||
inpack3(RIO, 2, RCD, 6); \
|
||||
rorq $32, RCD0; \
|
||||
rorq $32, RCD1; \
|
||||
rorq $32, RCD2;
|
||||
|
||||
#define outunpack_dec3() \
|
||||
rorq $32, RCD0; \
|
||||
rorq $32, RCD1; \
|
||||
rorq $32, RCD2; \
|
||||
outunpack3(mov, RIO, 0, RCD, 0); \
|
||||
rorq $32, RAB0; \
|
||||
rorq $32, RAB1; \
|
||||
rorq $32, RAB2; \
|
||||
outunpack3(mov, RIO, 2, RAB, 2);
|
||||
|
||||
.align 8
|
||||
.global __twofish_enc_blk_3way
|
||||
.type __twofish_enc_blk_3way,@function;
|
||||
|
||||
__twofish_enc_blk_3way:
|
||||
/* input:
|
||||
* %rdi: ctx, CTX
|
||||
* %rsi: dst
|
||||
* %rdx: src, RIO
|
||||
* %rcx: bool, if true: xor output
|
||||
*/
|
||||
pushq %r15;
|
||||
pushq %r14;
|
||||
pushq %r13;
|
||||
pushq %r12;
|
||||
pushq %rbp;
|
||||
pushq %rbx;
|
||||
|
||||
pushq %rcx; /* bool xor */
|
||||
pushq %rsi; /* dst */
|
||||
|
||||
inpack_enc3();
|
||||
|
||||
encrypt_cycle3(RAB, RCD, 0);
|
||||
encrypt_cycle3(RAB, RCD, 1);
|
||||
encrypt_cycle3(RAB, RCD, 2);
|
||||
encrypt_cycle3(RAB, RCD, 3);
|
||||
encrypt_cycle3(RAB, RCD, 4);
|
||||
encrypt_cycle3(RAB, RCD, 5);
|
||||
encrypt_cycle3(RAB, RCD, 6);
|
||||
encrypt_cycle3(RAB, RCD, 7);
|
||||
|
||||
popq RIO; /* dst */
|
||||
popq %rbp; /* bool xor */
|
||||
|
||||
testb %bpl, %bpl;
|
||||
jnz __enc_xor3;
|
||||
|
||||
outunpack_enc3(mov);
|
||||
|
||||
popq %rbx;
|
||||
popq %rbp;
|
||||
popq %r12;
|
||||
popq %r13;
|
||||
popq %r14;
|
||||
popq %r15;
|
||||
ret;
|
||||
|
||||
__enc_xor3:
|
||||
outunpack_enc3(xor);
|
||||
|
||||
popq %rbx;
|
||||
popq %rbp;
|
||||
popq %r12;
|
||||
popq %r13;
|
||||
popq %r14;
|
||||
popq %r15;
|
||||
ret;
|
||||
|
||||
.global twofish_dec_blk_3way
|
||||
.type twofish_dec_blk_3way,@function;
|
||||
|
||||
twofish_dec_blk_3way:
|
||||
/* input:
|
||||
* %rdi: ctx, CTX
|
||||
* %rsi: dst
|
||||
* %rdx: src, RIO
|
||||
*/
|
||||
pushq %r15;
|
||||
pushq %r14;
|
||||
pushq %r13;
|
||||
pushq %r12;
|
||||
pushq %rbp;
|
||||
pushq %rbx;
|
||||
|
||||
pushq %rsi; /* dst */
|
||||
|
||||
inpack_dec3();
|
||||
|
||||
decrypt_cycle3(RAB, RCD, 7);
|
||||
decrypt_cycle3(RAB, RCD, 6);
|
||||
decrypt_cycle3(RAB, RCD, 5);
|
||||
decrypt_cycle3(RAB, RCD, 4);
|
||||
decrypt_cycle3(RAB, RCD, 3);
|
||||
decrypt_cycle3(RAB, RCD, 2);
|
||||
decrypt_cycle3(RAB, RCD, 1);
|
||||
decrypt_cycle3(RAB, RCD, 0);
|
||||
|
||||
popq RIO; /* dst */
|
||||
|
||||
outunpack_dec3();
|
||||
|
||||
popq %rbx;
|
||||
popq %rbp;
|
||||
popq %r12;
|
||||
popq %r13;
|
||||
popq %r14;
|
||||
popq %r15;
|
||||
ret;
|
||||
|
472
arch/x86/crypto/twofish_glue_3way.c
Normal file
472
arch/x86/crypto/twofish_glue_3way.c
Normal file
@ -0,0 +1,472 @@
|
||||
/*
|
||||
* Glue Code for 3-way parallel assembler optimized version of Twofish
|
||||
*
|
||||
* Copyright (c) 2011 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
|
||||
*
|
||||
* CBC & ECB parts based on code (crypto/cbc.c,ecb.c) by:
|
||||
* Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
|
||||
* CTR part based on code (crypto/ctr.c) by:
|
||||
* (C) Copyright IBM Corp. 2007 - Joy Latten <latten@us.ibm.com>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
|
||||
* USA
|
||||
*
|
||||
*/
|
||||
|
||||
#include <linux/crypto.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/types.h>
|
||||
#include <crypto/algapi.h>
|
||||
#include <crypto/twofish.h>
|
||||
#include <crypto/b128ops.h>
|
||||
|
||||
/* regular block cipher functions from twofish_x86_64 module */
|
||||
asmlinkage void twofish_enc_blk(struct twofish_ctx *ctx, u8 *dst,
|
||||
const u8 *src);
|
||||
asmlinkage void twofish_dec_blk(struct twofish_ctx *ctx, u8 *dst,
|
||||
const u8 *src);
|
||||
|
||||
/* 3-way parallel cipher functions */
|
||||
asmlinkage void __twofish_enc_blk_3way(struct twofish_ctx *ctx, u8 *dst,
|
||||
const u8 *src, bool xor);
|
||||
asmlinkage void twofish_dec_blk_3way(struct twofish_ctx *ctx, u8 *dst,
|
||||
const u8 *src);
|
||||
|
||||
static inline void twofish_enc_blk_3way(struct twofish_ctx *ctx, u8 *dst,
|
||||
const u8 *src)
|
||||
{
|
||||
__twofish_enc_blk_3way(ctx, dst, src, false);
|
||||
}
|
||||
|
||||
static inline void twofish_enc_blk_xor_3way(struct twofish_ctx *ctx, u8 *dst,
|
||||
const u8 *src)
|
||||
{
|
||||
__twofish_enc_blk_3way(ctx, dst, src, true);
|
||||
}
|
||||
|
||||
static int ecb_crypt(struct blkcipher_desc *desc, struct blkcipher_walk *walk,
|
||||
void (*fn)(struct twofish_ctx *, u8 *, const u8 *),
|
||||
void (*fn_3way)(struct twofish_ctx *, u8 *, const u8 *))
|
||||
{
|
||||
struct twofish_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
|
||||
unsigned int bsize = TF_BLOCK_SIZE;
|
||||
unsigned int nbytes;
|
||||
int err;
|
||||
|
||||
err = blkcipher_walk_virt(desc, walk);
|
||||
|
||||
while ((nbytes = walk->nbytes)) {
|
||||
u8 *wsrc = walk->src.virt.addr;
|
||||
u8 *wdst = walk->dst.virt.addr;
|
||||
|
||||
/* Process three block batch */
|
||||
if (nbytes >= bsize * 3) {
|
||||
do {
|
||||
fn_3way(ctx, wdst, wsrc);
|
||||
|
||||
wsrc += bsize * 3;
|
||||
wdst += bsize * 3;
|
||||
nbytes -= bsize * 3;
|
||||
} while (nbytes >= bsize * 3);
|
||||
|
||||
if (nbytes < bsize)
|
||||
goto done;
|
||||
}
|
||||
|
||||
/* Handle leftovers */
|
||||
do {
|
||||
fn(ctx, wdst, wsrc);
|
||||
|
||||
wsrc += bsize;
|
||||
wdst += bsize;
|
||||
nbytes -= bsize;
|
||||
} while (nbytes >= bsize);
|
||||
|
||||
done:
|
||||
err = blkcipher_walk_done(desc, walk, nbytes);
|
||||
}
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
static int ecb_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
|
||||
struct scatterlist *src, unsigned int nbytes)
|
||||
{
|
||||
struct blkcipher_walk walk;
|
||||
|
||||
blkcipher_walk_init(&walk, dst, src, nbytes);
|
||||
return ecb_crypt(desc, &walk, twofish_enc_blk, twofish_enc_blk_3way);
|
||||
}
|
||||
|
||||
static int ecb_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
|
||||
struct scatterlist *src, unsigned int nbytes)
|
||||
{
|
||||
struct blkcipher_walk walk;
|
||||
|
||||
blkcipher_walk_init(&walk, dst, src, nbytes);
|
||||
return ecb_crypt(desc, &walk, twofish_dec_blk, twofish_dec_blk_3way);
|
||||
}
|
||||
|
||||
static struct crypto_alg blk_ecb_alg = {
|
||||
.cra_name = "ecb(twofish)",
|
||||
.cra_driver_name = "ecb-twofish-3way",
|
||||
.cra_priority = 300,
|
||||
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
|
||||
.cra_blocksize = TF_BLOCK_SIZE,
|
||||
.cra_ctxsize = sizeof(struct twofish_ctx),
|
||||
.cra_alignmask = 0,
|
||||
.cra_type = &crypto_blkcipher_type,
|
||||
.cra_module = THIS_MODULE,
|
||||
.cra_list = LIST_HEAD_INIT(blk_ecb_alg.cra_list),
|
||||
.cra_u = {
|
||||
.blkcipher = {
|
||||
.min_keysize = TF_MIN_KEY_SIZE,
|
||||
.max_keysize = TF_MAX_KEY_SIZE,
|
||||
.setkey = twofish_setkey,
|
||||
.encrypt = ecb_encrypt,
|
||||
.decrypt = ecb_decrypt,
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
static unsigned int __cbc_encrypt(struct blkcipher_desc *desc,
|
||||
struct blkcipher_walk *walk)
|
||||
{
|
||||
struct twofish_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
|
||||
unsigned int bsize = TF_BLOCK_SIZE;
|
||||
unsigned int nbytes = walk->nbytes;
|
||||
u128 *src = (u128 *)walk->src.virt.addr;
|
||||
u128 *dst = (u128 *)walk->dst.virt.addr;
|
||||
u128 *iv = (u128 *)walk->iv;
|
||||
|
||||
do {
|
||||
u128_xor(dst, src, iv);
|
||||
twofish_enc_blk(ctx, (u8 *)dst, (u8 *)dst);
|
||||
iv = dst;
|
||||
|
||||
src += 1;
|
||||
dst += 1;
|
||||
nbytes -= bsize;
|
||||
} while (nbytes >= bsize);
|
||||
|
||||
u128_xor((u128 *)walk->iv, (u128 *)walk->iv, iv);
|
||||
return nbytes;
|
||||
}
|
||||
|
||||
static int cbc_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
|
||||
struct scatterlist *src, unsigned int nbytes)
|
||||
{
|
||||
struct blkcipher_walk walk;
|
||||
int err;
|
||||
|
||||
blkcipher_walk_init(&walk, dst, src, nbytes);
|
||||
err = blkcipher_walk_virt(desc, &walk);
|
||||
|
||||
while ((nbytes = walk.nbytes)) {
|
||||
nbytes = __cbc_encrypt(desc, &walk);
|
||||
err = blkcipher_walk_done(desc, &walk, nbytes);
|
||||
}
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
static unsigned int __cbc_decrypt(struct blkcipher_desc *desc,
|
||||
struct blkcipher_walk *walk)
|
||||
{
|
||||
struct twofish_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
|
||||
unsigned int bsize = TF_BLOCK_SIZE;
|
||||
unsigned int nbytes = walk->nbytes;
|
||||
u128 *src = (u128 *)walk->src.virt.addr;
|
||||
u128 *dst = (u128 *)walk->dst.virt.addr;
|
||||
u128 ivs[3 - 1];
|
||||
u128 last_iv;
|
||||
|
||||
/* Start of the last block. */
|
||||
src += nbytes / bsize - 1;
|
||||
dst += nbytes / bsize - 1;
|
||||
|
||||
last_iv = *src;
|
||||
|
||||
/* Process three block batch */
|
||||
if (nbytes >= bsize * 3) {
|
||||
do {
|
||||
nbytes -= bsize * (3 - 1);
|
||||
src -= 3 - 1;
|
||||
dst -= 3 - 1;
|
||||
|
||||
ivs[0] = src[0];
|
||||
ivs[1] = src[1];
|
||||
|
||||
twofish_dec_blk_3way(ctx, (u8 *)dst, (u8 *)src);
|
||||
|
||||
u128_xor(dst + 1, dst + 1, ivs + 0);
|
||||
u128_xor(dst + 2, dst + 2, ivs + 1);
|
||||
|
||||
nbytes -= bsize;
|
||||
if (nbytes < bsize)
|
||||
goto done;
|
||||
|
||||
u128_xor(dst, dst, src - 1);
|
||||
src -= 1;
|
||||
dst -= 1;
|
||||
} while (nbytes >= bsize * 3);
|
||||
|
||||
if (nbytes < bsize)
|
||||
goto done;
|
||||
}
|
||||
|
||||
/* Handle leftovers */
|
||||
for (;;) {
|
||||
twofish_dec_blk(ctx, (u8 *)dst, (u8 *)src);
|
||||
|
||||
nbytes -= bsize;
|
||||
if (nbytes < bsize)
|
||||
break;
|
||||
|
||||
u128_xor(dst, dst, src - 1);
|
||||
src -= 1;
|
||||
dst -= 1;
|
||||
}
|
||||
|
||||
done:
|
||||
u128_xor(dst, dst, (u128 *)walk->iv);
|
||||
*(u128 *)walk->iv = last_iv;
|
||||
|
||||
return nbytes;
|
||||
}
|
||||
|
||||
static int cbc_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
|
||||
struct scatterlist *src, unsigned int nbytes)
|
||||
{
|
||||
struct blkcipher_walk walk;
|
||||
int err;
|
||||
|
||||
blkcipher_walk_init(&walk, dst, src, nbytes);
|
||||
err = blkcipher_walk_virt(desc, &walk);
|
||||
|
||||
while ((nbytes = walk.nbytes)) {
|
||||
nbytes = __cbc_decrypt(desc, &walk);
|
||||
err = blkcipher_walk_done(desc, &walk, nbytes);
|
||||
}
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
static struct crypto_alg blk_cbc_alg = {
|
||||
.cra_name = "cbc(twofish)",
|
||||
.cra_driver_name = "cbc-twofish-3way",
|
||||
.cra_priority = 300,
|
||||
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
|
||||
.cra_blocksize = TF_BLOCK_SIZE,
|
||||
.cra_ctxsize = sizeof(struct twofish_ctx),
|
||||
.cra_alignmask = 0,
|
||||
.cra_type = &crypto_blkcipher_type,
|
||||
.cra_module = THIS_MODULE,
|
||||
.cra_list = LIST_HEAD_INIT(blk_cbc_alg.cra_list),
|
||||
.cra_u = {
|
||||
.blkcipher = {
|
||||
.min_keysize = TF_MIN_KEY_SIZE,
|
||||
.max_keysize = TF_MAX_KEY_SIZE,
|
||||
.ivsize = TF_BLOCK_SIZE,
|
||||
.setkey = twofish_setkey,
|
||||
.encrypt = cbc_encrypt,
|
||||
.decrypt = cbc_decrypt,
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
static inline void u128_to_be128(be128 *dst, const u128 *src)
|
||||
{
|
||||
dst->a = cpu_to_be64(src->a);
|
||||
dst->b = cpu_to_be64(src->b);
|
||||
}
|
||||
|
||||
static inline void be128_to_u128(u128 *dst, const be128 *src)
|
||||
{
|
||||
dst->a = be64_to_cpu(src->a);
|
||||
dst->b = be64_to_cpu(src->b);
|
||||
}
|
||||
|
||||
static inline void u128_inc(u128 *i)
|
||||
{
|
||||
i->b++;
|
||||
if (!i->b)
|
||||
i->a++;
|
||||
}
|
||||
|
||||
static void ctr_crypt_final(struct blkcipher_desc *desc,
|
||||
struct blkcipher_walk *walk)
|
||||
{
|
||||
struct twofish_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
|
||||
u8 *ctrblk = walk->iv;
|
||||
u8 keystream[TF_BLOCK_SIZE];
|
||||
u8 *src = walk->src.virt.addr;
|
||||
u8 *dst = walk->dst.virt.addr;
|
||||
unsigned int nbytes = walk->nbytes;
|
||||
|
||||
twofish_enc_blk(ctx, keystream, ctrblk);
|
||||
crypto_xor(keystream, src, nbytes);
|
||||
memcpy(dst, keystream, nbytes);
|
||||
|
||||
crypto_inc(ctrblk, TF_BLOCK_SIZE);
|
||||
}
|
||||
|
||||
static unsigned int __ctr_crypt(struct blkcipher_desc *desc,
|
||||
struct blkcipher_walk *walk)
|
||||
{
|
||||
struct twofish_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
|
||||
unsigned int bsize = TF_BLOCK_SIZE;
|
||||
unsigned int nbytes = walk->nbytes;
|
||||
u128 *src = (u128 *)walk->src.virt.addr;
|
||||
u128 *dst = (u128 *)walk->dst.virt.addr;
|
||||
u128 ctrblk;
|
||||
be128 ctrblocks[3];
|
||||
|
||||
be128_to_u128(&ctrblk, (be128 *)walk->iv);
|
||||
|
||||
/* Process three block batch */
|
||||
if (nbytes >= bsize * 3) {
|
||||
do {
|
||||
if (dst != src) {
|
||||
dst[0] = src[0];
|
||||
dst[1] = src[1];
|
||||
dst[2] = src[2];
|
||||
}
|
||||
|
||||
/* create ctrblks for parallel encrypt */
|
||||
u128_to_be128(&ctrblocks[0], &ctrblk);
|
||||
u128_inc(&ctrblk);
|
||||
u128_to_be128(&ctrblocks[1], &ctrblk);
|
||||
u128_inc(&ctrblk);
|
||||
u128_to_be128(&ctrblocks[2], &ctrblk);
|
||||
u128_inc(&ctrblk);
|
||||
|
||||
twofish_enc_blk_xor_3way(ctx, (u8 *)dst,
|
||||
(u8 *)ctrblocks);
|
||||
|
||||
src += 3;
|
||||
dst += 3;
|
||||
nbytes -= bsize * 3;
|
||||
} while (nbytes >= bsize * 3);
|
||||
|
||||
if (nbytes < bsize)
|
||||
goto done;
|
||||
}
|
||||
|
||||
/* Handle leftovers */
|
||||
do {
|
||||
if (dst != src)
|
||||
*dst = *src;
|
||||
|
||||
u128_to_be128(&ctrblocks[0], &ctrblk);
|
||||
u128_inc(&ctrblk);
|
||||
|
||||
twofish_enc_blk(ctx, (u8 *)ctrblocks, (u8 *)ctrblocks);
|
||||
u128_xor(dst, dst, (u128 *)ctrblocks);
|
||||
|
||||
src += 1;
|
||||
dst += 1;
|
||||
nbytes -= bsize;
|
||||
} while (nbytes >= bsize);
|
||||
|
||||
done:
|
||||
u128_to_be128((be128 *)walk->iv, &ctrblk);
|
||||
return nbytes;
|
||||
}
|
||||
|
||||
static int ctr_crypt(struct blkcipher_desc *desc, struct scatterlist *dst,
|
||||
struct scatterlist *src, unsigned int nbytes)
|
||||
{
|
||||
struct blkcipher_walk walk;
|
||||
int err;
|
||||
|
||||
blkcipher_walk_init(&walk, dst, src, nbytes);
|
||||
err = blkcipher_walk_virt_block(desc, &walk, TF_BLOCK_SIZE);
|
||||
|
||||
while ((nbytes = walk.nbytes) >= TF_BLOCK_SIZE) {
|
||||
nbytes = __ctr_crypt(desc, &walk);
|
||||
err = blkcipher_walk_done(desc, &walk, nbytes);
|
||||
}
|
||||
|
||||
if (walk.nbytes) {
|
||||
ctr_crypt_final(desc, &walk);
|
||||
err = blkcipher_walk_done(desc, &walk, 0);
|
||||
}
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
static struct crypto_alg blk_ctr_alg = {
|
||||
.cra_name = "ctr(twofish)",
|
||||
.cra_driver_name = "ctr-twofish-3way",
|
||||
.cra_priority = 300,
|
||||
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
|
||||
.cra_blocksize = TF_BLOCK_SIZE,
|
||||
.cra_ctxsize = sizeof(struct twofish_ctx),
|
||||
.cra_alignmask = 0,
|
||||
.cra_type = &crypto_blkcipher_type,
|
||||
.cra_module = THIS_MODULE,
|
||||
.cra_list = LIST_HEAD_INIT(blk_ctr_alg.cra_list),
|
||||
.cra_u = {
|
||||
.blkcipher = {
|
||||
.min_keysize = TF_MIN_KEY_SIZE,
|
||||
.max_keysize = TF_MAX_KEY_SIZE,
|
||||
.ivsize = TF_BLOCK_SIZE,
|
||||
.setkey = twofish_setkey,
|
||||
.encrypt = ctr_crypt,
|
||||
.decrypt = ctr_crypt,
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
int __init init(void)
|
||||
{
|
||||
int err;
|
||||
|
||||
err = crypto_register_alg(&blk_ecb_alg);
|
||||
if (err)
|
||||
goto ecb_err;
|
||||
err = crypto_register_alg(&blk_cbc_alg);
|
||||
if (err)
|
||||
goto cbc_err;
|
||||
err = crypto_register_alg(&blk_ctr_alg);
|
||||
if (err)
|
||||
goto ctr_err;
|
||||
|
||||
return 0;
|
||||
|
||||
ctr_err:
|
||||
crypto_unregister_alg(&blk_cbc_alg);
|
||||
cbc_err:
|
||||
crypto_unregister_alg(&blk_ecb_alg);
|
||||
ecb_err:
|
||||
return err;
|
||||
}
|
||||
|
||||
void __exit fini(void)
|
||||
{
|
||||
crypto_unregister_alg(&blk_ctr_alg);
|
||||
crypto_unregister_alg(&blk_cbc_alg);
|
||||
crypto_unregister_alg(&blk_ecb_alg);
|
||||
}
|
||||
|
||||
module_init(init);
|
||||
module_exit(fini);
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_DESCRIPTION("Twofish Cipher Algorithm, 3-way parallel asm optimized");
|
||||
MODULE_ALIAS("twofish");
|
||||
MODULE_ALIAS("twofish-asm");
|
@ -828,6 +828,26 @@ config CRYPTO_TWOFISH_X86_64
|
||||
See also:
|
||||
<http://www.schneier.com/twofish.html>
|
||||
|
||||
config CRYPTO_TWOFISH_X86_64_3WAY
|
||||
tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
|
||||
depends on (X86 || UML_X86) && 64BIT
|
||||
select CRYPTO_ALGAPI
|
||||
select CRYPTO_TWOFISH_COMMON
|
||||
select CRYPTO_TWOFISH_X86_64
|
||||
help
|
||||
Twofish cipher algorithm (x86_64, 3-way parallel).
|
||||
|
||||
Twofish was submitted as an AES (Advanced Encryption Standard)
|
||||
candidate cipher by researchers at CounterPane Systems. It is a
|
||||
16 round block cipher supporting key sizes of 128, 192, and 256
|
||||
bits.
|
||||
|
||||
This module provides Twofish cipher algorithm that processes three
|
||||
blocks parallel, utilizing resources of out-of-order CPUs better.
|
||||
|
||||
See also:
|
||||
<http://www.schneier.com/twofish.html>
|
||||
|
||||
comment "Compression"
|
||||
|
||||
config CRYPTO_DEFLATE
|
||||
|
Loading…
Reference in New Issue
Block a user