scsi: mpi3mr: Add support for NVMe passthrough

Add support for management applications to send an MPI3 Encapsulated NVMe
passthru command to the NVMe devices attached to an Avenger controller.
Since the NVMe drives are exposed as SCSI devices by the controller, the
standard NVMe applications cannot be used to interact with the drives and
the command sets supported are also limited by the controller firmware.
Special handling is required for MPI3 Encapsulated NVMe passthru commands
for PRP/SGL setup in the commands.

Link: https://lore.kernel.org/r/20220429211641.642010-8-sumit.saxena@broadcom.com
Reviewed-by: Himanshu Madhani <himanshu.madhani@oracle.com>
Signed-off-by: Sumit Saxena <sumit.saxena@broadcom.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
This commit is contained in:
Sumit Saxena 2022-04-29 17:16:40 -04:00 committed by Martin K. Petersen
parent 986d6bad21
commit 7dbd0dd8cd
3 changed files with 378 additions and 3 deletions

View File

@ -193,6 +193,24 @@ extern atomic64_t event_counter;
*/
#define MPI3MR_MAX_APP_XFER_SECTORS (2048 + 512)
/**
* struct mpi3mr_nvme_pt_sge - Structure to store SGEs for NVMe
* Encapsulated commands.
*
* @base_addr: Physical address
* @length: SGE length
* @rsvd: Reserved
* @rsvd1: Reserved
* @sgl_type: sgl type
*/
struct mpi3mr_nvme_pt_sge {
u64 base_addr;
u32 length;
u16 rsvd;
u8 rsvd1;
u8 sgl_type;
};
/**
* struct mpi3mr_buf_map - local structure to
* track kernel and user buffers associated with an BSG
@ -746,6 +764,9 @@ struct scmd_priv {
* @reset_waitq: Controller reset wait queue
* @prepare_for_reset: Prepare for reset event received
* @prepare_for_reset_timeout_counter: Prepare for reset timeout
* @prp_list_virt: NVMe encapsulated PRP list virtual base
* @prp_list_dma: NVMe encapsulated PRP list DMA
* @prp_sz: NVME encapsulated PRP list size
* @diagsave_timeout: Diagnostic information save timeout
* @logging_level: Controller debug logging level
* @flush_io_count: I/O count to flush after reset
@ -901,6 +922,10 @@ struct mpi3mr_ioc {
u8 prepare_for_reset;
u16 prepare_for_reset_timeout_counter;
void *prp_list_virt;
dma_addr_t prp_list_dma;
u32 prp_sz;
u16 diagsave_timeout;
int logging_level;
u16 flush_io_count;

View File

@ -619,6 +619,314 @@ static void mpi3mr_bsg_build_sgl(u8 *mpi_req, uint32_t sgl_offset,
}
}
/**
* mpi3mr_get_nvme_data_fmt - returns the NVMe data format
* @nvme_encap_request: NVMe encapsulated MPI request
*
* This function returns the type of the data format specified
* in user provided NVMe command in NVMe encapsulated request.
*
* Return: Data format of the NVMe command (PRP/SGL etc)
*/
static unsigned int mpi3mr_get_nvme_data_fmt(
struct mpi3_nvme_encapsulated_request *nvme_encap_request)
{
u8 format = 0;
format = ((nvme_encap_request->command[0] & 0xc000) >> 14);
return format;
}
/**
* mpi3mr_build_nvme_sgl - SGL constructor for NVME
* encapsulated request
* @mrioc: Adapter instance reference
* @nvme_encap_request: NVMe encapsulated MPI request
* @drv_bufs: DMA address of the buffers to be placed in sgl
* @bufcnt: Number of DMA buffers
*
* This function places the DMA address of the given buffers in
* proper format as SGEs in the given NVMe encapsulated request.
*
* Return: 0 on success, -1 on failure
*/
static int mpi3mr_build_nvme_sgl(struct mpi3mr_ioc *mrioc,
struct mpi3_nvme_encapsulated_request *nvme_encap_request,
struct mpi3mr_buf_map *drv_bufs, u8 bufcnt)
{
struct mpi3mr_nvme_pt_sge *nvme_sgl;
u64 sgl_ptr;
u8 count;
size_t length = 0;
struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) <<
mrioc->facts.sge_mod_shift) << 32);
u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) <<
mrioc->facts.sge_mod_shift) << 32;
/*
* Not all commands require a data transfer. If no data, just return
* without constructing any sgl.
*/
for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
if (drv_buf_iter->data_dir == DMA_NONE)
continue;
sgl_ptr = (u64)drv_buf_iter->kern_buf_dma;
length = drv_buf_iter->kern_buf_len;
break;
}
if (!length)
return 0;
if (sgl_ptr & sgemod_mask) {
dprint_bsg_err(mrioc,
"%s: SGL address collides with SGE modifier\n",
__func__);
return -1;
}
sgl_ptr &= ~sgemod_mask;
sgl_ptr |= sgemod_val;
nvme_sgl = (struct mpi3mr_nvme_pt_sge *)
((u8 *)(nvme_encap_request->command) + MPI3MR_NVME_CMD_SGL_OFFSET);
memset(nvme_sgl, 0, sizeof(struct mpi3mr_nvme_pt_sge));
nvme_sgl->base_addr = sgl_ptr;
nvme_sgl->length = length;
return 0;
}
/**
* mpi3mr_build_nvme_prp - PRP constructor for NVME
* encapsulated request
* @mrioc: Adapter instance reference
* @nvme_encap_request: NVMe encapsulated MPI request
* @drv_bufs: DMA address of the buffers to be placed in SGL
* @bufcnt: Number of DMA buffers
*
* This function places the DMA address of the given buffers in
* proper format as PRP entries in the given NVMe encapsulated
* request.
*
* Return: 0 on success, -1 on failure
*/
static int mpi3mr_build_nvme_prp(struct mpi3mr_ioc *mrioc,
struct mpi3_nvme_encapsulated_request *nvme_encap_request,
struct mpi3mr_buf_map *drv_bufs, u8 bufcnt)
{
int prp_size = MPI3MR_NVME_PRP_SIZE;
__le64 *prp_entry, *prp1_entry, *prp2_entry;
__le64 *prp_page;
dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
u32 offset, entry_len, dev_pgsz;
u32 page_mask_result, page_mask;
size_t length = 0;
u8 count;
struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) <<
mrioc->facts.sge_mod_shift) << 32);
u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) <<
mrioc->facts.sge_mod_shift) << 32;
u16 dev_handle = nvme_encap_request->dev_handle;
struct mpi3mr_tgt_dev *tgtdev;
tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle);
if (!tgtdev) {
dprint_bsg_err(mrioc, "%s: invalid device handle 0x%04x\n",
__func__, dev_handle);
return -1;
}
if (tgtdev->dev_spec.pcie_inf.pgsz == 0) {
dprint_bsg_err(mrioc,
"%s: NVMe device page size is zero for handle 0x%04x\n",
__func__, dev_handle);
mpi3mr_tgtdev_put(tgtdev);
return -1;
}
dev_pgsz = 1 << (tgtdev->dev_spec.pcie_inf.pgsz);
mpi3mr_tgtdev_put(tgtdev);
/*
* Not all commands require a data transfer. If no data, just return
* without constructing any PRP.
*/
for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
if (drv_buf_iter->data_dir == DMA_NONE)
continue;
dma_addr = drv_buf_iter->kern_buf_dma;
length = drv_buf_iter->kern_buf_len;
break;
}
if (!length)
return 0;
mrioc->prp_sz = 0;
mrioc->prp_list_virt = dma_alloc_coherent(&mrioc->pdev->dev,
dev_pgsz, &mrioc->prp_list_dma, GFP_KERNEL);
if (!mrioc->prp_list_virt)
return -1;
mrioc->prp_sz = dev_pgsz;
/*
* Set pointers to PRP1 and PRP2, which are in the NVMe command.
* PRP1 is located at a 24 byte offset from the start of the NVMe
* command. Then set the current PRP entry pointer to PRP1.
*/
prp1_entry = (__le64 *)((u8 *)(nvme_encap_request->command) +
MPI3MR_NVME_CMD_PRP1_OFFSET);
prp2_entry = (__le64 *)((u8 *)(nvme_encap_request->command) +
MPI3MR_NVME_CMD_PRP2_OFFSET);
prp_entry = prp1_entry;
/*
* For the PRP entries, use the specially allocated buffer of
* contiguous memory.
*/
prp_page = (__le64 *)mrioc->prp_list_virt;
prp_page_dma = mrioc->prp_list_dma;
/*
* Check if we are within 1 entry of a page boundary we don't
* want our first entry to be a PRP List entry.
*/
page_mask = dev_pgsz - 1;
page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
if (!page_mask_result) {
dprint_bsg_err(mrioc, "%s: PRP page is not page aligned\n",
__func__);
goto err_out;
}
/*
* Set PRP physical pointer, which initially points to the current PRP
* DMA memory page.
*/
prp_entry_dma = prp_page_dma;
/* Loop while the length is not zero. */
while (length) {
page_mask_result = (prp_entry_dma + prp_size) & page_mask;
if (!page_mask_result && (length > dev_pgsz)) {
dprint_bsg_err(mrioc,
"%s: single PRP page is not sufficient\n",
__func__);
goto err_out;
}
/* Need to handle if entry will be part of a page. */
offset = dma_addr & page_mask;
entry_len = dev_pgsz - offset;
if (prp_entry == prp1_entry) {
/*
* Must fill in the first PRP pointer (PRP1) before
* moving on.
*/
*prp1_entry = cpu_to_le64(dma_addr);
if (*prp1_entry & sgemod_mask) {
dprint_bsg_err(mrioc,
"%s: PRP1 address collides with SGE modifier\n",
__func__);
goto err_out;
}
*prp1_entry &= ~sgemod_mask;
*prp1_entry |= sgemod_val;
/*
* Now point to the second PRP entry within the
* command (PRP2).
*/
prp_entry = prp2_entry;
} else if (prp_entry == prp2_entry) {
/*
* Should the PRP2 entry be a PRP List pointer or just
* a regular PRP pointer? If there is more than one
* more page of data, must use a PRP List pointer.
*/
if (length > dev_pgsz) {
/*
* PRP2 will contain a PRP List pointer because
* more PRP's are needed with this command. The
* list will start at the beginning of the
* contiguous buffer.
*/
*prp2_entry = cpu_to_le64(prp_entry_dma);
if (*prp2_entry & sgemod_mask) {
dprint_bsg_err(mrioc,
"%s: PRP list address collides with SGE modifier\n",
__func__);
goto err_out;
}
*prp2_entry &= ~sgemod_mask;
*prp2_entry |= sgemod_val;
/*
* The next PRP Entry will be the start of the
* first PRP List.
*/
prp_entry = prp_page;
continue;
} else {
/*
* After this, the PRP Entries are complete.
* This command uses 2 PRP's and no PRP list.
*/
*prp2_entry = cpu_to_le64(dma_addr);
if (*prp2_entry & sgemod_mask) {
dprint_bsg_err(mrioc,
"%s: PRP2 collides with SGE modifier\n",
__func__);
goto err_out;
}
*prp2_entry &= ~sgemod_mask;
*prp2_entry |= sgemod_val;
}
} else {
/*
* Put entry in list and bump the addresses.
*
* After PRP1 and PRP2 are filled in, this will fill in
* all remaining PRP entries in a PRP List, one per
* each time through the loop.
*/
*prp_entry = cpu_to_le64(dma_addr);
if (*prp1_entry & sgemod_mask) {
dprint_bsg_err(mrioc,
"%s: PRP address collides with SGE modifier\n",
__func__);
goto err_out;
}
*prp_entry &= ~sgemod_mask;
*prp_entry |= sgemod_val;
prp_entry++;
prp_entry_dma++;
}
/*
* Bump the phys address of the command's data buffer by the
* entry_len.
*/
dma_addr += entry_len;
/* decrement length accounting for last partial page. */
if (entry_len > length)
length = 0;
else
length -= entry_len;
}
return 0;
err_out:
if (mrioc->prp_list_virt) {
dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz,
mrioc->prp_list_virt, mrioc->prp_list_dma);
mrioc->prp_list_virt = NULL;
}
return -1;
}
/**
* mpi3mr_bsg_process_mpt_cmds - MPI Pass through BSG handler
* @job: BSG job reference
@ -650,7 +958,7 @@ static long mpi3mr_bsg_process_mpt_cmds(struct bsg_job *job, unsigned int *reply
struct mpi3mr_buf_map *drv_bufs = NULL, *drv_buf_iter = NULL;
u8 count, bufcnt = 0, is_rmcb = 0, is_rmrb = 0, din_cnt = 0, dout_cnt = 0;
u8 invalid_be = 0, erb_offset = 0xFF, mpirep_offset = 0xFF, sg_entries = 0;
u8 block_io = 0, resp_code = 0;
u8 block_io = 0, resp_code = 0, nvme_fmt = 0;
struct mpi3_request_header *mpi_header = NULL;
struct mpi3_status_reply_descriptor *status_desc;
struct mpi3_scsi_task_mgmt_request *tm_req;
@ -890,7 +1198,34 @@ static long mpi3mr_bsg_process_mpt_cmds(struct bsg_job *job, unsigned int *reply
goto out;
}
if (mpi_header->function != MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) {
if (mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) {
nvme_fmt = mpi3mr_get_nvme_data_fmt(
(struct mpi3_nvme_encapsulated_request *)mpi_req);
if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_PRP) {
if (mpi3mr_build_nvme_prp(mrioc,
(struct mpi3_nvme_encapsulated_request *)mpi_req,
drv_bufs, bufcnt)) {
rval = -ENOMEM;
mutex_unlock(&mrioc->bsg_cmds.mutex);
goto out;
}
} else if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL1 ||
nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL2) {
if (mpi3mr_build_nvme_sgl(mrioc,
(struct mpi3_nvme_encapsulated_request *)mpi_req,
drv_bufs, bufcnt)) {
rval = -EINVAL;
mutex_unlock(&mrioc->bsg_cmds.mutex);
goto out;
}
} else {
dprint_bsg_err(mrioc,
"%s:invalid NVMe command format\n", __func__);
rval = -EINVAL;
mutex_unlock(&mrioc->bsg_cmds.mutex);
goto out;
}
} else {
mpi3mr_bsg_build_sgl(mpi_req, (mpi_msg_size),
drv_bufs, bufcnt, is_rmcb, is_rmrb,
(dout_cnt + din_cnt));
@ -968,7 +1303,8 @@ static long mpi3mr_bsg_process_mpt_cmds(struct bsg_job *job, unsigned int *reply
}
}
if (mpi_header->function == MPI3_BSG_FUNCTION_SCSI_IO)
if ((mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) ||
(mpi_header->function == MPI3_BSG_FUNCTION_SCSI_IO))
mpi3mr_issue_tm(mrioc,
MPI3_SCSITASKMGMT_TASKTYPE_TARGET_RESET,
mpi_header->function_dependent, 0,
@ -982,6 +1318,12 @@ static long mpi3mr_bsg_process_mpt_cmds(struct bsg_job *job, unsigned int *reply
}
dprint_bsg_info(mrioc, "%s: bsg request is completed\n", __func__);
if (mrioc->prp_list_virt) {
dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz,
mrioc->prp_list_virt, mrioc->prp_list_dma);
mrioc->prp_list_virt = NULL;
}
if ((mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
!= MPI3_IOCSTATUS_SUCCESS) {
dprint_bsg_info(mrioc,

View File

@ -490,6 +490,14 @@ struct mpi3_nvme_encapsulated_error_reply {
__le32 nvme_completion_entry[4];
};
#define MPI3MR_NVME_PRP_SIZE 8 /* PRP size */
#define MPI3MR_NVME_CMD_PRP1_OFFSET 24 /* PRP1 offset in NVMe cmd */
#define MPI3MR_NVME_CMD_PRP2_OFFSET 32 /* PRP2 offset in NVMe cmd */
#define MPI3MR_NVME_CMD_SGL_OFFSET 24 /* SGL offset in NVMe cmd */
#define MPI3MR_NVME_DATA_FORMAT_PRP 0
#define MPI3MR_NVME_DATA_FORMAT_SGL1 1
#define MPI3MR_NVME_DATA_FORMAT_SGL2 2
/* MPI3: task management related definitions */
struct mpi3_scsi_task_mgmt_request {
__le16 host_tag;