mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-02 08:34:20 +08:00
firmware: arm_scmi: Use common iterators in the sensor protocol
Make SCMI sensor protocol use the common iterator protocol helpers for issuing the multi-part commands. Link: https://lore.kernel.org/r/20220330150551.2573938-15-cristian.marussi@arm.com Signed-off-by: Cristian Marussi <cristian.marussi@arm.com> Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
This commit is contained in:
parent
36b6ea0fc6
commit
7cab537704
@ -64,6 +64,10 @@ struct scmi_msg_resp_attrs {
|
||||
__le32 max_range_high;
|
||||
};
|
||||
|
||||
struct scmi_msg_sensor_description {
|
||||
__le32 desc_index;
|
||||
};
|
||||
|
||||
struct scmi_msg_resp_sensor_description {
|
||||
__le16 num_returned;
|
||||
__le16 num_remaining;
|
||||
@ -233,344 +237,352 @@ static int scmi_sensor_attributes_get(const struct scmi_protocol_handle *ph,
|
||||
}
|
||||
|
||||
static inline void scmi_parse_range_attrs(struct scmi_range_attrs *out,
|
||||
struct scmi_msg_resp_attrs *in)
|
||||
const struct scmi_msg_resp_attrs *in)
|
||||
{
|
||||
out->min_range = get_unaligned_le64((void *)&in->min_range_low);
|
||||
out->max_range = get_unaligned_le64((void *)&in->max_range_low);
|
||||
}
|
||||
|
||||
struct scmi_sens_ipriv {
|
||||
void *priv;
|
||||
struct device *dev;
|
||||
};
|
||||
|
||||
static void iter_intervals_prepare_message(void *message,
|
||||
unsigned int desc_index,
|
||||
const void *p)
|
||||
{
|
||||
struct scmi_msg_sensor_list_update_intervals *msg = message;
|
||||
const struct scmi_sensor_info *s;
|
||||
|
||||
s = ((const struct scmi_sens_ipriv *)p)->priv;
|
||||
/* Set the number of sensors to be skipped/already read */
|
||||
msg->id = cpu_to_le32(s->id);
|
||||
msg->index = cpu_to_le32(desc_index);
|
||||
}
|
||||
|
||||
static int iter_intervals_update_state(struct scmi_iterator_state *st,
|
||||
const void *response, void *p)
|
||||
{
|
||||
u32 flags;
|
||||
struct scmi_sensor_info *s = ((struct scmi_sens_ipriv *)p)->priv;
|
||||
struct device *dev = ((struct scmi_sens_ipriv *)p)->dev;
|
||||
const struct scmi_msg_resp_sensor_list_update_intervals *r = response;
|
||||
|
||||
flags = le32_to_cpu(r->num_intervals_flags);
|
||||
st->num_returned = NUM_INTERVALS_RETURNED(flags);
|
||||
st->num_remaining = NUM_INTERVALS_REMAINING(flags);
|
||||
|
||||
/*
|
||||
* Max intervals is not declared previously anywhere so we
|
||||
* assume it's returned+remaining on first call.
|
||||
*/
|
||||
if (!st->max_resources) {
|
||||
s->intervals.segmented = SEGMENTED_INTVL_FORMAT(flags);
|
||||
s->intervals.count = st->num_returned + st->num_remaining;
|
||||
/* segmented intervals are reported in one triplet */
|
||||
if (s->intervals.segmented &&
|
||||
(st->num_remaining || st->num_returned != 3)) {
|
||||
dev_err(dev,
|
||||
"Sensor ID:%d advertises an invalid segmented interval (%d)\n",
|
||||
s->id, s->intervals.count);
|
||||
s->intervals.segmented = false;
|
||||
s->intervals.count = 0;
|
||||
return -EINVAL;
|
||||
}
|
||||
/* Direct allocation when exceeding pre-allocated */
|
||||
if (s->intervals.count >= SCMI_MAX_PREALLOC_POOL) {
|
||||
s->intervals.desc =
|
||||
devm_kcalloc(dev,
|
||||
s->intervals.count,
|
||||
sizeof(*s->intervals.desc),
|
||||
GFP_KERNEL);
|
||||
if (!s->intervals.desc) {
|
||||
s->intervals.segmented = false;
|
||||
s->intervals.count = 0;
|
||||
return -ENOMEM;
|
||||
}
|
||||
}
|
||||
|
||||
st->max_resources = s->intervals.count;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int
|
||||
iter_intervals_process_response(const struct scmi_protocol_handle *ph,
|
||||
const void *response,
|
||||
struct scmi_iterator_state *st, void *p)
|
||||
{
|
||||
const struct scmi_msg_resp_sensor_list_update_intervals *r = response;
|
||||
struct scmi_sensor_info *s = ((struct scmi_sens_ipriv *)p)->priv;
|
||||
|
||||
s->intervals.desc[st->desc_index + st->loop_idx] =
|
||||
le32_to_cpu(r->intervals[st->loop_idx]);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int scmi_sensor_update_intervals(const struct scmi_protocol_handle *ph,
|
||||
struct scmi_sensor_info *s)
|
||||
{
|
||||
int ret, cnt;
|
||||
u32 desc_index = 0;
|
||||
u16 num_returned, num_remaining;
|
||||
struct scmi_xfer *ti;
|
||||
struct scmi_msg_resp_sensor_list_update_intervals *buf;
|
||||
void *iter;
|
||||
struct scmi_msg_sensor_list_update_intervals *msg;
|
||||
struct scmi_iterator_ops ops = {
|
||||
.prepare_message = iter_intervals_prepare_message,
|
||||
.update_state = iter_intervals_update_state,
|
||||
.process_response = iter_intervals_process_response,
|
||||
};
|
||||
struct scmi_sens_ipriv upriv = {
|
||||
.priv = s,
|
||||
.dev = ph->dev,
|
||||
};
|
||||
|
||||
ret = ph->xops->xfer_get_init(ph, SENSOR_LIST_UPDATE_INTERVALS,
|
||||
sizeof(*msg), 0, &ti);
|
||||
if (ret)
|
||||
return ret;
|
||||
iter = ph->hops->iter_response_init(ph, &ops, s->intervals.count,
|
||||
SENSOR_LIST_UPDATE_INTERVALS,
|
||||
sizeof(*msg), &upriv);
|
||||
if (IS_ERR(iter))
|
||||
return PTR_ERR(iter);
|
||||
|
||||
buf = ti->rx.buf;
|
||||
do {
|
||||
u32 flags;
|
||||
return ph->hops->iter_response_run(iter);
|
||||
}
|
||||
|
||||
msg = ti->tx.buf;
|
||||
/* Set the number of sensors to be skipped/already read */
|
||||
msg->id = cpu_to_le32(s->id);
|
||||
msg->index = cpu_to_le32(desc_index);
|
||||
static void iter_axes_desc_prepare_message(void *message,
|
||||
const unsigned int desc_index,
|
||||
const void *priv)
|
||||
{
|
||||
struct scmi_msg_sensor_axis_description_get *msg = message;
|
||||
const struct scmi_sensor_info *s = priv;
|
||||
|
||||
ret = ph->xops->do_xfer(ph, ti);
|
||||
if (ret)
|
||||
break;
|
||||
/* Set the number of sensors to be skipped/already read */
|
||||
msg->id = cpu_to_le32(s->id);
|
||||
msg->axis_desc_index = cpu_to_le32(desc_index);
|
||||
}
|
||||
|
||||
flags = le32_to_cpu(buf->num_intervals_flags);
|
||||
num_returned = NUM_INTERVALS_RETURNED(flags);
|
||||
num_remaining = NUM_INTERVALS_REMAINING(flags);
|
||||
static int
|
||||
iter_axes_desc_update_state(struct scmi_iterator_state *st,
|
||||
const void *response, void *priv)
|
||||
{
|
||||
u32 flags;
|
||||
const struct scmi_msg_resp_sensor_axis_description *r = response;
|
||||
|
||||
/*
|
||||
* Max intervals is not declared previously anywhere so we
|
||||
* assume it's returned+remaining.
|
||||
*/
|
||||
if (!s->intervals.count) {
|
||||
s->intervals.segmented = SEGMENTED_INTVL_FORMAT(flags);
|
||||
s->intervals.count = num_returned + num_remaining;
|
||||
/* segmented intervals are reported in one triplet */
|
||||
if (s->intervals.segmented &&
|
||||
(num_remaining || num_returned != 3)) {
|
||||
dev_err(ph->dev,
|
||||
"Sensor ID:%d advertises an invalid segmented interval (%d)\n",
|
||||
s->id, s->intervals.count);
|
||||
s->intervals.segmented = false;
|
||||
s->intervals.count = 0;
|
||||
ret = -EINVAL;
|
||||
break;
|
||||
}
|
||||
/* Direct allocation when exceeding pre-allocated */
|
||||
if (s->intervals.count >= SCMI_MAX_PREALLOC_POOL) {
|
||||
s->intervals.desc =
|
||||
devm_kcalloc(ph->dev,
|
||||
s->intervals.count,
|
||||
sizeof(*s->intervals.desc),
|
||||
GFP_KERNEL);
|
||||
if (!s->intervals.desc) {
|
||||
s->intervals.segmented = false;
|
||||
s->intervals.count = 0;
|
||||
ret = -ENOMEM;
|
||||
break;
|
||||
}
|
||||
}
|
||||
} else if (desc_index + num_returned > s->intervals.count) {
|
||||
dev_err(ph->dev,
|
||||
"No. of update intervals can't exceed %d\n",
|
||||
s->intervals.count);
|
||||
ret = -EINVAL;
|
||||
break;
|
||||
}
|
||||
flags = le32_to_cpu(r->num_axis_flags);
|
||||
st->num_returned = NUM_AXIS_RETURNED(flags);
|
||||
st->num_remaining = NUM_AXIS_REMAINING(flags);
|
||||
st->priv = (void *)&r->desc[0];
|
||||
|
||||
for (cnt = 0; cnt < num_returned; cnt++)
|
||||
s->intervals.desc[desc_index + cnt] =
|
||||
le32_to_cpu(buf->intervals[cnt]);
|
||||
return 0;
|
||||
}
|
||||
|
||||
desc_index += num_returned;
|
||||
static int
|
||||
iter_axes_desc_process_response(const struct scmi_protocol_handle *ph,
|
||||
const void *response,
|
||||
struct scmi_iterator_state *st, void *priv)
|
||||
{
|
||||
u32 attrh, attrl;
|
||||
struct scmi_sensor_axis_info *a;
|
||||
size_t dsize = SCMI_MSG_RESP_AXIS_DESCR_BASE_SZ;
|
||||
struct scmi_sensor_info *s = priv;
|
||||
const struct scmi_axis_descriptor *adesc = st->priv;
|
||||
|
||||
ph->xops->reset_rx_to_maxsz(ph, ti);
|
||||
/*
|
||||
* check for both returned and remaining to avoid infinite
|
||||
* loop due to buggy firmware
|
||||
*/
|
||||
} while (num_returned && num_remaining);
|
||||
attrl = le32_to_cpu(adesc->attributes_low);
|
||||
|
||||
ph->xops->xfer_put(ph, ti);
|
||||
return ret;
|
||||
a = &s->axis[st->desc_index + st->loop_idx];
|
||||
a->id = le32_to_cpu(adesc->id);
|
||||
a->extended_attrs = SUPPORTS_EXTEND_ATTRS(attrl);
|
||||
|
||||
attrh = le32_to_cpu(adesc->attributes_high);
|
||||
|
||||
a->scale = S32_EXT(SENSOR_SCALE(attrh));
|
||||
a->type = SENSOR_TYPE(attrh);
|
||||
strscpy(a->name, adesc->name, SCMI_MAX_STR_SIZE);
|
||||
|
||||
if (a->extended_attrs) {
|
||||
unsigned int ares = le32_to_cpu(adesc->resolution);
|
||||
|
||||
a->resolution = SENSOR_RES(ares);
|
||||
a->exponent = S32_EXT(SENSOR_RES_EXP(ares));
|
||||
dsize += sizeof(adesc->resolution);
|
||||
|
||||
scmi_parse_range_attrs(&a->attrs, &adesc->attrs);
|
||||
dsize += sizeof(adesc->attrs);
|
||||
}
|
||||
|
||||
st->priv = ((u8 *)adesc + dsize);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int scmi_sensor_axis_description(const struct scmi_protocol_handle *ph,
|
||||
struct scmi_sensor_info *s)
|
||||
{
|
||||
int ret, cnt;
|
||||
u32 desc_index = 0;
|
||||
u16 num_returned, num_remaining;
|
||||
struct scmi_xfer *te;
|
||||
struct scmi_msg_resp_sensor_axis_description *buf;
|
||||
void *iter;
|
||||
struct scmi_msg_sensor_axis_description_get *msg;
|
||||
struct scmi_iterator_ops ops = {
|
||||
.prepare_message = iter_axes_desc_prepare_message,
|
||||
.update_state = iter_axes_desc_update_state,
|
||||
.process_response = iter_axes_desc_process_response,
|
||||
};
|
||||
|
||||
s->axis = devm_kcalloc(ph->dev, s->num_axis,
|
||||
sizeof(*s->axis), GFP_KERNEL);
|
||||
if (!s->axis)
|
||||
return -ENOMEM;
|
||||
|
||||
ret = ph->xops->xfer_get_init(ph, SENSOR_AXIS_DESCRIPTION_GET,
|
||||
sizeof(*msg), 0, &te);
|
||||
if (ret)
|
||||
return ret;
|
||||
iter = ph->hops->iter_response_init(ph, &ops, s->num_axis,
|
||||
SENSOR_AXIS_DESCRIPTION_GET,
|
||||
sizeof(*msg), s);
|
||||
if (IS_ERR(iter))
|
||||
return PTR_ERR(iter);
|
||||
|
||||
buf = te->rx.buf;
|
||||
do {
|
||||
u32 flags;
|
||||
struct scmi_axis_descriptor *adesc;
|
||||
return ph->hops->iter_response_run(iter);
|
||||
}
|
||||
|
||||
msg = te->tx.buf;
|
||||
/* Set the number of sensors to be skipped/already read */
|
||||
msg->id = cpu_to_le32(s->id);
|
||||
msg->axis_desc_index = cpu_to_le32(desc_index);
|
||||
static void iter_sens_descr_prepare_message(void *message,
|
||||
unsigned int desc_index,
|
||||
const void *priv)
|
||||
{
|
||||
struct scmi_msg_sensor_description *msg = message;
|
||||
|
||||
ret = ph->xops->do_xfer(ph, te);
|
||||
if (ret)
|
||||
break;
|
||||
msg->desc_index = cpu_to_le32(desc_index);
|
||||
}
|
||||
|
||||
flags = le32_to_cpu(buf->num_axis_flags);
|
||||
num_returned = NUM_AXIS_RETURNED(flags);
|
||||
num_remaining = NUM_AXIS_REMAINING(flags);
|
||||
static int iter_sens_descr_update_state(struct scmi_iterator_state *st,
|
||||
const void *response, void *priv)
|
||||
{
|
||||
const struct scmi_msg_resp_sensor_description *r = response;
|
||||
|
||||
if (desc_index + num_returned > s->num_axis) {
|
||||
dev_err(ph->dev, "No. of axis can't exceed %d\n",
|
||||
s->num_axis);
|
||||
break;
|
||||
}
|
||||
st->num_returned = le16_to_cpu(r->num_returned);
|
||||
st->num_remaining = le16_to_cpu(r->num_remaining);
|
||||
st->priv = (void *)&r->desc[0];
|
||||
|
||||
adesc = &buf->desc[0];
|
||||
for (cnt = 0; cnt < num_returned; cnt++) {
|
||||
u32 attrh, attrl;
|
||||
struct scmi_sensor_axis_info *a;
|
||||
size_t dsize = SCMI_MSG_RESP_AXIS_DESCR_BASE_SZ;
|
||||
return 0;
|
||||
}
|
||||
|
||||
attrl = le32_to_cpu(adesc->attributes_low);
|
||||
static int
|
||||
iter_sens_descr_process_response(const struct scmi_protocol_handle *ph,
|
||||
const void *response,
|
||||
struct scmi_iterator_state *st, void *priv)
|
||||
|
||||
a = &s->axis[desc_index + cnt];
|
||||
{
|
||||
int ret = 0;
|
||||
u32 attrh, attrl;
|
||||
size_t dsize = SCMI_MSG_RESP_SENS_DESCR_BASE_SZ;
|
||||
struct scmi_sensor_info *s;
|
||||
struct sensors_info *si = priv;
|
||||
const struct scmi_sensor_descriptor *sdesc = st->priv;
|
||||
|
||||
a->id = le32_to_cpu(adesc->id);
|
||||
a->extended_attrs = SUPPORTS_EXTEND_ATTRS(attrl);
|
||||
s = &si->sensors[st->desc_index + st->loop_idx];
|
||||
s->id = le32_to_cpu(sdesc->id);
|
||||
|
||||
attrh = le32_to_cpu(adesc->attributes_high);
|
||||
a->scale = S32_EXT(SENSOR_SCALE(attrh));
|
||||
a->type = SENSOR_TYPE(attrh);
|
||||
strlcpy(a->name, adesc->name, SCMI_MAX_STR_SIZE);
|
||||
attrl = le32_to_cpu(sdesc->attributes_low);
|
||||
/* common bitfields parsing */
|
||||
s->async = SUPPORTS_ASYNC_READ(attrl);
|
||||
s->num_trip_points = NUM_TRIP_POINTS(attrl);
|
||||
/**
|
||||
* only SCMIv3.0 specific bitfield below.
|
||||
* Such bitfields are assumed to be zeroed on non
|
||||
* relevant fw versions...assuming fw not buggy !
|
||||
*/
|
||||
s->update = SUPPORTS_UPDATE_NOTIFY(attrl);
|
||||
s->timestamped = SUPPORTS_TIMESTAMP(attrl);
|
||||
if (s->timestamped)
|
||||
s->tstamp_scale = S32_EXT(SENSOR_TSTAMP_EXP(attrl));
|
||||
s->extended_scalar_attrs = SUPPORTS_EXTEND_ATTRS(attrl);
|
||||
|
||||
if (a->extended_attrs) {
|
||||
unsigned int ares =
|
||||
le32_to_cpu(adesc->resolution);
|
||||
|
||||
a->resolution = SENSOR_RES(ares);
|
||||
a->exponent =
|
||||
S32_EXT(SENSOR_RES_EXP(ares));
|
||||
dsize += sizeof(adesc->resolution);
|
||||
|
||||
scmi_parse_range_attrs(&a->attrs,
|
||||
&adesc->attrs);
|
||||
dsize += sizeof(adesc->attrs);
|
||||
}
|
||||
|
||||
adesc = (typeof(adesc))((u8 *)adesc + dsize);
|
||||
}
|
||||
|
||||
desc_index += num_returned;
|
||||
|
||||
ph->xops->reset_rx_to_maxsz(ph, te);
|
||||
attrh = le32_to_cpu(sdesc->attributes_high);
|
||||
/* common bitfields parsing */
|
||||
s->scale = S32_EXT(SENSOR_SCALE(attrh));
|
||||
s->type = SENSOR_TYPE(attrh);
|
||||
/* Use pre-allocated pool wherever possible */
|
||||
s->intervals.desc = s->intervals.prealloc_pool;
|
||||
if (si->version == SCMIv2_SENSOR_PROTOCOL) {
|
||||
s->intervals.segmented = false;
|
||||
s->intervals.count = 1;
|
||||
/*
|
||||
* check for both returned and remaining to avoid infinite
|
||||
* loop due to buggy firmware
|
||||
* Convert SCMIv2.0 update interval format to
|
||||
* SCMIv3.0 to be used as the common exposed
|
||||
* descriptor, accessible via common macros.
|
||||
*/
|
||||
} while (num_returned && num_remaining);
|
||||
s->intervals.desc[0] = (SENSOR_UPDATE_BASE(attrh) << 5) |
|
||||
SENSOR_UPDATE_SCALE(attrh);
|
||||
} else {
|
||||
/*
|
||||
* From SCMIv3.0 update intervals are retrieved
|
||||
* via a dedicated (optional) command.
|
||||
* Since the command is optional, on error carry
|
||||
* on without any update interval.
|
||||
*/
|
||||
if (scmi_sensor_update_intervals(ph, s))
|
||||
dev_dbg(ph->dev,
|
||||
"Update Intervals not available for sensor ID:%d\n",
|
||||
s->id);
|
||||
}
|
||||
/**
|
||||
* only > SCMIv2.0 specific bitfield below.
|
||||
* Such bitfields are assumed to be zeroed on non
|
||||
* relevant fw versions...assuming fw not buggy !
|
||||
*/
|
||||
s->num_axis = min_t(unsigned int,
|
||||
SUPPORTS_AXIS(attrh) ?
|
||||
SENSOR_AXIS_NUMBER(attrh) : 0,
|
||||
SCMI_MAX_NUM_SENSOR_AXIS);
|
||||
strscpy(s->name, sdesc->name, SCMI_MAX_STR_SIZE);
|
||||
|
||||
/*
|
||||
* If supported overwrite short name with the extended
|
||||
* one; on error just carry on and use already provided
|
||||
* short name.
|
||||
*/
|
||||
if (PROTOCOL_REV_MAJOR(si->version) >= 0x3 &&
|
||||
SUPPORTS_EXTENDED_NAMES(attrl))
|
||||
ph->hops->extended_name_get(ph, SENSOR_NAME_GET, s->id,
|
||||
s->name, SCMI_MAX_STR_SIZE);
|
||||
|
||||
if (s->extended_scalar_attrs) {
|
||||
s->sensor_power = le32_to_cpu(sdesc->power);
|
||||
dsize += sizeof(sdesc->power);
|
||||
|
||||
/* Only for sensors reporting scalar values */
|
||||
if (s->num_axis == 0) {
|
||||
unsigned int sres = le32_to_cpu(sdesc->resolution);
|
||||
|
||||
s->resolution = SENSOR_RES(sres);
|
||||
s->exponent = S32_EXT(SENSOR_RES_EXP(sres));
|
||||
dsize += sizeof(sdesc->resolution);
|
||||
|
||||
scmi_parse_range_attrs(&s->scalar_attrs,
|
||||
&sdesc->scalar_attrs);
|
||||
dsize += sizeof(sdesc->scalar_attrs);
|
||||
}
|
||||
}
|
||||
|
||||
if (s->num_axis > 0)
|
||||
ret = scmi_sensor_axis_description(ph, s);
|
||||
|
||||
st->priv = ((u8 *)sdesc + dsize);
|
||||
|
||||
ph->xops->xfer_put(ph, te);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int scmi_sensor_description_get(const struct scmi_protocol_handle *ph,
|
||||
struct sensors_info *si)
|
||||
{
|
||||
int ret, cnt;
|
||||
u32 desc_index = 0;
|
||||
u16 num_returned, num_remaining;
|
||||
struct scmi_xfer *t;
|
||||
struct scmi_msg_resp_sensor_description *buf;
|
||||
void *iter;
|
||||
struct scmi_iterator_ops ops = {
|
||||
.prepare_message = iter_sens_descr_prepare_message,
|
||||
.update_state = iter_sens_descr_update_state,
|
||||
.process_response = iter_sens_descr_process_response,
|
||||
};
|
||||
|
||||
ret = ph->xops->xfer_get_init(ph, SENSOR_DESCRIPTION_GET,
|
||||
sizeof(__le32), 0, &t);
|
||||
if (ret)
|
||||
return ret;
|
||||
iter = ph->hops->iter_response_init(ph, &ops, si->num_sensors,
|
||||
SENSOR_DESCRIPTION_GET,
|
||||
sizeof(__le32), si);
|
||||
if (IS_ERR(iter))
|
||||
return PTR_ERR(iter);
|
||||
|
||||
buf = t->rx.buf;
|
||||
|
||||
do {
|
||||
struct scmi_sensor_descriptor *sdesc;
|
||||
|
||||
/* Set the number of sensors to be skipped/already read */
|
||||
put_unaligned_le32(desc_index, t->tx.buf);
|
||||
|
||||
ret = ph->xops->do_xfer(ph, t);
|
||||
if (ret)
|
||||
break;
|
||||
|
||||
num_returned = le16_to_cpu(buf->num_returned);
|
||||
num_remaining = le16_to_cpu(buf->num_remaining);
|
||||
|
||||
if (desc_index + num_returned > si->num_sensors) {
|
||||
dev_err(ph->dev, "No. of sensors can't exceed %d",
|
||||
si->num_sensors);
|
||||
break;
|
||||
}
|
||||
|
||||
sdesc = &buf->desc[0];
|
||||
for (cnt = 0; cnt < num_returned; cnt++) {
|
||||
u32 attrh, attrl;
|
||||
struct scmi_sensor_info *s;
|
||||
size_t dsize = SCMI_MSG_RESP_SENS_DESCR_BASE_SZ;
|
||||
|
||||
s = &si->sensors[desc_index + cnt];
|
||||
s->id = le32_to_cpu(sdesc->id);
|
||||
|
||||
attrl = le32_to_cpu(sdesc->attributes_low);
|
||||
/* common bitfields parsing */
|
||||
s->async = SUPPORTS_ASYNC_READ(attrl);
|
||||
s->num_trip_points = NUM_TRIP_POINTS(attrl);
|
||||
/**
|
||||
* only SCMIv3.0 specific bitfield below.
|
||||
* Such bitfields are assumed to be zeroed on non
|
||||
* relevant fw versions...assuming fw not buggy !
|
||||
*/
|
||||
s->update = SUPPORTS_UPDATE_NOTIFY(attrl);
|
||||
s->timestamped = SUPPORTS_TIMESTAMP(attrl);
|
||||
if (s->timestamped)
|
||||
s->tstamp_scale =
|
||||
S32_EXT(SENSOR_TSTAMP_EXP(attrl));
|
||||
s->extended_scalar_attrs =
|
||||
SUPPORTS_EXTEND_ATTRS(attrl);
|
||||
|
||||
attrh = le32_to_cpu(sdesc->attributes_high);
|
||||
/* common bitfields parsing */
|
||||
s->scale = S32_EXT(SENSOR_SCALE(attrh));
|
||||
s->type = SENSOR_TYPE(attrh);
|
||||
/* Use pre-allocated pool wherever possible */
|
||||
s->intervals.desc = s->intervals.prealloc_pool;
|
||||
if (si->version == SCMIv2_SENSOR_PROTOCOL) {
|
||||
s->intervals.segmented = false;
|
||||
s->intervals.count = 1;
|
||||
/*
|
||||
* Convert SCMIv2.0 update interval format to
|
||||
* SCMIv3.0 to be used as the common exposed
|
||||
* descriptor, accessible via common macros.
|
||||
*/
|
||||
s->intervals.desc[0] =
|
||||
(SENSOR_UPDATE_BASE(attrh) << 5) |
|
||||
SENSOR_UPDATE_SCALE(attrh);
|
||||
} else {
|
||||
/*
|
||||
* From SCMIv3.0 update intervals are retrieved
|
||||
* via a dedicated (optional) command.
|
||||
* Since the command is optional, on error carry
|
||||
* on without any update interval.
|
||||
*/
|
||||
if (scmi_sensor_update_intervals(ph, s))
|
||||
dev_dbg(ph->dev,
|
||||
"Update Intervals not available for sensor ID:%d\n",
|
||||
s->id);
|
||||
}
|
||||
/**
|
||||
* only > SCMIv2.0 specific bitfield below.
|
||||
* Such bitfields are assumed to be zeroed on non
|
||||
* relevant fw versions...assuming fw not buggy !
|
||||
*/
|
||||
s->num_axis = min_t(unsigned int,
|
||||
SUPPORTS_AXIS(attrh) ?
|
||||
SENSOR_AXIS_NUMBER(attrh) : 0,
|
||||
SCMI_MAX_NUM_SENSOR_AXIS);
|
||||
strlcpy(s->name, sdesc->name, SCMI_MAX_STR_SIZE);
|
||||
|
||||
/*
|
||||
* If supported overwrite short name with the extended
|
||||
* one; on error just carry on and use already provided
|
||||
* short name.
|
||||
*/
|
||||
if (PROTOCOL_REV_MAJOR(si->version) >= 0x3 &&
|
||||
SUPPORTS_EXTENDED_NAMES(attrl))
|
||||
ph->hops->extended_name_get(ph, SENSOR_NAME_GET,
|
||||
s->id, s->name,
|
||||
SCMI_MAX_STR_SIZE);
|
||||
|
||||
if (s->extended_scalar_attrs) {
|
||||
s->sensor_power = le32_to_cpu(sdesc->power);
|
||||
dsize += sizeof(sdesc->power);
|
||||
/* Only for sensors reporting scalar values */
|
||||
if (s->num_axis == 0) {
|
||||
unsigned int sres =
|
||||
le32_to_cpu(sdesc->resolution);
|
||||
|
||||
s->resolution = SENSOR_RES(sres);
|
||||
s->exponent =
|
||||
S32_EXT(SENSOR_RES_EXP(sres));
|
||||
dsize += sizeof(sdesc->resolution);
|
||||
|
||||
scmi_parse_range_attrs(&s->scalar_attrs,
|
||||
&sdesc->scalar_attrs);
|
||||
dsize += sizeof(sdesc->scalar_attrs);
|
||||
}
|
||||
}
|
||||
if (s->num_axis > 0) {
|
||||
ret = scmi_sensor_axis_description(ph, s);
|
||||
if (ret)
|
||||
goto out;
|
||||
}
|
||||
|
||||
sdesc = (typeof(sdesc))((u8 *)sdesc + dsize);
|
||||
}
|
||||
|
||||
desc_index += num_returned;
|
||||
|
||||
ph->xops->reset_rx_to_maxsz(ph, t);
|
||||
/*
|
||||
* check for both returned and remaining to avoid infinite
|
||||
* loop due to buggy firmware
|
||||
*/
|
||||
} while (num_returned && num_remaining);
|
||||
|
||||
out:
|
||||
ph->xops->xfer_put(ph, t);
|
||||
return ret;
|
||||
return ph->hops->iter_response_run(iter);
|
||||
}
|
||||
|
||||
static inline int
|
||||
|
Loading…
Reference in New Issue
Block a user