ARM: 6454/1: sa1100: Fix for a nasty initialization bug in the RTSR.

This patch fixes a nasty initialization condition on the RTSR register.
Sometimes, bit 1 will wake up set, sometimes not. This can be seen
by checking the value of the RTSR by typing '$ cat /proc/driver/rtc',
which has been provided by the previous patch.

If this bit is set, the command '$ cat /dev/rtc0' will lock the system
in an endless interrupt routine calling loop.

This patch fixes the issue both at sa1100_rtc_probe(), where it avoids
a spurious interrupt from happening, and at sa1100_rtc_interrupt(),
which is the robust solution, though it does not avoid the first
spurious interrupt.

Signed-off-by: Marcelo Roberto Jimenez <mroberto@cpti.cetuc.puc-rio.br>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This commit is contained in:
Marcelo Roberto Jimenez 2010-10-18 22:35:54 +01:00 committed by Russell King
parent fd3ee6d342
commit 7decaa557a

View File

@ -117,7 +117,23 @@ static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id)
rtsr = RTSR;
/* clear interrupt sources */
RTSR = 0;
/* Fix for a nasty initialization problem the in SA11xx RTSR register.
* See also the comments in sa1100_rtc_probe(). */
if (rtsr & (RTSR_ALE | RTSR_HZE)) {
/* This is the original code, before there was the if test
* above. This code does not clear interrupts that were not
* enabled. */
RTSR = (RTSR_AL | RTSR_HZ) & (rtsr >> 2);
} else {
/* For some reason, it is possible to enter this routine
* without interruptions enabled, it has been tested with
* several units (Bug in SA11xx chip?).
*
* This situation leads to an infinite "loop" of interrupt
* routine calling and as a result the processor seems to
* lock on its first call to open(). */
RTSR = RTSR_AL | RTSR_HZ;
}
/* clear alarm interrupt if it has occurred */
if (rtsr & RTSR_AL)
@ -382,6 +398,30 @@ static int sa1100_rtc_probe(struct platform_device *pdev)
platform_set_drvdata(pdev, rtc);
/* Fix for a nasty initialization problem the in SA11xx RTSR register.
* See also the comments in sa1100_rtc_interrupt().
*
* Sometimes bit 1 of the RTSR (RTSR_HZ) will wake up 1, which means an
* interrupt pending, even though interrupts were never enabled.
* In this case, this bit it must be reset before enabling
* interruptions to avoid a nonexistent interrupt to occur.
*
* In principle, the same problem would apply to bit 0, although it has
* never been observed to happen.
*
* This issue is addressed both here and in sa1100_rtc_interrupt().
* If the issue is not addressed here, in the times when the processor
* wakes up with the bit set there will be one spurious interrupt.
*
* The issue is also dealt with in sa1100_rtc_interrupt() to be on the
* safe side, once the condition that lead to this strange
* initialization is unknown and could in principle happen during
* normal processing.
*
* Notice that clearing bit 1 and 0 is accomplished by writting ONES to
* the corresponding bits in RTSR. */
RTSR = RTSR_AL | RTSR_HZ;
return 0;
}