Merge NX gzip support into next

As described by Haren:

Power9 processor supports Virtual Accelerator Switchboard (VAS) which
allows kernel and userspace to send compression requests to Nest
Accelerator (NX) directly. The NX unit comprises of 2 842 compression
engines and 1 GZIP engine. Linux kernel already has 842 compression
support on kernel. This patch series adds GZIP compression support
from user space. The GZIP Compression engine implements the ZLIB and
GZIP compression algorithms. No plans of adding NX-GZIP compression
support in kernel right now.

Applications can send requests to NX directly with COPY/PASTE
instructions. But kernel has to establish channel / window on NX-GZIP
device for the userspace. So userspace access to the GZIP engine is
provided through /dev/crypto/nx-gzip device with several operations.

An application must open the this device to obtain a file
descriptor (fd). Using the fd, application should issue the
VAS_TX_WIN_OPEN ioctl to establish a connection to the engine. Once
window is opened, should use mmap() system call to map the hardware
address of engine's request queue into the application's virtual
address space. Then user space forms the request as co-processor
Request Block (CRB) and paste this CRB on the mapped HW address using
COPY/PASTE instructions. Application can poll on status flags (part of
CRB) with timeout for request completion.

For VAS_TX_WIN_OPEN ioctl, if user space passes vas_id = -1 (struct
vas_tx_win_open_attr), kernel determines the VAS instance on the
corresponding chip based on the CPU on which the process is executing.
Otherwise, the specified VAS instance is used if application passes
the proper VAS instance (vas_id listed in
/proc/device-tree/vas@*/ibm,vas_id).

Process can open multiple windows with different FDs or can send
several requests to NX on the same window at the same time.
This commit is contained in:
Michael Ellerman 2020-04-21 22:49:52 +10:00
commit 7948efc27f
11 changed files with 765 additions and 77 deletions

View File

@ -30,6 +30,7 @@ powerpc
syscall64-abi
transactional_memory
ultravisor
vas-api
.. only:: subproject and html

View File

@ -0,0 +1,292 @@
.. SPDX-License-Identifier: GPL-2.0
.. _VAS-API:
===================================================
Virtual Accelerator Switchboard (VAS) userspace API
===================================================
Introduction
============
Power9 processor introduced Virtual Accelerator Switchboard (VAS) which
allows both userspace and kernel communicate to co-processor
(hardware accelerator) referred to as the Nest Accelerator (NX). The NX
unit comprises of one or more hardware engines or co-processor types
such as 842 compression, GZIP compression and encryption. On power9,
userspace applications will have access to only GZIP Compression engine
which supports ZLIB and GZIP compression algorithms in the hardware.
To communicate with NX, kernel has to establish a channel or window and
then requests can be submitted directly without kernel involvement.
Requests to the GZIP engine must be formatted as a co-processor Request
Block (CRB) and these CRBs must be submitted to the NX using COPY/PASTE
instructions to paste the CRB to hardware address that is associated with
the engine's request queue.
The GZIP engine provides two priority levels of requests: Normal and
High. Only Normal requests are supported from userspace right now.
This document explains userspace API that is used to interact with
kernel to setup channel / window which can be used to send compression
requests directly to NX accelerator.
Overview
========
Application access to the GZIP engine is provided through
/dev/crypto/nx-gzip device node implemented by the VAS/NX device driver.
An application must open the /dev/crypto/nx-gzip device to obtain a file
descriptor (fd). Then should issue VAS_TX_WIN_OPEN ioctl with this fd to
establish connection to the engine. It means send window is opened on GZIP
engine for this process. Once a connection is established, the application
should use the mmap() system call to map the hardware address of engine's
request queue into the application's virtual address space.
The application can then submit one or more requests to the the engine by
using copy/paste instructions and pasting the CRBs to the virtual address
(aka paste_address) returned by mmap(). User space can close the
established connection or send window by closing the file descriptior
(close(fd)) or upon the process exit.
Note that applications can send several requests with the same window or
can establish multiple windows, but one window for each file descriptor.
Following sections provide additional details and references about the
individual steps.
NX-GZIP Device Node
===================
There is one /dev/crypto/nx-gzip node in the system and it provides
access to all GZIP engines in the system. The only valid operations on
/dev/crypto/nx-gzip are:
* open() the device for read and write.
* issue VAS_TX_WIN_OPEN ioctl
* mmap() the engine's request queue into application's virtual
address space (i.e. get a paste_address for the co-processor
engine).
* close the device node.
Other file operations on this device node are undefined.
Note that the copy and paste operations go directly to the hardware and
do not go through this device. Refer COPY/PASTE document for more
details.
Although a system may have several instances of the NX co-processor
engines (typically, one per P9 chip) there is just one
/dev/crypto/nx-gzip device node in the system. When the nx-gzip device
node is opened, Kernel opens send window on a suitable instance of NX
accelerator. It finds CPU on which the user process is executing and
determine the NX instance for the corresponding chip on which this CPU
belongs.
Applications may chose a specific instance of the NX co-processor using
the vas_id field in the VAS_TX_WIN_OPEN ioctl as detailed below.
A userspace library libnxz is available here but still in development:
https://github.com/abalib/power-gzip
Applications that use inflate / deflate calls can link with libnxz
instead of libz and use NX GZIP compression without any modification.
Open /dev/crypto/nx-gzip
========================
The nx-gzip device should be opened for read and write. No special
privileges are needed to open the device. Each window corresponds to one
file descriptor. So if the userspace process needs multiple windows,
several open calls have to be issued.
See open(2) system call man pages for other details such as return values,
error codes and restrictions.
VAS_TX_WIN_OPEN ioctl
=====================
Applications should use the VAS_TX_WIN_OPEN ioctl as follows to establish
a connection with NX co-processor engine:
::
struct vas_tx_win_open_attr {
__u32 version;
__s16 vas_id; /* specific instance of vas or -1
for default */
__u16 reserved1;
__u64 flags; /* For future use */
__u64 reserved2[6];
};
version: The version field must be currently set to 1.
vas_id: If '-1' is passed, kernel will make a best-effort attempt
to assign an optimal instance of NX for the process. To
select the specific VAS instance, refer
"Discovery of available VAS engines" section below.
flags, reserved1 and reserved2[6] fields are for future extension
and must be set to 0.
The attributes attr for the VAS_TX_WIN_OPEN ioctl are defined as
follows:
#define VAS_MAGIC 'v'
#define VAS_TX_WIN_OPEN _IOW(VAS_MAGIC, 1,
struct vas_tx_win_open_attr)
struct vas_tx_win_open_attr attr;
rc = ioctl(fd, VAS_TX_WIN_OPEN, &attr);
The VAS_TX_WIN_OPEN ioctl returns 0 on success. On errors, it
returns -1 and sets the errno variable to indicate the error.
Error conditions:
EINVAL fd does not refer to a valid VAS device.
EINVAL Invalid vas ID
EINVAL version is not set with proper value
EEXIST Window is already opened for the given fd
ENOMEM Memory is not available to allocate window
ENOSPC System has too many active windows (connections)
opened
EINVAL reserved fields are not set to 0.
See the ioctl(2) man page for more details, error codes and
restrictions.
mmap() NX-GZIP device
=====================
The mmap() system call for a NX-GZIP device fd returns a paste_address
that the application can use to copy/paste its CRB to the hardware engines.
::
paste_addr = mmap(addr, size, prot, flags, fd, offset);
Only restrictions on mmap for a NX-GZIP device fd are:
* size should be PAGE_SIZE
* offset parameter should be 0ULL
Refer to mmap(2) man page for additional details/restrictions.
In addition to the error conditions listed on the mmap(2) man
page, can also fail with one of the following error codes:
EINVAL fd is not associated with an open window
(i.e mmap() does not follow a successful call
to the VAS_TX_WIN_OPEN ioctl).
EINVAL offset field is not 0ULL.
Discovery of available VAS engines
==================================
Each available VAS instance in the system will have a device tree node
like /proc/device-tree/vas@* or /proc/device-tree/xscom@*/vas@*.
Determine the chip or VAS instance and use the corresponding ibm,vas-id
property value in this node to select specific VAS instance.
Copy/Paste operations
=====================
Applications should use the copy and paste instructions to send CRB to NX.
Refer section 4.4 in PowerISA for Copy/Paste instructions:
https://openpowerfoundation.org/?resource_lib=power-isa-version-3-0
CRB Specification and use NX
============================
Applications should format requests to the co-processor using the
co-processor Request Block (CRBs). Refer NX-GZIP user's manual for the format
of CRB and use NX from userspace such as sending requests and checking
request status.
NX Fault handling
=================
Applications send requests to NX and wait for the status by polling on
co-processor Status Block (CSB) flags. NX updates status in CSB after each
request is processed. Refer NX-GZIP user's manual for the format of CSB and
status flags.
In case if NX encounters translation error (called NX page fault) on CSB
address or any request buffer, raises an interrupt on the CPU to handle the
fault. Page fault can happen if an application passes invalid addresses or
request buffers are not in memory. The operating system handles the fault by
updating CSB with the following data:
csb.flags = CSB_V;
csb.cc = CSB_CC_TRANSLATION;
csb.ce = CSB_CE_TERMINATION;
csb.address = fault_address;
When an application receives translation error, it can touch or access
the page that has a fault address so that this page will be in memory. Then
the application can resend this request to NX.
If the OS can not update CSB due to invalid CSB address, sends SEGV signal
to the process who opened the send window on which the original request was
issued. This signal returns with the following siginfo struct:
siginfo.si_signo = SIGSEGV;
siginfo.si_errno = EFAULT;
siginfo.si_code = SEGV_MAPERR;
siginfo.si_addr = CSB adress;
In the case of multi-thread applications, NX send windows can be shared
across all threads. For example, a child thread can open a send window,
but other threads can send requests to NX using this window. These
requests will be successful even in the case of OS handling faults as long
as CSB address is valid. If the NX request contains an invalid CSB address,
the signal will be sent to the child thread that opened the window. But if
the thread is exited without closing the window and the request is issued
using this window. the signal will be issued to the thread group leader
(tgid). It is up to the application whether to ignore or handle these
signals.
NX-GZIP User's Manual:
https://github.com/libnxz/power-gzip/blob/master/power_nx_gzip_um.pdf
Simple example
==============
::
int use_nx_gzip()
{
int rc, fd;
void *addr;
struct vas_setup_attr txattr;
fd = open("/dev/crypto/nx-gzip", O_RDWR);
if (fd < 0) {
fprintf(stderr, "open nx-gzip failed\n");
return -1;
}
memset(&txattr, 0, sizeof(txattr));
txattr.version = 1;
txattr.vas_id = -1
rc = ioctl(fd, VAS_TX_WIN_OPEN,
(unsigned long)&txattr);
if (rc < 0) {
fprintf(stderr, "ioctl() n %d, error %d\n",
rc, errno);
return rc;
}
addr = mmap(NULL, 4096, PROT_READ|PROT_WRITE,
MAP_SHARED, fd, 0ULL);
if (addr == MAP_FAILED) {
fprintf(stderr, "mmap() failed, errno %d\n",
errno);
return -errno;
}
do {
//Format CRB request with compression or
//uncompression
// Refer tests for vas_copy/vas_paste
vas_copy((&crb, 0, 1);
vas_paste(addr, 0, 1);
// Poll on csb.flags with timeout
// csb address is listed in CRB
} while (true)
close(fd) or window can be closed upon process exit
}
Refer https://github.com/abalib/power-gzip for tests or more
use cases.

View File

@ -286,6 +286,7 @@ Code Seq# Include File Comments
'v' 00-1F linux/fs.h conflict!
'v' 00-0F linux/sonypi.h conflict!
'v' 00-0F media/v4l2-subdev.h conflict!
'v' 20-27 arch/powerpc/include/uapi/asm/vas-api.h VAS API
'v' C0-FF linux/meye.h conflict!
'w' all CERN SCI driver
'y' 00-1F packet based user level communications

View File

@ -86,7 +86,6 @@ struct vas_tx_win_attr {
int wcreds_max;
int lpid;
int pidr; /* hardware PID (from SPRN_PID) */
int pid; /* linux process id */
int pswid;
int rsvd_txbuf_count;
int tc_mode;
@ -163,4 +162,16 @@ int vas_copy_crb(void *crb, int offset);
*/
int vas_paste_crb(struct vas_window *win, int offset, bool re);
/*
* Register / unregister coprocessor type to VAS API which will be exported
* to user space. Applications can use this API to open / close window
* which can be used to send / receive requests directly to cooprcessor.
*
* Only NX GZIP coprocessor type is supported now, but this API can be
* used for others in future.
*/
int vas_register_coproc_api(struct module *mod, enum vas_cop_type cop_type,
const char *name);
void vas_unregister_coproc_api(void);
#endif /* __ASM_POWERPC_VAS_H */

View File

@ -0,0 +1,22 @@
/* SPDX-License-Identifier: GPL-2.0+ WITH Linux-syscall-note */
/*
* Copyright 2019 IBM Corp.
*/
#ifndef _UAPI_MISC_VAS_H
#define _UAPI_MISC_VAS_H
#include <asm/ioctl.h>
#define VAS_MAGIC 'v'
#define VAS_TX_WIN_OPEN _IOW(VAS_MAGIC, 0x20, struct vas_tx_win_open_attr)
struct vas_tx_win_open_attr {
__u32 version;
__s16 vas_id; /* specific instance of vas or -1 for default */
__u16 reserved1;
__u64 flags; /* Future use */
__u64 reserved2[6];
};
#endif /* _UAPI_MISC_VAS_H */

View File

@ -17,7 +17,7 @@ obj-$(CONFIG_MEMORY_FAILURE) += opal-memory-errors.o
obj-$(CONFIG_OPAL_PRD) += opal-prd.o
obj-$(CONFIG_PERF_EVENTS) += opal-imc.o
obj-$(CONFIG_PPC_MEMTRACE) += memtrace.o
obj-$(CONFIG_PPC_VAS) += vas.o vas-window.o vas-debug.o vas-fault.o
obj-$(CONFIG_PPC_VAS) += vas.o vas-window.o vas-debug.o vas-fault.o vas-api.o
obj-$(CONFIG_OCXL_BASE) += ocxl.o
obj-$(CONFIG_SCOM_DEBUGFS) += opal-xscom.o
obj-$(CONFIG_PPC_SECURE_BOOT) += opal-secvar.o

View File

@ -0,0 +1,278 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* VAS user space API for its accelerators (Only NX-GZIP is supported now)
* Copyright (C) 2019 Haren Myneni, IBM Corp
*/
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/cdev.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <asm/vas.h>
#include <uapi/asm/vas-api.h>
#include "vas.h"
/*
* The driver creates the device node that can be used as follows:
* For NX-GZIP
*
* fd = open("/dev/crypto/nx-gzip", O_RDWR);
* rc = ioctl(fd, VAS_TX_WIN_OPEN, &attr);
* paste_addr = mmap(NULL, PAGE_SIZE, prot, MAP_SHARED, fd, 0ULL).
* vas_copy(&crb, 0, 1);
* vas_paste(paste_addr, 0, 1);
* close(fd) or exit process to close window.
*
* where "vas_copy" and "vas_paste" are defined in copy-paste.h.
* copy/paste returns to the user space directly. So refer NX hardware
* documententation for exact copy/paste usage and completion / error
* conditions.
*/
/*
* Wrapper object for the nx-gzip device - there is just one instance of
* this node for the whole system.
*/
static struct coproc_dev {
struct cdev cdev;
struct device *device;
char *name;
dev_t devt;
struct class *class;
enum vas_cop_type cop_type;
} coproc_device;
struct coproc_instance {
struct coproc_dev *coproc;
struct vas_window *txwin;
};
static char *coproc_devnode(struct device *dev, umode_t *mode)
{
return kasprintf(GFP_KERNEL, "crypto/%s", dev_name(dev));
}
static int coproc_open(struct inode *inode, struct file *fp)
{
struct coproc_instance *cp_inst;
cp_inst = kzalloc(sizeof(*cp_inst), GFP_KERNEL);
if (!cp_inst)
return -ENOMEM;
cp_inst->coproc = container_of(inode->i_cdev, struct coproc_dev,
cdev);
fp->private_data = cp_inst;
return 0;
}
static int coproc_ioc_tx_win_open(struct file *fp, unsigned long arg)
{
void __user *uptr = (void __user *)arg;
struct vas_tx_win_attr txattr = {};
struct vas_tx_win_open_attr uattr;
struct coproc_instance *cp_inst;
struct vas_window *txwin;
int rc, vasid;
cp_inst = fp->private_data;
/*
* One window for file descriptor
*/
if (cp_inst->txwin)
return -EEXIST;
rc = copy_from_user(&uattr, uptr, sizeof(uattr));
if (rc) {
pr_err("%s(): copy_from_user() returns %d\n", __func__, rc);
return -EFAULT;
}
if (uattr.version != 1) {
pr_err("Invalid version\n");
return -EINVAL;
}
vasid = uattr.vas_id;
vas_init_tx_win_attr(&txattr, cp_inst->coproc->cop_type);
txattr.lpid = mfspr(SPRN_LPID);
txattr.pidr = mfspr(SPRN_PID);
txattr.user_win = true;
txattr.rsvd_txbuf_count = false;
txattr.pswid = false;
pr_devel("Pid %d: Opening txwin, PIDR %ld\n", txattr.pidr,
mfspr(SPRN_PID));
txwin = vas_tx_win_open(vasid, cp_inst->coproc->cop_type, &txattr);
if (IS_ERR(txwin)) {
pr_err("%s() vas_tx_win_open() failed, %ld\n", __func__,
PTR_ERR(txwin));
return PTR_ERR(txwin);
}
cp_inst->txwin = txwin;
return 0;
}
static int coproc_release(struct inode *inode, struct file *fp)
{
struct coproc_instance *cp_inst = fp->private_data;
if (cp_inst->txwin) {
vas_win_close(cp_inst->txwin);
cp_inst->txwin = NULL;
}
kfree(cp_inst);
fp->private_data = NULL;
/*
* We don't know here if user has other receive windows
* open, so we can't really call clear_thread_tidr().
* So, once the process calls set_thread_tidr(), the
* TIDR value sticks around until process exits, resulting
* in an extra copy in restore_sprs().
*/
return 0;
}
static int coproc_mmap(struct file *fp, struct vm_area_struct *vma)
{
struct coproc_instance *cp_inst = fp->private_data;
struct vas_window *txwin;
unsigned long pfn;
u64 paste_addr;
pgprot_t prot;
int rc;
txwin = cp_inst->txwin;
if ((vma->vm_end - vma->vm_start) > PAGE_SIZE) {
pr_debug("%s(): size 0x%zx, PAGE_SIZE 0x%zx\n", __func__,
(vma->vm_end - vma->vm_start), PAGE_SIZE);
return -EINVAL;
}
/* Ensure instance has an open send window */
if (!txwin) {
pr_err("%s(): No send window open?\n", __func__);
return -EINVAL;
}
vas_win_paste_addr(txwin, &paste_addr, NULL);
pfn = paste_addr >> PAGE_SHIFT;
/* flags, page_prot from cxl_mmap(), except we want cachable */
vma->vm_flags |= VM_IO | VM_PFNMAP;
vma->vm_page_prot = pgprot_cached(vma->vm_page_prot);
prot = __pgprot(pgprot_val(vma->vm_page_prot) | _PAGE_DIRTY);
rc = remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
vma->vm_end - vma->vm_start, prot);
pr_devel("%s(): paste addr %llx at %lx, rc %d\n", __func__,
paste_addr, vma->vm_start, rc);
return rc;
}
static long coproc_ioctl(struct file *fp, unsigned int cmd, unsigned long arg)
{
switch (cmd) {
case VAS_TX_WIN_OPEN:
return coproc_ioc_tx_win_open(fp, arg);
default:
return -EINVAL;
}
}
static struct file_operations coproc_fops = {
.open = coproc_open,
.release = coproc_release,
.mmap = coproc_mmap,
.unlocked_ioctl = coproc_ioctl,
};
/*
* Supporting only nx-gzip coprocessor type now, but this API code
* extended to other coprocessor types later.
*/
int vas_register_coproc_api(struct module *mod, enum vas_cop_type cop_type,
const char *name)
{
int rc = -EINVAL;
dev_t devno;
rc = alloc_chrdev_region(&coproc_device.devt, 1, 1, name);
if (rc) {
pr_err("Unable to allocate coproc major number: %i\n", rc);
return rc;
}
pr_devel("%s device allocated, dev [%i,%i]\n", name,
MAJOR(coproc_device.devt), MINOR(coproc_device.devt));
coproc_device.class = class_create(mod, name);
if (IS_ERR(coproc_device.class)) {
rc = PTR_ERR(coproc_device.class);
pr_err("Unable to create %s class %d\n", name, rc);
goto err_class;
}
coproc_device.class->devnode = coproc_devnode;
coproc_device.cop_type = cop_type;
coproc_fops.owner = mod;
cdev_init(&coproc_device.cdev, &coproc_fops);
devno = MKDEV(MAJOR(coproc_device.devt), 0);
rc = cdev_add(&coproc_device.cdev, devno, 1);
if (rc) {
pr_err("cdev_add() failed %d\n", rc);
goto err_cdev;
}
coproc_device.device = device_create(coproc_device.class, NULL,
devno, NULL, name, MINOR(devno));
if (IS_ERR(coproc_device.device)) {
rc = PTR_ERR(coproc_device.device);
pr_err("Unable to create coproc-%d %d\n", MINOR(devno), rc);
goto err;
}
pr_devel("%s: Added dev [%d,%d]\n", __func__, MAJOR(devno),
MINOR(devno));
return 0;
err:
cdev_del(&coproc_device.cdev);
err_cdev:
class_destroy(coproc_device.class);
err_class:
unregister_chrdev_region(coproc_device.devt, 1);
return rc;
}
EXPORT_SYMBOL_GPL(vas_register_coproc_api);
void vas_unregister_coproc_api(void)
{
dev_t devno;
cdev_del(&coproc_device.cdev);
devno = MKDEV(MAJOR(coproc_device.devt), 0);
device_destroy(coproc_device.class, devno);
class_destroy(coproc_device.class);
unregister_chrdev_region(coproc_device.devt, 1);
}
EXPORT_SYMBOL_GPL(vas_unregister_coproc_api);

View File

@ -26,7 +26,7 @@
* Compute the paste address region for the window @window using the
* ->paste_base_addr and ->paste_win_id_shift we got from device tree.
*/
static void compute_paste_address(struct vas_window *window, u64 *addr, int *len)
void vas_win_paste_addr(struct vas_window *window, u64 *addr, int *len)
{
int winid;
u64 base, shift;
@ -80,7 +80,7 @@ static void *map_paste_region(struct vas_window *txwin)
goto free_name;
txwin->paste_addr_name = name;
compute_paste_address(txwin, &start, &len);
vas_win_paste_addr(txwin, &start, &len);
if (!request_mem_region(start, len, name)) {
pr_devel("%s(): request_mem_region(0x%llx, %d) failed\n",
@ -138,7 +138,7 @@ static void unmap_paste_region(struct vas_window *window)
u64 busaddr_start;
if (window->paste_kaddr) {
compute_paste_address(window, &busaddr_start, &len);
vas_win_paste_addr(window, &busaddr_start, &len);
unmap_region(window->paste_kaddr, busaddr_start, len);
window->paste_kaddr = NULL;
kfree(window->paste_addr_name);
@ -817,7 +817,8 @@ void vas_init_rx_win_attr(struct vas_rx_win_attr *rxattr, enum vas_cop_type cop)
{
memset(rxattr, 0, sizeof(*rxattr));
if (cop == VAS_COP_TYPE_842 || cop == VAS_COP_TYPE_842_HIPRI) {
if (cop == VAS_COP_TYPE_842 || cop == VAS_COP_TYPE_842_HIPRI ||
cop == VAS_COP_TYPE_GZIP || cop == VAS_COP_TYPE_GZIP_HIPRI) {
rxattr->pin_win = true;
rxattr->nx_win = true;
rxattr->fault_win = false;
@ -892,7 +893,8 @@ void vas_init_tx_win_attr(struct vas_tx_win_attr *txattr, enum vas_cop_type cop)
{
memset(txattr, 0, sizeof(*txattr));
if (cop == VAS_COP_TYPE_842 || cop == VAS_COP_TYPE_842_HIPRI) {
if (cop == VAS_COP_TYPE_842 || cop == VAS_COP_TYPE_842_HIPRI ||
cop == VAS_COP_TYPE_GZIP || cop == VAS_COP_TYPE_GZIP_HIPRI) {
txattr->rej_no_credit = false;
txattr->rx_wcred_mode = true;
txattr->tx_wcred_mode = true;
@ -976,10 +978,15 @@ static bool tx_win_args_valid(enum vas_cop_type cop,
if (attr->wcreds_max > VAS_TX_WCREDS_MAX)
return false;
if (attr->user_win &&
(cop != VAS_COP_TYPE_FTW || attr->rsvd_txbuf_count))
if (attr->user_win) {
if (attr->rsvd_txbuf_count)
return false;
if (cop != VAS_COP_TYPE_FTW && cop != VAS_COP_TYPE_GZIP &&
cop != VAS_COP_TYPE_GZIP_HIPRI)
return false;
}
return true;
}

View File

@ -437,6 +437,8 @@ extern irqreturn_t vas_fault_handler(int irq, void *dev_id);
extern void vas_return_credit(struct vas_window *window, bool tx);
extern struct vas_window *vas_pswid_to_window(struct vas_instance *vinst,
uint32_t pswid);
extern void vas_win_paste_addr(struct vas_window *window, u64 *addr,
int *len);
static inline int vas_window_pid(struct vas_window *window)
{

View File

@ -15,4 +15,4 @@ obj-$(CONFIG_CRYPTO_DEV_NX_COMPRESS_PSERIES) += nx-compress-pseries.o nx-compres
obj-$(CONFIG_CRYPTO_DEV_NX_COMPRESS_POWERNV) += nx-compress-powernv.o nx-compress.o
nx-compress-objs := nx-842.o
nx-compress-pseries-objs := nx-842-pseries.o
nx-compress-powernv-objs := nx-842-powernv.o
nx-compress-powernv-objs := nx-common-powernv.o

View File

@ -1,6 +1,6 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Driver for IBM PowerNV 842 compression accelerator
* Driver for IBM PowerNV compression accelerator
*
* Copyright (C) 2015 Dan Streetman, IBM Corp
*/
@ -20,7 +20,7 @@
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Dan Streetman <ddstreet@ieee.org>");
MODULE_DESCRIPTION("842 H/W Compression driver for IBM PowerNV processors");
MODULE_DESCRIPTION("H/W Compression driver for IBM PowerNV processors");
MODULE_ALIAS_CRYPTO("842");
MODULE_ALIAS_CRYPTO("842-nx");
@ -40,9 +40,9 @@ struct nx842_workmem {
char padding[WORKMEM_ALIGN]; /* unused, to allow alignment */
} __packed __aligned(WORKMEM_ALIGN);
struct nx842_coproc {
struct nx_coproc {
unsigned int chip_id;
unsigned int ct;
unsigned int ct; /* Can be 842 or GZIP high/normal*/
unsigned int ci; /* Coprocessor instance, used with icswx */
struct {
struct vas_window *rxwin;
@ -58,9 +58,16 @@ struct nx842_coproc {
static DEFINE_PER_CPU(struct vas_window *, cpu_txwin);
/* no cpu hotplug on powernv, so this list never changes after init */
static LIST_HEAD(nx842_coprocs);
static LIST_HEAD(nx_coprocs);
static unsigned int nx842_ct; /* used in icswx function */
/*
* Using same values as in skiboot or coprocessor type representing
* in NX workbook.
*/
#define NX_CT_GZIP (2) /* on P9 and later */
#define NX_CT_842 (3)
static int (*nx842_powernv_exec)(const unsigned char *in,
unsigned int inlen, unsigned char *out,
unsigned int *outlenp, void *workmem, int fc);
@ -666,15 +673,15 @@ static int nx842_powernv_decompress(const unsigned char *in, unsigned int inlen,
wmem, CCW_FC_842_DECOMP_CRC);
}
static inline void nx842_add_coprocs_list(struct nx842_coproc *coproc,
static inline void nx_add_coprocs_list(struct nx_coproc *coproc,
int chipid)
{
coproc->chip_id = chipid;
INIT_LIST_HEAD(&coproc->list);
list_add(&coproc->list, &nx842_coprocs);
list_add(&coproc->list, &nx_coprocs);
}
static struct vas_window *nx842_alloc_txwin(struct nx842_coproc *coproc)
static struct vas_window *nx_alloc_txwin(struct nx_coproc *coproc)
{
struct vas_window *txwin = NULL;
struct vas_tx_win_attr txattr;
@ -685,7 +692,6 @@ static struct vas_window *nx842_alloc_txwin(struct nx842_coproc *coproc)
*/
vas_init_tx_win_attr(&txattr, coproc->ct);
txattr.lpid = 0; /* lpid is 0 for kernel requests */
txattr.pid = 0; /* pid is 0 for kernel requests */
/*
* Open a VAS send window which is used to send request to NX.
@ -704,9 +710,9 @@ static struct vas_window *nx842_alloc_txwin(struct nx842_coproc *coproc)
* cpu_txwin is used in copy/paste operation for each compression /
* decompression request.
*/
static int nx842_open_percpu_txwins(void)
static int nx_open_percpu_txwins(void)
{
struct nx842_coproc *coproc, *n;
struct nx_coproc *coproc, *n;
unsigned int i, chip_id;
for_each_possible_cpu(i) {
@ -714,17 +720,18 @@ static int nx842_open_percpu_txwins(void)
chip_id = cpu_to_chip_id(i);
list_for_each_entry_safe(coproc, n, &nx842_coprocs, list) {
list_for_each_entry_safe(coproc, n, &nx_coprocs, list) {
/*
* Kernel requests use only high priority FIFOs. So
* open send windows for these FIFOs.
* GZIP is not supported in kernel right now.
*/
if (coproc->ct != VAS_COP_TYPE_842_HIPRI)
continue;
if (coproc->chip_id == chip_id) {
txwin = nx842_alloc_txwin(coproc);
txwin = nx_alloc_txwin(coproc);
if (IS_ERR(txwin))
return PTR_ERR(txwin);
@ -743,13 +750,28 @@ static int nx842_open_percpu_txwins(void)
return 0;
}
static int __init nx_set_ct(struct nx_coproc *coproc, const char *priority,
int high, int normal)
{
if (!strcmp(priority, "High"))
coproc->ct = high;
else if (!strcmp(priority, "Normal"))
coproc->ct = normal;
else {
pr_err("Invalid RxFIFO priority value\n");
return -EINVAL;
}
return 0;
}
static int __init vas_cfg_coproc_info(struct device_node *dn, int chip_id,
int vasid, int *ct)
int vasid, int type, int *ct)
{
struct vas_window *rxwin = NULL;
struct vas_rx_win_attr rxattr;
struct nx842_coproc *coproc;
u32 lpid, pid, tid, fifo_size;
struct nx_coproc *coproc;
u64 rx_fifo;
const char *priority;
int ret;
@ -794,15 +816,15 @@ static int __init vas_cfg_coproc_info(struct device_node *dn, int chip_id,
if (!coproc)
return -ENOMEM;
if (!strcmp(priority, "High"))
coproc->ct = VAS_COP_TYPE_842_HIPRI;
else if (!strcmp(priority, "Normal"))
coproc->ct = VAS_COP_TYPE_842;
else {
pr_err("Invalid RxFIFO priority value\n");
ret = -EINVAL;
if (type == NX_CT_842)
ret = nx_set_ct(coproc, priority, VAS_COP_TYPE_842_HIPRI,
VAS_COP_TYPE_842);
else if (type == NX_CT_GZIP)
ret = nx_set_ct(coproc, priority, VAS_COP_TYPE_GZIP_HIPRI,
VAS_COP_TYPE_GZIP);
if (ret)
goto err_out;
}
vas_init_rx_win_attr(&rxattr, coproc->ct);
rxattr.rx_fifo = (void *)rx_fifo;
@ -830,7 +852,7 @@ static int __init vas_cfg_coproc_info(struct device_node *dn, int chip_id,
coproc->vas.rxwin = rxwin;
coproc->vas.id = vasid;
nx842_add_coprocs_list(coproc, chip_id);
nx_add_coprocs_list(coproc, chip_id);
/*
* (lpid, pid, tid) combination has to be unique for each
@ -848,13 +870,47 @@ err_out:
return ret;
}
static int __init nx842_powernv_probe_vas(struct device_node *pn)
static int __init nx_coproc_init(int chip_id, int ct_842, int ct_gzip)
{
int ret = 0;
if (opal_check_token(OPAL_NX_COPROC_INIT)) {
ret = opal_nx_coproc_init(chip_id, ct_842);
if (!ret)
ret = opal_nx_coproc_init(chip_id, ct_gzip);
if (ret) {
ret = opal_error_code(ret);
pr_err("Failed to initialize NX for chip(%d): %d\n",
chip_id, ret);
}
} else
pr_warn("Firmware doesn't support NX initialization\n");
return ret;
}
static int __init find_nx_device_tree(struct device_node *dn, int chip_id,
int vasid, int type, char *devname,
int *ct)
{
int ret = 0;
if (of_device_is_compatible(dn, devname)) {
ret = vas_cfg_coproc_info(dn, chip_id, vasid, type, ct);
if (ret)
of_node_put(dn);
}
return ret;
}
static int __init nx_powernv_probe_vas(struct device_node *pn)
{
struct device_node *dn;
int chip_id, vasid, ret = 0;
int nx_fifo_found = 0;
int uninitialized_var(ct);
int ct_842 = 0, ct_gzip = 0;
struct device_node *dn;
chip_id = of_get_ibm_chip_id(pn);
if (chip_id < 0) {
@ -869,40 +925,33 @@ static int __init nx842_powernv_probe_vas(struct device_node *pn)
}
for_each_child_of_node(pn, dn) {
if (of_device_is_compatible(dn, "ibm,p9-nx-842")) {
ret = vas_cfg_coproc_info(dn, chip_id, vasid, &ct);
if (ret) {
of_node_put(dn);
ret = find_nx_device_tree(dn, chip_id, vasid, NX_CT_842,
"ibm,p9-nx-842", &ct_842);
if (!ret)
ret = find_nx_device_tree(dn, chip_id, vasid,
NX_CT_GZIP, "ibm,p9-nx-gzip", &ct_gzip);
if (ret)
return ret;
}
nx_fifo_found++;
}
}
if (!nx_fifo_found) {
pr_err("NX842 FIFO nodes are missing\n");
if (!ct_842 || !ct_gzip) {
pr_err("NX FIFO nodes are missing\n");
return -EINVAL;
}
/*
* Initialize NX instance for both high and normal priority FIFOs.
*/
if (opal_check_token(OPAL_NX_COPROC_INIT)) {
ret = opal_nx_coproc_init(chip_id, ct);
if (ret) {
pr_err("Failed to initialize NX for chip(%d): %d\n",
chip_id, ret);
ret = opal_error_code(ret);
}
} else
pr_warn("Firmware doesn't support NX initialization\n");
ret = nx_coproc_init(chip_id, ct_842, ct_gzip);
return ret;
}
static int __init nx842_powernv_probe(struct device_node *dn)
{
struct nx842_coproc *coproc;
struct nx_coproc *coproc;
unsigned int ct, ci;
int chip_id;
@ -922,13 +971,13 @@ static int __init nx842_powernv_probe(struct device_node *dn)
return -EINVAL;
}
coproc = kmalloc(sizeof(*coproc), GFP_KERNEL);
coproc = kzalloc(sizeof(*coproc), GFP_KERNEL);
if (!coproc)
return -ENOMEM;
coproc->ct = ct;
coproc->ci = ci;
nx842_add_coprocs_list(coproc, chip_id);
nx_add_coprocs_list(coproc, chip_id);
pr_info("coprocessor found on chip %d, CT %d CI %d\n", chip_id, ct, ci);
@ -941,9 +990,9 @@ static int __init nx842_powernv_probe(struct device_node *dn)
return 0;
}
static void nx842_delete_coprocs(void)
static void nx_delete_coprocs(void)
{
struct nx842_coproc *coproc, *n;
struct nx_coproc *coproc, *n;
struct vas_window *txwin;
int i;
@ -955,10 +1004,10 @@ static void nx842_delete_coprocs(void)
if (txwin)
vas_win_close(txwin);
per_cpu(cpu_txwin, i) = 0;
per_cpu(cpu_txwin, i) = NULL;
}
list_for_each_entry_safe(coproc, n, &nx842_coprocs, list) {
list_for_each_entry_safe(coproc, n, &nx_coprocs, list) {
if (coproc->vas.rxwin)
vas_win_close(coproc->vas.rxwin);
@ -1002,7 +1051,7 @@ static struct crypto_alg nx842_powernv_alg = {
.coa_decompress = nx842_crypto_decompress } }
};
static __init int nx842_powernv_init(void)
static __init int nx_compress_powernv_init(void)
{
struct device_node *dn;
int ret;
@ -1017,15 +1066,15 @@ static __init int nx842_powernv_init(void)
BUILD_BUG_ON(DDE_BUFFER_SIZE_MULT % DDE_BUFFER_LAST_MULT);
for_each_compatible_node(dn, NULL, "ibm,power9-nx") {
ret = nx842_powernv_probe_vas(dn);
ret = nx_powernv_probe_vas(dn);
if (ret) {
nx842_delete_coprocs();
nx_delete_coprocs();
of_node_put(dn);
return ret;
}
}
if (list_empty(&nx842_coprocs)) {
if (list_empty(&nx_coprocs)) {
for_each_compatible_node(dn, NULL, "ibm,power-nx")
nx842_powernv_probe(dn);
@ -1034,9 +1083,25 @@ static __init int nx842_powernv_init(void)
nx842_powernv_exec = nx842_exec_icswx;
} else {
ret = nx842_open_percpu_txwins();
/*
* Register VAS user space API for NX GZIP so
* that user space can use GZIP engine.
* Using high FIFO priority for kernel requests and
* normal FIFO priority is assigned for userspace.
* 842 compression is supported only in kernel.
*/
ret = vas_register_coproc_api(THIS_MODULE, VAS_COP_TYPE_GZIP,
"nx-gzip");
/*
* GZIP is not supported in kernel right now.
* So open tx windows only for 842.
*/
if (!ret)
ret = nx_open_percpu_txwins();
if (ret) {
nx842_delete_coprocs();
nx_delete_coprocs();
return ret;
}
@ -1045,18 +1110,27 @@ static __init int nx842_powernv_init(void)
ret = crypto_register_alg(&nx842_powernv_alg);
if (ret) {
nx842_delete_coprocs();
nx_delete_coprocs();
return ret;
}
return 0;
}
module_init(nx842_powernv_init);
module_init(nx_compress_powernv_init);
static void __exit nx842_powernv_exit(void)
static void __exit nx_compress_powernv_exit(void)
{
/*
* GZIP engine is supported only in power9 or later and nx842_ct
* is used on power8 (icswx).
* VAS API for NX GZIP is registered during init for user space
* use. So delete this API use for GZIP engine.
*/
if (!nx842_ct)
vas_unregister_coproc_api();
crypto_unregister_alg(&nx842_powernv_alg);
nx842_delete_coprocs();
nx_delete_coprocs();
}
module_exit(nx842_powernv_exit);
module_exit(nx_compress_powernv_exit);