arm64: stacktrace: Add shared header for common stack unwinding code

In order to reuse the arm64 stack unwinding logic for the nVHE
hypervisor stack, move the common code to a shared header
(arch/arm64/include/asm/stacktrace/common.h).

The nVHE hypervisor cannot safely link against kernel code, so we
make use of the shared header to avoid duplicated logic later in
this series.

Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220726073750.3219117-2-kaleshsingh@google.com
This commit is contained in:
Kalesh Singh 2022-07-26 00:37:34 -07:00 committed by Marc Zyngier
parent 82a592c13b
commit 6bf212c89c
3 changed files with 106 additions and 91 deletions

View File

@ -8,52 +8,19 @@
#include <linux/percpu.h>
#include <linux/sched.h>
#include <linux/sched/task_stack.h>
#include <linux/types.h>
#include <linux/llist.h>
#include <asm/memory.h>
#include <asm/ptrace.h>
#include <asm/sdei.h>
enum stack_type {
STACK_TYPE_UNKNOWN,
STACK_TYPE_TASK,
STACK_TYPE_IRQ,
STACK_TYPE_OVERFLOW,
STACK_TYPE_SDEI_NORMAL,
STACK_TYPE_SDEI_CRITICAL,
__NR_STACK_TYPES
};
struct stack_info {
unsigned long low;
unsigned long high;
enum stack_type type;
};
#include <asm/stacktrace/common.h>
extern void dump_backtrace(struct pt_regs *regs, struct task_struct *tsk,
const char *loglvl);
DECLARE_PER_CPU(unsigned long *, irq_stack_ptr);
static inline bool on_stack(unsigned long sp, unsigned long size,
unsigned long low, unsigned long high,
enum stack_type type, struct stack_info *info)
{
if (!low)
return false;
if (sp < low || sp + size < sp || sp + size > high)
return false;
if (info) {
info->low = low;
info->high = high;
info->type = type;
}
return true;
}
static inline bool on_irq_stack(unsigned long sp, unsigned long size,
struct stack_info *info)
{

View File

@ -0,0 +1,105 @@
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Common arm64 stack unwinder code.
*
* Copyright (C) 2012 ARM Ltd.
*/
#ifndef __ASM_STACKTRACE_COMMON_H
#define __ASM_STACKTRACE_COMMON_H
#include <linux/bitmap.h>
#include <linux/bitops.h>
#include <linux/types.h>
enum stack_type {
STACK_TYPE_UNKNOWN,
STACK_TYPE_TASK,
STACK_TYPE_IRQ,
STACK_TYPE_OVERFLOW,
STACK_TYPE_SDEI_NORMAL,
STACK_TYPE_SDEI_CRITICAL,
__NR_STACK_TYPES
};
struct stack_info {
unsigned long low;
unsigned long high;
enum stack_type type;
};
/*
* A snapshot of a frame record or fp/lr register values, along with some
* accounting information necessary for robust unwinding.
*
* @fp: The fp value in the frame record (or the real fp)
* @pc: The lr value in the frame record (or the real lr)
*
* @stacks_done: Stacks which have been entirely unwound, for which it is no
* longer valid to unwind to.
*
* @prev_fp: The fp that pointed to this frame record, or a synthetic value
* of 0. This is used to ensure that within a stack, each
* subsequent frame record is at an increasing address.
* @prev_type: The type of stack this frame record was on, or a synthetic
* value of STACK_TYPE_UNKNOWN. This is used to detect a
* transition from one stack to another.
*
* @kr_cur: When KRETPROBES is selected, holds the kretprobe instance
* associated with the most recently encountered replacement lr
* value.
*
* @task: The task being unwound.
*/
struct unwind_state {
unsigned long fp;
unsigned long pc;
DECLARE_BITMAP(stacks_done, __NR_STACK_TYPES);
unsigned long prev_fp;
enum stack_type prev_type;
#ifdef CONFIG_KRETPROBES
struct llist_node *kr_cur;
#endif
struct task_struct *task;
};
static inline bool on_stack(unsigned long sp, unsigned long size,
unsigned long low, unsigned long high,
enum stack_type type, struct stack_info *info)
{
if (!low)
return false;
if (sp < low || sp + size < sp || sp + size > high)
return false;
if (info) {
info->low = low;
info->high = high;
info->type = type;
}
return true;
}
static inline void unwind_init_common(struct unwind_state *state,
struct task_struct *task)
{
state->task = task;
#ifdef CONFIG_KRETPROBES
state->kr_cur = NULL;
#endif
/*
* Prime the first unwind.
*
* In unwind_next() we'll check that the FP points to a valid stack,
* which can't be STACK_TYPE_UNKNOWN, and the first unwind will be
* treated as a transition to whichever stack that happens to be. The
* prev_fp value won't be used, but we set it to 0 such that it is
* definitely not an accessible stack address.
*/
bitmap_zero(state->stacks_done, __NR_STACK_TYPES);
state->prev_fp = 0;
state->prev_type = STACK_TYPE_UNKNOWN;
}
#endif /* __ASM_STACKTRACE_COMMON_H */

View File

@ -18,63 +18,6 @@
#include <asm/stack_pointer.h>
#include <asm/stacktrace.h>
/*
* A snapshot of a frame record or fp/lr register values, along with some
* accounting information necessary for robust unwinding.
*
* @fp: The fp value in the frame record (or the real fp)
* @pc: The lr value in the frame record (or the real lr)
*
* @stacks_done: Stacks which have been entirely unwound, for which it is no
* longer valid to unwind to.
*
* @prev_fp: The fp that pointed to this frame record, or a synthetic value
* of 0. This is used to ensure that within a stack, each
* subsequent frame record is at an increasing address.
* @prev_type: The type of stack this frame record was on, or a synthetic
* value of STACK_TYPE_UNKNOWN. This is used to detect a
* transition from one stack to another.
*
* @kr_cur: When KRETPROBES is selected, holds the kretprobe instance
* associated with the most recently encountered replacement lr
* value.
*
* @task: The task being unwound.
*/
struct unwind_state {
unsigned long fp;
unsigned long pc;
DECLARE_BITMAP(stacks_done, __NR_STACK_TYPES);
unsigned long prev_fp;
enum stack_type prev_type;
#ifdef CONFIG_KRETPROBES
struct llist_node *kr_cur;
#endif
struct task_struct *task;
};
static void unwind_init_common(struct unwind_state *state,
struct task_struct *task)
{
state->task = task;
#ifdef CONFIG_KRETPROBES
state->kr_cur = NULL;
#endif
/*
* Prime the first unwind.
*
* In unwind_next() we'll check that the FP points to a valid stack,
* which can't be STACK_TYPE_UNKNOWN, and the first unwind will be
* treated as a transition to whichever stack that happens to be. The
* prev_fp value won't be used, but we set it to 0 such that it is
* definitely not an accessible stack address.
*/
bitmap_zero(state->stacks_done, __NR_STACK_TYPES);
state->prev_fp = 0;
state->prev_type = STACK_TYPE_UNKNOWN;
}
/*
* Start an unwind from a pt_regs.
*