mm: Introduce struct folio

A struct folio is a new abstraction to replace the venerable struct page.
A function which takes a struct folio argument declares that it will
operate on the entire (possibly compound) page, not just PAGE_SIZE bytes.
In return, the caller guarantees that the pointer it is passing does
not point to a tail page.  No change to generated code.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Jeff Layton <jlayton@kernel.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Howells <dhowells@redhat.com>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
This commit is contained in:
Matthew Wilcox (Oracle) 2020-12-06 22:22:48 -05:00
parent c25303281d
commit 7b230db3b8
4 changed files with 164 additions and 0 deletions

View File

@ -95,6 +95,7 @@ More Memory Management Functions
.. kernel-doc:: mm/mempolicy.c
.. kernel-doc:: include/linux/mm_types.h
:internal:
.. kernel-doc:: include/linux/page-flags.h
.. kernel-doc:: include/linux/mm.h
:internal:
.. kernel-doc:: include/linux/mmzone.h

View File

@ -950,6 +950,20 @@ static inline unsigned int compound_order(struct page *page)
return page[1].compound_order;
}
/**
* folio_order - The allocation order of a folio.
* @folio: The folio.
*
* A folio is composed of 2^order pages. See get_order() for the definition
* of order.
*
* Return: The order of the folio.
*/
static inline unsigned int folio_order(struct folio *folio)
{
return compound_order(&folio->page);
}
static inline bool hpage_pincount_available(struct page *page)
{
/*
@ -1595,6 +1609,66 @@ static inline void set_page_links(struct page *page, enum zone_type zone,
#endif
}
/**
* folio_nr_pages - The number of pages in the folio.
* @folio: The folio.
*
* Return: A positive power of two.
*/
static inline long folio_nr_pages(struct folio *folio)
{
return compound_nr(&folio->page);
}
/**
* folio_next - Move to the next physical folio.
* @folio: The folio we're currently operating on.
*
* If you have physically contiguous memory which may span more than
* one folio (eg a &struct bio_vec), use this function to move from one
* folio to the next. Do not use it if the memory is only virtually
* contiguous as the folios are almost certainly not adjacent to each
* other. This is the folio equivalent to writing ``page++``.
*
* Context: We assume that the folios are refcounted and/or locked at a
* higher level and do not adjust the reference counts.
* Return: The next struct folio.
*/
static inline struct folio *folio_next(struct folio *folio)
{
return (struct folio *)folio_page(folio, folio_nr_pages(folio));
}
/**
* folio_shift - The size of the memory described by this folio.
* @folio: The folio.
*
* A folio represents a number of bytes which is a power-of-two in size.
* This function tells you which power-of-two the folio is. See also
* folio_size() and folio_order().
*
* Context: The caller should have a reference on the folio to prevent
* it from being split. It is not necessary for the folio to be locked.
* Return: The base-2 logarithm of the size of this folio.
*/
static inline unsigned int folio_shift(struct folio *folio)
{
return PAGE_SHIFT + folio_order(folio);
}
/**
* folio_size - The number of bytes in a folio.
* @folio: The folio.
*
* Context: The caller should have a reference on the folio to prevent
* it from being split. It is not necessary for the folio to be locked.
* Return: The number of bytes in this folio.
*/
static inline size_t folio_size(struct folio *folio)
{
return PAGE_SIZE << folio_order(folio);
}
/*
* Some inline functions in vmstat.h depend on page_zone()
*/
@ -1700,6 +1774,7 @@ extern void pagefault_out_of_memory(void);
#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
/*
* Flags passed to show_mem() and show_free_areas() to suppress output in

View File

@ -239,6 +239,66 @@ struct page {
#endif
} _struct_page_alignment;
/**
* struct folio - Represents a contiguous set of bytes.
* @flags: Identical to the page flags.
* @lru: Least Recently Used list; tracks how recently this folio was used.
* @mapping: The file this page belongs to, or refers to the anon_vma for
* anonymous memory.
* @index: Offset within the file, in units of pages. For anonymous memory,
* this is the index from the beginning of the mmap.
* @private: Filesystem per-folio data (see folio_attach_private()).
* Used for swp_entry_t if folio_test_swapcache().
* @_mapcount: Do not access this member directly. Use folio_mapcount() to
* find out how many times this folio is mapped by userspace.
* @_refcount: Do not access this member directly. Use folio_ref_count()
* to find how many references there are to this folio.
* @memcg_data: Memory Control Group data.
*
* A folio is a physically, virtually and logically contiguous set
* of bytes. It is a power-of-two in size, and it is aligned to that
* same power-of-two. It is at least as large as %PAGE_SIZE. If it is
* in the page cache, it is at a file offset which is a multiple of that
* power-of-two. It may be mapped into userspace at an address which is
* at an arbitrary page offset, but its kernel virtual address is aligned
* to its size.
*/
struct folio {
/* private: don't document the anon union */
union {
struct {
/* public: */
unsigned long flags;
struct list_head lru;
struct address_space *mapping;
pgoff_t index;
void *private;
atomic_t _mapcount;
atomic_t _refcount;
#ifdef CONFIG_MEMCG
unsigned long memcg_data;
#endif
/* private: the union with struct page is transitional */
};
struct page page;
};
};
static_assert(sizeof(struct page) == sizeof(struct folio));
#define FOLIO_MATCH(pg, fl) \
static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl))
FOLIO_MATCH(flags, flags);
FOLIO_MATCH(lru, lru);
FOLIO_MATCH(compound_head, lru);
FOLIO_MATCH(index, index);
FOLIO_MATCH(private, private);
FOLIO_MATCH(_mapcount, _mapcount);
FOLIO_MATCH(_refcount, _refcount);
#ifdef CONFIG_MEMCG
FOLIO_MATCH(memcg_data, memcg_data);
#endif
#undef FOLIO_MATCH
static inline atomic_t *compound_mapcount_ptr(struct page *page)
{
return &page[1].compound_mapcount;

View File

@ -193,6 +193,34 @@ static inline unsigned long _compound_head(const struct page *page)
#define compound_head(page) ((typeof(page))_compound_head(page))
/**
* page_folio - Converts from page to folio.
* @p: The page.
*
* Every page is part of a folio. This function cannot be called on a
* NULL pointer.
*
* Context: No reference, nor lock is required on @page. If the caller
* does not hold a reference, this call may race with a folio split, so
* it should re-check the folio still contains this page after gaining
* a reference on the folio.
* Return: The folio which contains this page.
*/
#define page_folio(p) (_Generic((p), \
const struct page *: (const struct folio *)_compound_head(p), \
struct page *: (struct folio *)_compound_head(p)))
/**
* folio_page - Return a page from a folio.
* @folio: The folio.
* @n: The page number to return.
*
* @n is relative to the start of the folio. This function does not
* check that the page number lies within @folio; the caller is presumed
* to have a reference to the page.
*/
#define folio_page(folio, n) nth_page(&(folio)->page, n)
static __always_inline int PageTail(struct page *page)
{
return READ_ONCE(page->compound_head) & 1;